| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > satfdmfmla | Structured version Visualization version GIF version | ||
| Description: The domain of the satisfaction predicate as function over wff codes in any model 𝑀 and any binary relation 𝐸 on 𝑀 for a natural number 𝑁 is the set of valid Godel formulas of height 𝑁. (Contributed by AV, 13-Oct-2023.) |
| Ref | Expression |
|---|---|
| satfdmfmla | ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω) → dom ((𝑀 Sat 𝐸)‘𝑁) = (Fmla‘𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 5247 | . . . . . . 7 ⊢ ∅ ∈ V | |
| 2 | 1, 1 | pm3.2i 470 | . . . . . 6 ⊢ (∅ ∈ V ∧ ∅ ∈ V) |
| 3 | 2 | jctr 524 | . . . . 5 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (∅ ∈ V ∧ ∅ ∈ V))) |
| 4 | 3 | 3adant3 1132 | . . . 4 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω) → ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (∅ ∈ V ∧ ∅ ∈ V))) |
| 5 | satfdm 35434 | . . . 4 ⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (∅ ∈ V ∧ ∅ ∈ V)) → ∀𝑛 ∈ ω dom ((𝑀 Sat 𝐸)‘𝑛) = dom ((∅ Sat ∅)‘𝑛)) | |
| 6 | 4, 5 | syl 17 | . . 3 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω) → ∀𝑛 ∈ ω dom ((𝑀 Sat 𝐸)‘𝑛) = dom ((∅ Sat ∅)‘𝑛)) |
| 7 | fveq2 6828 | . . . . . . 7 ⊢ (𝑛 = 𝑁 → ((𝑀 Sat 𝐸)‘𝑛) = ((𝑀 Sat 𝐸)‘𝑁)) | |
| 8 | 7 | dmeqd 5849 | . . . . . 6 ⊢ (𝑛 = 𝑁 → dom ((𝑀 Sat 𝐸)‘𝑛) = dom ((𝑀 Sat 𝐸)‘𝑁)) |
| 9 | fveq2 6828 | . . . . . . 7 ⊢ (𝑛 = 𝑁 → ((∅ Sat ∅)‘𝑛) = ((∅ Sat ∅)‘𝑁)) | |
| 10 | 9 | dmeqd 5849 | . . . . . 6 ⊢ (𝑛 = 𝑁 → dom ((∅ Sat ∅)‘𝑛) = dom ((∅ Sat ∅)‘𝑁)) |
| 11 | 8, 10 | eqeq12d 2749 | . . . . 5 ⊢ (𝑛 = 𝑁 → (dom ((𝑀 Sat 𝐸)‘𝑛) = dom ((∅ Sat ∅)‘𝑛) ↔ dom ((𝑀 Sat 𝐸)‘𝑁) = dom ((∅ Sat ∅)‘𝑁))) |
| 12 | 11 | rspcv 3569 | . . . 4 ⊢ (𝑁 ∈ ω → (∀𝑛 ∈ ω dom ((𝑀 Sat 𝐸)‘𝑛) = dom ((∅ Sat ∅)‘𝑛) → dom ((𝑀 Sat 𝐸)‘𝑁) = dom ((∅ Sat ∅)‘𝑁))) |
| 13 | 12 | 3ad2ant3 1135 | . . 3 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω) → (∀𝑛 ∈ ω dom ((𝑀 Sat 𝐸)‘𝑛) = dom ((∅ Sat ∅)‘𝑛) → dom ((𝑀 Sat 𝐸)‘𝑁) = dom ((∅ Sat ∅)‘𝑁))) |
| 14 | 6, 13 | mpd 15 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω) → dom ((𝑀 Sat 𝐸)‘𝑁) = dom ((∅ Sat ∅)‘𝑁)) |
| 15 | elelsuc 6386 | . . . 4 ⊢ (𝑁 ∈ ω → 𝑁 ∈ suc ω) | |
| 16 | 15 | 3ad2ant3 1135 | . . 3 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω) → 𝑁 ∈ suc ω) |
| 17 | fmlafv 35445 | . . 3 ⊢ (𝑁 ∈ suc ω → (Fmla‘𝑁) = dom ((∅ Sat ∅)‘𝑁)) | |
| 18 | 16, 17 | syl 17 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω) → (Fmla‘𝑁) = dom ((∅ Sat ∅)‘𝑁)) |
| 19 | 14, 18 | eqtr4d 2771 | 1 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω) → dom ((𝑀 Sat 𝐸)‘𝑁) = (Fmla‘𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∀wral 3048 Vcvv 3437 ∅c0 4282 dom cdm 5619 suc csuc 6313 ‘cfv 6486 (class class class)co 7352 ωcom 7802 Sat csat 35401 Fmlacfmla 35402 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9538 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-goel 35405 df-goal 35407 df-sat 35408 df-fmla 35410 |
| This theorem is referenced by: satffunlem1lem2 35468 satffunlem2lem2 35471 satff 35475 satefvfmla0 35483 satefvfmla1 35490 |
| Copyright terms: Public domain | W3C validator |