| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > satfdmfmla | Structured version Visualization version GIF version | ||
| Description: The domain of the satisfaction predicate as function over wff codes in any model 𝑀 and any binary relation 𝐸 on 𝑀 for a natural number 𝑁 is the set of valid Godel formulas of height 𝑁. (Contributed by AV, 13-Oct-2023.) |
| Ref | Expression |
|---|---|
| satfdmfmla | ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω) → dom ((𝑀 Sat 𝐸)‘𝑁) = (Fmla‘𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 5245 | . . . . . . 7 ⊢ ∅ ∈ V | |
| 2 | 1, 1 | pm3.2i 470 | . . . . . 6 ⊢ (∅ ∈ V ∧ ∅ ∈ V) |
| 3 | 2 | jctr 524 | . . . . 5 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (∅ ∈ V ∧ ∅ ∈ V))) |
| 4 | 3 | 3adant3 1132 | . . . 4 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω) → ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (∅ ∈ V ∧ ∅ ∈ V))) |
| 5 | satfdm 35401 | . . . 4 ⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (∅ ∈ V ∧ ∅ ∈ V)) → ∀𝑛 ∈ ω dom ((𝑀 Sat 𝐸)‘𝑛) = dom ((∅ Sat ∅)‘𝑛)) | |
| 6 | 4, 5 | syl 17 | . . 3 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω) → ∀𝑛 ∈ ω dom ((𝑀 Sat 𝐸)‘𝑛) = dom ((∅ Sat ∅)‘𝑛)) |
| 7 | fveq2 6822 | . . . . . . 7 ⊢ (𝑛 = 𝑁 → ((𝑀 Sat 𝐸)‘𝑛) = ((𝑀 Sat 𝐸)‘𝑁)) | |
| 8 | 7 | dmeqd 5845 | . . . . . 6 ⊢ (𝑛 = 𝑁 → dom ((𝑀 Sat 𝐸)‘𝑛) = dom ((𝑀 Sat 𝐸)‘𝑁)) |
| 9 | fveq2 6822 | . . . . . . 7 ⊢ (𝑛 = 𝑁 → ((∅ Sat ∅)‘𝑛) = ((∅ Sat ∅)‘𝑁)) | |
| 10 | 9 | dmeqd 5845 | . . . . . 6 ⊢ (𝑛 = 𝑁 → dom ((∅ Sat ∅)‘𝑛) = dom ((∅ Sat ∅)‘𝑁)) |
| 11 | 8, 10 | eqeq12d 2747 | . . . . 5 ⊢ (𝑛 = 𝑁 → (dom ((𝑀 Sat 𝐸)‘𝑛) = dom ((∅ Sat ∅)‘𝑛) ↔ dom ((𝑀 Sat 𝐸)‘𝑁) = dom ((∅ Sat ∅)‘𝑁))) |
| 12 | 11 | rspcv 3573 | . . . 4 ⊢ (𝑁 ∈ ω → (∀𝑛 ∈ ω dom ((𝑀 Sat 𝐸)‘𝑛) = dom ((∅ Sat ∅)‘𝑛) → dom ((𝑀 Sat 𝐸)‘𝑁) = dom ((∅ Sat ∅)‘𝑁))) |
| 13 | 12 | 3ad2ant3 1135 | . . 3 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω) → (∀𝑛 ∈ ω dom ((𝑀 Sat 𝐸)‘𝑛) = dom ((∅ Sat ∅)‘𝑛) → dom ((𝑀 Sat 𝐸)‘𝑁) = dom ((∅ Sat ∅)‘𝑁))) |
| 14 | 6, 13 | mpd 15 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω) → dom ((𝑀 Sat 𝐸)‘𝑁) = dom ((∅ Sat ∅)‘𝑁)) |
| 15 | elelsuc 6381 | . . . 4 ⊢ (𝑁 ∈ ω → 𝑁 ∈ suc ω) | |
| 16 | 15 | 3ad2ant3 1135 | . . 3 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω) → 𝑁 ∈ suc ω) |
| 17 | fmlafv 35412 | . . 3 ⊢ (𝑁 ∈ suc ω → (Fmla‘𝑁) = dom ((∅ Sat ∅)‘𝑁)) | |
| 18 | 16, 17 | syl 17 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω) → (Fmla‘𝑁) = dom ((∅ Sat ∅)‘𝑁)) |
| 19 | 14, 18 | eqtr4d 2769 | 1 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω) → dom ((𝑀 Sat 𝐸)‘𝑁) = (Fmla‘𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∀wral 3047 Vcvv 3436 ∅c0 4283 dom cdm 5616 suc csuc 6308 ‘cfv 6481 (class class class)co 7346 ωcom 7796 Sat csat 35368 Fmlacfmla 35369 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-goel 35372 df-goal 35374 df-sat 35375 df-fmla 35377 |
| This theorem is referenced by: satffunlem1lem2 35435 satffunlem2lem2 35438 satff 35442 satefvfmla0 35450 satefvfmla1 35457 |
| Copyright terms: Public domain | W3C validator |