| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > satfdmfmla | Structured version Visualization version GIF version | ||
| Description: The domain of the satisfaction predicate as function over wff codes in any model 𝑀 and any binary relation 𝐸 on 𝑀 for a natural number 𝑁 is the set of valid Godel formulas of height 𝑁. (Contributed by AV, 13-Oct-2023.) |
| Ref | Expression |
|---|---|
| satfdmfmla | ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω) → dom ((𝑀 Sat 𝐸)‘𝑁) = (Fmla‘𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 5277 | . . . . . . 7 ⊢ ∅ ∈ V | |
| 2 | 1, 1 | pm3.2i 470 | . . . . . 6 ⊢ (∅ ∈ V ∧ ∅ ∈ V) |
| 3 | 2 | jctr 524 | . . . . 5 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (∅ ∈ V ∧ ∅ ∈ V))) |
| 4 | 3 | 3adant3 1132 | . . . 4 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω) → ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (∅ ∈ V ∧ ∅ ∈ V))) |
| 5 | satfdm 35391 | . . . 4 ⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (∅ ∈ V ∧ ∅ ∈ V)) → ∀𝑛 ∈ ω dom ((𝑀 Sat 𝐸)‘𝑛) = dom ((∅ Sat ∅)‘𝑛)) | |
| 6 | 4, 5 | syl 17 | . . 3 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω) → ∀𝑛 ∈ ω dom ((𝑀 Sat 𝐸)‘𝑛) = dom ((∅ Sat ∅)‘𝑛)) |
| 7 | fveq2 6876 | . . . . . . 7 ⊢ (𝑛 = 𝑁 → ((𝑀 Sat 𝐸)‘𝑛) = ((𝑀 Sat 𝐸)‘𝑁)) | |
| 8 | 7 | dmeqd 5885 | . . . . . 6 ⊢ (𝑛 = 𝑁 → dom ((𝑀 Sat 𝐸)‘𝑛) = dom ((𝑀 Sat 𝐸)‘𝑁)) |
| 9 | fveq2 6876 | . . . . . . 7 ⊢ (𝑛 = 𝑁 → ((∅ Sat ∅)‘𝑛) = ((∅ Sat ∅)‘𝑁)) | |
| 10 | 9 | dmeqd 5885 | . . . . . 6 ⊢ (𝑛 = 𝑁 → dom ((∅ Sat ∅)‘𝑛) = dom ((∅ Sat ∅)‘𝑁)) |
| 11 | 8, 10 | eqeq12d 2751 | . . . . 5 ⊢ (𝑛 = 𝑁 → (dom ((𝑀 Sat 𝐸)‘𝑛) = dom ((∅ Sat ∅)‘𝑛) ↔ dom ((𝑀 Sat 𝐸)‘𝑁) = dom ((∅ Sat ∅)‘𝑁))) |
| 12 | 11 | rspcv 3597 | . . . 4 ⊢ (𝑁 ∈ ω → (∀𝑛 ∈ ω dom ((𝑀 Sat 𝐸)‘𝑛) = dom ((∅ Sat ∅)‘𝑛) → dom ((𝑀 Sat 𝐸)‘𝑁) = dom ((∅ Sat ∅)‘𝑁))) |
| 13 | 12 | 3ad2ant3 1135 | . . 3 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω) → (∀𝑛 ∈ ω dom ((𝑀 Sat 𝐸)‘𝑛) = dom ((∅ Sat ∅)‘𝑛) → dom ((𝑀 Sat 𝐸)‘𝑁) = dom ((∅ Sat ∅)‘𝑁))) |
| 14 | 6, 13 | mpd 15 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω) → dom ((𝑀 Sat 𝐸)‘𝑁) = dom ((∅ Sat ∅)‘𝑁)) |
| 15 | elelsuc 6427 | . . . 4 ⊢ (𝑁 ∈ ω → 𝑁 ∈ suc ω) | |
| 16 | 15 | 3ad2ant3 1135 | . . 3 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω) → 𝑁 ∈ suc ω) |
| 17 | fmlafv 35402 | . . 3 ⊢ (𝑁 ∈ suc ω → (Fmla‘𝑁) = dom ((∅ Sat ∅)‘𝑁)) | |
| 18 | 16, 17 | syl 17 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω) → (Fmla‘𝑁) = dom ((∅ Sat ∅)‘𝑁)) |
| 19 | 14, 18 | eqtr4d 2773 | 1 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω) → dom ((𝑀 Sat 𝐸)‘𝑁) = (Fmla‘𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ∀wral 3051 Vcvv 3459 ∅c0 4308 dom cdm 5654 suc csuc 6354 ‘cfv 6531 (class class class)co 7405 ωcom 7861 Sat csat 35358 Fmlacfmla 35359 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-goel 35362 df-goal 35364 df-sat 35365 df-fmla 35367 |
| This theorem is referenced by: satffunlem1lem2 35425 satffunlem2lem2 35428 satff 35432 satefvfmla0 35440 satefvfmla1 35447 |
| Copyright terms: Public domain | W3C validator |