Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  satfdmfmla Structured version   Visualization version   GIF version

Theorem satfdmfmla 35465
Description: The domain of the satisfaction predicate as function over wff codes in any model 𝑀 and any binary relation 𝐸 on 𝑀 for a natural number 𝑁 is the set of valid Godel formulas of height 𝑁. (Contributed by AV, 13-Oct-2023.)
Assertion
Ref Expression
satfdmfmla ((𝑀𝑉𝐸𝑊𝑁 ∈ ω) → dom ((𝑀 Sat 𝐸)‘𝑁) = (Fmla‘𝑁))

Proof of Theorem satfdmfmla
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 0ex 5247 . . . . . . 7 ∅ ∈ V
21, 1pm3.2i 470 . . . . . 6 (∅ ∈ V ∧ ∅ ∈ V)
32jctr 524 . . . . 5 ((𝑀𝑉𝐸𝑊) → ((𝑀𝑉𝐸𝑊) ∧ (∅ ∈ V ∧ ∅ ∈ V)))
433adant3 1132 . . . 4 ((𝑀𝑉𝐸𝑊𝑁 ∈ ω) → ((𝑀𝑉𝐸𝑊) ∧ (∅ ∈ V ∧ ∅ ∈ V)))
5 satfdm 35434 . . . 4 (((𝑀𝑉𝐸𝑊) ∧ (∅ ∈ V ∧ ∅ ∈ V)) → ∀𝑛 ∈ ω dom ((𝑀 Sat 𝐸)‘𝑛) = dom ((∅ Sat ∅)‘𝑛))
64, 5syl 17 . . 3 ((𝑀𝑉𝐸𝑊𝑁 ∈ ω) → ∀𝑛 ∈ ω dom ((𝑀 Sat 𝐸)‘𝑛) = dom ((∅ Sat ∅)‘𝑛))
7 fveq2 6828 . . . . . . 7 (𝑛 = 𝑁 → ((𝑀 Sat 𝐸)‘𝑛) = ((𝑀 Sat 𝐸)‘𝑁))
87dmeqd 5849 . . . . . 6 (𝑛 = 𝑁 → dom ((𝑀 Sat 𝐸)‘𝑛) = dom ((𝑀 Sat 𝐸)‘𝑁))
9 fveq2 6828 . . . . . . 7 (𝑛 = 𝑁 → ((∅ Sat ∅)‘𝑛) = ((∅ Sat ∅)‘𝑁))
109dmeqd 5849 . . . . . 6 (𝑛 = 𝑁 → dom ((∅ Sat ∅)‘𝑛) = dom ((∅ Sat ∅)‘𝑁))
118, 10eqeq12d 2749 . . . . 5 (𝑛 = 𝑁 → (dom ((𝑀 Sat 𝐸)‘𝑛) = dom ((∅ Sat ∅)‘𝑛) ↔ dom ((𝑀 Sat 𝐸)‘𝑁) = dom ((∅ Sat ∅)‘𝑁)))
1211rspcv 3569 . . . 4 (𝑁 ∈ ω → (∀𝑛 ∈ ω dom ((𝑀 Sat 𝐸)‘𝑛) = dom ((∅ Sat ∅)‘𝑛) → dom ((𝑀 Sat 𝐸)‘𝑁) = dom ((∅ Sat ∅)‘𝑁)))
13123ad2ant3 1135 . . 3 ((𝑀𝑉𝐸𝑊𝑁 ∈ ω) → (∀𝑛 ∈ ω dom ((𝑀 Sat 𝐸)‘𝑛) = dom ((∅ Sat ∅)‘𝑛) → dom ((𝑀 Sat 𝐸)‘𝑁) = dom ((∅ Sat ∅)‘𝑁)))
146, 13mpd 15 . 2 ((𝑀𝑉𝐸𝑊𝑁 ∈ ω) → dom ((𝑀 Sat 𝐸)‘𝑁) = dom ((∅ Sat ∅)‘𝑁))
15 elelsuc 6386 . . . 4 (𝑁 ∈ ω → 𝑁 ∈ suc ω)
16153ad2ant3 1135 . . 3 ((𝑀𝑉𝐸𝑊𝑁 ∈ ω) → 𝑁 ∈ suc ω)
17 fmlafv 35445 . . 3 (𝑁 ∈ suc ω → (Fmla‘𝑁) = dom ((∅ Sat ∅)‘𝑁))
1816, 17syl 17 . 2 ((𝑀𝑉𝐸𝑊𝑁 ∈ ω) → (Fmla‘𝑁) = dom ((∅ Sat ∅)‘𝑁))
1914, 18eqtr4d 2771 1 ((𝑀𝑉𝐸𝑊𝑁 ∈ ω) → dom ((𝑀 Sat 𝐸)‘𝑁) = (Fmla‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  wral 3048  Vcvv 3437  c0 4282  dom cdm 5619  suc csuc 6313  cfv 6486  (class class class)co 7352  ωcom 7802   Sat csat 35401  Fmlacfmla 35402
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-goel 35405  df-goal 35407  df-sat 35408  df-fmla 35410
This theorem is referenced by:  satffunlem1lem2  35468  satffunlem2lem2  35471  satff  35475  satefvfmla0  35483  satefvfmla1  35490
  Copyright terms: Public domain W3C validator