Step | Hyp | Ref
| Expression |
1 | | satf0suc.s |
. . . 4
⊢ 𝑆 = (∅ Sat
∅) |
2 | 1 | fveq1i 6775 |
. . 3
⊢ (𝑆‘suc 𝑁) = ((∅ Sat ∅)‘suc 𝑁) |
3 | 2 | a1i 11 |
. 2
⊢ (𝑁 ∈ ω → (𝑆‘suc 𝑁) = ((∅ Sat ∅)‘suc 𝑁)) |
4 | | omsucelsucb 8289 |
. . 3
⊢ (𝑁 ∈ ω ↔ suc 𝑁 ∈ suc
ω) |
5 | | satf0sucom 33335 |
. . 3
⊢ (suc
𝑁 ∈ suc ω →
((∅ Sat ∅)‘suc 𝑁) = (rec((𝑓 ∈ V ↦ (𝑓 ∪ {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))})), {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))})‘suc 𝑁)) |
6 | 4, 5 | sylbi 216 |
. 2
⊢ (𝑁 ∈ ω → ((∅
Sat ∅)‘suc 𝑁) =
(rec((𝑓 ∈ V ↦
(𝑓 ∪ {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))})), {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))})‘suc 𝑁)) |
7 | | nnon 7718 |
. . . 4
⊢ (𝑁 ∈ ω → 𝑁 ∈ On) |
8 | | rdgsuc 8255 |
. . . 4
⊢ (𝑁 ∈ On → (rec((𝑓 ∈ V ↦ (𝑓 ∪ {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))})), {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))})‘suc 𝑁) = ((𝑓 ∈ V ↦ (𝑓 ∪ {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))}))‘(rec((𝑓 ∈ V ↦ (𝑓 ∪ {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))})), {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))})‘𝑁))) |
9 | 7, 8 | syl 17 |
. . 3
⊢ (𝑁 ∈ ω →
(rec((𝑓 ∈ V ↦
(𝑓 ∪ {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))})), {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))})‘suc 𝑁) = ((𝑓 ∈ V ↦ (𝑓 ∪ {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))}))‘(rec((𝑓 ∈ V ↦ (𝑓 ∪ {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))})), {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))})‘𝑁))) |
10 | | elelsuc 6338 |
. . . . . 6
⊢ (𝑁 ∈ ω → 𝑁 ∈ suc
ω) |
11 | | satf0sucom 33335 |
. . . . . 6
⊢ (𝑁 ∈ suc ω →
((∅ Sat ∅)‘𝑁) = (rec((𝑓 ∈ V ↦ (𝑓 ∪ {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))})), {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))})‘𝑁)) |
12 | 10, 11 | syl 17 |
. . . . 5
⊢ (𝑁 ∈ ω → ((∅
Sat ∅)‘𝑁) =
(rec((𝑓 ∈ V ↦
(𝑓 ∪ {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))})), {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))})‘𝑁)) |
13 | 1 | eqcomi 2747 |
. . . . . 6
⊢ (∅
Sat ∅) = 𝑆 |
14 | 13 | fveq1i 6775 |
. . . . 5
⊢ ((∅
Sat ∅)‘𝑁) =
(𝑆‘𝑁) |
15 | 12, 14 | eqtr3di 2793 |
. . . 4
⊢ (𝑁 ∈ ω →
(rec((𝑓 ∈ V ↦
(𝑓 ∪ {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))})), {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))})‘𝑁) = (𝑆‘𝑁)) |
16 | 15 | fveq2d 6778 |
. . 3
⊢ (𝑁 ∈ ω → ((𝑓 ∈ V ↦ (𝑓 ∪ {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))}))‘(rec((𝑓 ∈ V ↦ (𝑓 ∪ {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))})), {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))})‘𝑁)) = ((𝑓 ∈ V ↦ (𝑓 ∪ {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))}))‘(𝑆‘𝑁))) |
17 | | eqidd 2739 |
. . . 4
⊢ (𝑁 ∈ ω → (𝑓 ∈ V ↦ (𝑓 ∪ {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))})) = (𝑓 ∈ V ↦ (𝑓 ∪ {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))}))) |
18 | | id 22 |
. . . . . 6
⊢ (𝑓 = (𝑆‘𝑁) → 𝑓 = (𝑆‘𝑁)) |
19 | | rexeq 3343 |
. . . . . . . . . 10
⊢ (𝑓 = (𝑆‘𝑁) → (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ↔
∃𝑣 ∈ (𝑆‘𝑁)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)))) |
20 | 19 | orbi1d 914 |
. . . . . . . . 9
⊢ (𝑓 = (𝑆‘𝑁) → ((∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)) ↔ (∃𝑣 ∈ (𝑆‘𝑁)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))) |
21 | 20 | rexeqbi1dv 3341 |
. . . . . . . 8
⊢ (𝑓 = (𝑆‘𝑁) → (∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)) ↔ ∃𝑢 ∈ (𝑆‘𝑁)(∃𝑣 ∈ (𝑆‘𝑁)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))) |
22 | 21 | anbi2d 629 |
. . . . . . 7
⊢ (𝑓 = (𝑆‘𝑁) → ((𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢))) ↔ (𝑦 = ∅ ∧ ∃𝑢 ∈ (𝑆‘𝑁)(∃𝑣 ∈ (𝑆‘𝑁)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢))))) |
23 | 22 | opabbidv 5140 |
. . . . . 6
⊢ (𝑓 = (𝑆‘𝑁) → {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))} = {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ (𝑆‘𝑁)(∃𝑣 ∈ (𝑆‘𝑁)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))}) |
24 | 18, 23 | uneq12d 4098 |
. . . . 5
⊢ (𝑓 = (𝑆‘𝑁) → (𝑓 ∪ {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))}) = ((𝑆‘𝑁) ∪ {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ (𝑆‘𝑁)(∃𝑣 ∈ (𝑆‘𝑁)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))})) |
25 | 24 | adantl 482 |
. . . 4
⊢ ((𝑁 ∈ ω ∧ 𝑓 = (𝑆‘𝑁)) → (𝑓 ∪ {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))}) = ((𝑆‘𝑁) ∪ {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ (𝑆‘𝑁)(∃𝑣 ∈ (𝑆‘𝑁)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))})) |
26 | | fvex 6787 |
. . . . 5
⊢ (𝑆‘𝑁) ∈ V |
27 | 26 | a1i 11 |
. . . 4
⊢ (𝑁 ∈ ω → (𝑆‘𝑁) ∈ V) |
28 | | omex 9401 |
. . . . . . 7
⊢ ω
∈ V |
29 | | satf0suclem 33337 |
. . . . . . 7
⊢ (((𝑆‘𝑁) ∈ V ∧ (𝑆‘𝑁) ∈ V ∧ ω ∈ V) →
{〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ (𝑆‘𝑁)(∃𝑣 ∈ (𝑆‘𝑁)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))} ∈ V) |
30 | 26, 26, 28, 29 | mp3an 1460 |
. . . . . 6
⊢
{〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ (𝑆‘𝑁)(∃𝑣 ∈ (𝑆‘𝑁)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))} ∈ V |
31 | 26, 30 | unex 7596 |
. . . . 5
⊢ ((𝑆‘𝑁) ∪ {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ (𝑆‘𝑁)(∃𝑣 ∈ (𝑆‘𝑁)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))}) ∈ V |
32 | 31 | a1i 11 |
. . . 4
⊢ (𝑁 ∈ ω → ((𝑆‘𝑁) ∪ {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ (𝑆‘𝑁)(∃𝑣 ∈ (𝑆‘𝑁)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))}) ∈ V) |
33 | 17, 25, 27, 32 | fvmptd 6882 |
. . 3
⊢ (𝑁 ∈ ω → ((𝑓 ∈ V ↦ (𝑓 ∪ {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))}))‘(𝑆‘𝑁)) = ((𝑆‘𝑁) ∪ {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ (𝑆‘𝑁)(∃𝑣 ∈ (𝑆‘𝑁)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))})) |
34 | 9, 16, 33 | 3eqtrd 2782 |
. 2
⊢ (𝑁 ∈ ω →
(rec((𝑓 ∈ V ↦
(𝑓 ∪ {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))})), {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))})‘suc 𝑁) = ((𝑆‘𝑁) ∪ {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ (𝑆‘𝑁)(∃𝑣 ∈ (𝑆‘𝑁)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))})) |
35 | 3, 6, 34 | 3eqtrd 2782 |
1
⊢ (𝑁 ∈ ω → (𝑆‘suc 𝑁) = ((𝑆‘𝑁) ∪ {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ (𝑆‘𝑁)(∃𝑣 ∈ (𝑆‘𝑁)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))})) |