Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  satfdmfmla Structured version   Visualization version   GIF version

Theorem satfdmfmla 35368
Description: The domain of the satisfaction predicate as function over wff codes in any model 𝑀 and any binary relation 𝐸 on 𝑀 for a natural number 𝑁 is the set of valid Godel formulas of height 𝑁. (Contributed by AV, 13-Oct-2023.)
Assertion
Ref Expression
satfdmfmla ((𝑀𝑉𝐸𝑊𝑁 ∈ ω) → dom ((𝑀 Sat 𝐸)‘𝑁) = (Fmla‘𝑁))

Proof of Theorem satfdmfmla
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 0ex 5325 . . . . . . 7 ∅ ∈ V
21, 1pm3.2i 470 . . . . . 6 (∅ ∈ V ∧ ∅ ∈ V)
32jctr 524 . . . . 5 ((𝑀𝑉𝐸𝑊) → ((𝑀𝑉𝐸𝑊) ∧ (∅ ∈ V ∧ ∅ ∈ V)))
433adant3 1132 . . . 4 ((𝑀𝑉𝐸𝑊𝑁 ∈ ω) → ((𝑀𝑉𝐸𝑊) ∧ (∅ ∈ V ∧ ∅ ∈ V)))
5 satfdm 35337 . . . 4 (((𝑀𝑉𝐸𝑊) ∧ (∅ ∈ V ∧ ∅ ∈ V)) → ∀𝑛 ∈ ω dom ((𝑀 Sat 𝐸)‘𝑛) = dom ((∅ Sat ∅)‘𝑛))
64, 5syl 17 . . 3 ((𝑀𝑉𝐸𝑊𝑁 ∈ ω) → ∀𝑛 ∈ ω dom ((𝑀 Sat 𝐸)‘𝑛) = dom ((∅ Sat ∅)‘𝑛))
7 fveq2 6920 . . . . . . 7 (𝑛 = 𝑁 → ((𝑀 Sat 𝐸)‘𝑛) = ((𝑀 Sat 𝐸)‘𝑁))
87dmeqd 5930 . . . . . 6 (𝑛 = 𝑁 → dom ((𝑀 Sat 𝐸)‘𝑛) = dom ((𝑀 Sat 𝐸)‘𝑁))
9 fveq2 6920 . . . . . . 7 (𝑛 = 𝑁 → ((∅ Sat ∅)‘𝑛) = ((∅ Sat ∅)‘𝑁))
109dmeqd 5930 . . . . . 6 (𝑛 = 𝑁 → dom ((∅ Sat ∅)‘𝑛) = dom ((∅ Sat ∅)‘𝑁))
118, 10eqeq12d 2756 . . . . 5 (𝑛 = 𝑁 → (dom ((𝑀 Sat 𝐸)‘𝑛) = dom ((∅ Sat ∅)‘𝑛) ↔ dom ((𝑀 Sat 𝐸)‘𝑁) = dom ((∅ Sat ∅)‘𝑁)))
1211rspcv 3631 . . . 4 (𝑁 ∈ ω → (∀𝑛 ∈ ω dom ((𝑀 Sat 𝐸)‘𝑛) = dom ((∅ Sat ∅)‘𝑛) → dom ((𝑀 Sat 𝐸)‘𝑁) = dom ((∅ Sat ∅)‘𝑁)))
13123ad2ant3 1135 . . 3 ((𝑀𝑉𝐸𝑊𝑁 ∈ ω) → (∀𝑛 ∈ ω dom ((𝑀 Sat 𝐸)‘𝑛) = dom ((∅ Sat ∅)‘𝑛) → dom ((𝑀 Sat 𝐸)‘𝑁) = dom ((∅ Sat ∅)‘𝑁)))
146, 13mpd 15 . 2 ((𝑀𝑉𝐸𝑊𝑁 ∈ ω) → dom ((𝑀 Sat 𝐸)‘𝑁) = dom ((∅ Sat ∅)‘𝑁))
15 elelsuc 6468 . . . 4 (𝑁 ∈ ω → 𝑁 ∈ suc ω)
16153ad2ant3 1135 . . 3 ((𝑀𝑉𝐸𝑊𝑁 ∈ ω) → 𝑁 ∈ suc ω)
17 fmlafv 35348 . . 3 (𝑁 ∈ suc ω → (Fmla‘𝑁) = dom ((∅ Sat ∅)‘𝑁))
1816, 17syl 17 . 2 ((𝑀𝑉𝐸𝑊𝑁 ∈ ω) → (Fmla‘𝑁) = dom ((∅ Sat ∅)‘𝑁))
1914, 18eqtr4d 2783 1 ((𝑀𝑉𝐸𝑊𝑁 ∈ ω) → dom ((𝑀 Sat 𝐸)‘𝑁) = (Fmla‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488  c0 4352  dom cdm 5700  suc csuc 6397  cfv 6573  (class class class)co 7448  ωcom 7903   Sat csat 35304  Fmlacfmla 35305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-goel 35308  df-goal 35310  df-sat 35311  df-fmla 35313
This theorem is referenced by:  satffunlem1lem2  35371  satffunlem2lem2  35374  satff  35378  satefvfmla0  35386  satefvfmla1  35393
  Copyright terms: Public domain W3C validator