Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > satfdmfmla | Structured version Visualization version GIF version |
Description: The domain of the satisfaction predicate as function over wff codes in any model 𝑀 and any binary relation 𝐸 on 𝑀 for a natural number 𝑁 is the set of valid Godel formulas of height 𝑁. (Contributed by AV, 13-Oct-2023.) |
Ref | Expression |
---|---|
satfdmfmla | ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω) → dom ((𝑀 Sat 𝐸)‘𝑁) = (Fmla‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5175 | . . . . . . 7 ⊢ ∅ ∈ V | |
2 | 1, 1 | pm3.2i 474 | . . . . . 6 ⊢ (∅ ∈ V ∧ ∅ ∈ V) |
3 | 2 | jctr 528 | . . . . 5 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (∅ ∈ V ∧ ∅ ∈ V))) |
4 | 3 | 3adant3 1133 | . . . 4 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω) → ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (∅ ∈ V ∧ ∅ ∈ V))) |
5 | satfdm 32902 | . . . 4 ⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (∅ ∈ V ∧ ∅ ∈ V)) → ∀𝑛 ∈ ω dom ((𝑀 Sat 𝐸)‘𝑛) = dom ((∅ Sat ∅)‘𝑛)) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω) → ∀𝑛 ∈ ω dom ((𝑀 Sat 𝐸)‘𝑛) = dom ((∅ Sat ∅)‘𝑛)) |
7 | fveq2 6674 | . . . . . . 7 ⊢ (𝑛 = 𝑁 → ((𝑀 Sat 𝐸)‘𝑛) = ((𝑀 Sat 𝐸)‘𝑁)) | |
8 | 7 | dmeqd 5748 | . . . . . 6 ⊢ (𝑛 = 𝑁 → dom ((𝑀 Sat 𝐸)‘𝑛) = dom ((𝑀 Sat 𝐸)‘𝑁)) |
9 | fveq2 6674 | . . . . . . 7 ⊢ (𝑛 = 𝑁 → ((∅ Sat ∅)‘𝑛) = ((∅ Sat ∅)‘𝑁)) | |
10 | 9 | dmeqd 5748 | . . . . . 6 ⊢ (𝑛 = 𝑁 → dom ((∅ Sat ∅)‘𝑛) = dom ((∅ Sat ∅)‘𝑁)) |
11 | 8, 10 | eqeq12d 2754 | . . . . 5 ⊢ (𝑛 = 𝑁 → (dom ((𝑀 Sat 𝐸)‘𝑛) = dom ((∅ Sat ∅)‘𝑛) ↔ dom ((𝑀 Sat 𝐸)‘𝑁) = dom ((∅ Sat ∅)‘𝑁))) |
12 | 11 | rspcv 3521 | . . . 4 ⊢ (𝑁 ∈ ω → (∀𝑛 ∈ ω dom ((𝑀 Sat 𝐸)‘𝑛) = dom ((∅ Sat ∅)‘𝑛) → dom ((𝑀 Sat 𝐸)‘𝑁) = dom ((∅ Sat ∅)‘𝑁))) |
13 | 12 | 3ad2ant3 1136 | . . 3 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω) → (∀𝑛 ∈ ω dom ((𝑀 Sat 𝐸)‘𝑛) = dom ((∅ Sat ∅)‘𝑛) → dom ((𝑀 Sat 𝐸)‘𝑁) = dom ((∅ Sat ∅)‘𝑁))) |
14 | 6, 13 | mpd 15 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω) → dom ((𝑀 Sat 𝐸)‘𝑁) = dom ((∅ Sat ∅)‘𝑁)) |
15 | elelsuc 6244 | . . . 4 ⊢ (𝑁 ∈ ω → 𝑁 ∈ suc ω) | |
16 | 15 | 3ad2ant3 1136 | . . 3 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω) → 𝑁 ∈ suc ω) |
17 | fmlafv 32913 | . . 3 ⊢ (𝑁 ∈ suc ω → (Fmla‘𝑁) = dom ((∅ Sat ∅)‘𝑁)) | |
18 | 16, 17 | syl 17 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω) → (Fmla‘𝑁) = dom ((∅ Sat ∅)‘𝑁)) |
19 | 14, 18 | eqtr4d 2776 | 1 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω) → dom ((𝑀 Sat 𝐸)‘𝑁) = (Fmla‘𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1088 = wceq 1542 ∈ wcel 2114 ∀wral 3053 Vcvv 3398 ∅c0 4211 dom cdm 5525 suc csuc 6174 ‘cfv 6339 (class class class)co 7170 ωcom 7599 Sat csat 32869 Fmlacfmla 32870 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-inf2 9177 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-reu 3060 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-int 4837 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-ov 7173 df-oprab 7174 df-mpo 7175 df-om 7600 df-1st 7714 df-wrecs 7976 df-recs 8037 df-rdg 8075 df-goel 32873 df-goal 32875 df-sat 32876 df-fmla 32878 |
This theorem is referenced by: satffunlem1lem2 32936 satffunlem2lem2 32939 satff 32943 satefvfmla0 32951 satefvfmla1 32958 |
Copyright terms: Public domain | W3C validator |