Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  satfdmfmla Structured version   Visualization version   GIF version

Theorem satfdmfmla 33262
Description: The domain of the satisfaction predicate as function over wff codes in any model 𝑀 and any binary relation 𝐸 on 𝑀 for a natural number 𝑁 is the set of valid Godel formulas of height 𝑁. (Contributed by AV, 13-Oct-2023.)
Assertion
Ref Expression
satfdmfmla ((𝑀𝑉𝐸𝑊𝑁 ∈ ω) → dom ((𝑀 Sat 𝐸)‘𝑁) = (Fmla‘𝑁))

Proof of Theorem satfdmfmla
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 0ex 5226 . . . . . . 7 ∅ ∈ V
21, 1pm3.2i 470 . . . . . 6 (∅ ∈ V ∧ ∅ ∈ V)
32jctr 524 . . . . 5 ((𝑀𝑉𝐸𝑊) → ((𝑀𝑉𝐸𝑊) ∧ (∅ ∈ V ∧ ∅ ∈ V)))
433adant3 1130 . . . 4 ((𝑀𝑉𝐸𝑊𝑁 ∈ ω) → ((𝑀𝑉𝐸𝑊) ∧ (∅ ∈ V ∧ ∅ ∈ V)))
5 satfdm 33231 . . . 4 (((𝑀𝑉𝐸𝑊) ∧ (∅ ∈ V ∧ ∅ ∈ V)) → ∀𝑛 ∈ ω dom ((𝑀 Sat 𝐸)‘𝑛) = dom ((∅ Sat ∅)‘𝑛))
64, 5syl 17 . . 3 ((𝑀𝑉𝐸𝑊𝑁 ∈ ω) → ∀𝑛 ∈ ω dom ((𝑀 Sat 𝐸)‘𝑛) = dom ((∅ Sat ∅)‘𝑛))
7 fveq2 6756 . . . . . . 7 (𝑛 = 𝑁 → ((𝑀 Sat 𝐸)‘𝑛) = ((𝑀 Sat 𝐸)‘𝑁))
87dmeqd 5803 . . . . . 6 (𝑛 = 𝑁 → dom ((𝑀 Sat 𝐸)‘𝑛) = dom ((𝑀 Sat 𝐸)‘𝑁))
9 fveq2 6756 . . . . . . 7 (𝑛 = 𝑁 → ((∅ Sat ∅)‘𝑛) = ((∅ Sat ∅)‘𝑁))
109dmeqd 5803 . . . . . 6 (𝑛 = 𝑁 → dom ((∅ Sat ∅)‘𝑛) = dom ((∅ Sat ∅)‘𝑁))
118, 10eqeq12d 2754 . . . . 5 (𝑛 = 𝑁 → (dom ((𝑀 Sat 𝐸)‘𝑛) = dom ((∅ Sat ∅)‘𝑛) ↔ dom ((𝑀 Sat 𝐸)‘𝑁) = dom ((∅ Sat ∅)‘𝑁)))
1211rspcv 3547 . . . 4 (𝑁 ∈ ω → (∀𝑛 ∈ ω dom ((𝑀 Sat 𝐸)‘𝑛) = dom ((∅ Sat ∅)‘𝑛) → dom ((𝑀 Sat 𝐸)‘𝑁) = dom ((∅ Sat ∅)‘𝑁)))
13123ad2ant3 1133 . . 3 ((𝑀𝑉𝐸𝑊𝑁 ∈ ω) → (∀𝑛 ∈ ω dom ((𝑀 Sat 𝐸)‘𝑛) = dom ((∅ Sat ∅)‘𝑛) → dom ((𝑀 Sat 𝐸)‘𝑁) = dom ((∅ Sat ∅)‘𝑁)))
146, 13mpd 15 . 2 ((𝑀𝑉𝐸𝑊𝑁 ∈ ω) → dom ((𝑀 Sat 𝐸)‘𝑁) = dom ((∅ Sat ∅)‘𝑁))
15 elelsuc 6323 . . . 4 (𝑁 ∈ ω → 𝑁 ∈ suc ω)
16153ad2ant3 1133 . . 3 ((𝑀𝑉𝐸𝑊𝑁 ∈ ω) → 𝑁 ∈ suc ω)
17 fmlafv 33242 . . 3 (𝑁 ∈ suc ω → (Fmla‘𝑁) = dom ((∅ Sat ∅)‘𝑁))
1816, 17syl 17 . 2 ((𝑀𝑉𝐸𝑊𝑁 ∈ ω) → (Fmla‘𝑁) = dom ((∅ Sat ∅)‘𝑁))
1914, 18eqtr4d 2781 1 ((𝑀𝑉𝐸𝑊𝑁 ∈ ω) → dom ((𝑀 Sat 𝐸)‘𝑁) = (Fmla‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422  c0 4253  dom cdm 5580  suc csuc 6253  cfv 6418  (class class class)co 7255  ωcom 7687   Sat csat 33198  Fmlacfmla 33199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-goel 33202  df-goal 33204  df-sat 33205  df-fmla 33207
This theorem is referenced by:  satffunlem1lem2  33265  satffunlem2lem2  33268  satff  33272  satefvfmla0  33280  satefvfmla1  33287
  Copyright terms: Public domain W3C validator