Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  finxpsuclem Structured version   Visualization version   GIF version

Theorem finxpsuclem 36278
Description: Lemma for finxpsuc 36279. (Contributed by ML, 24-Oct-2020.)
Hypothesis
Ref Expression
finxpsuclem.1 𝐹 = (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))
Assertion
Ref Expression
finxpsuclem ((𝑁 ∈ ω ∧ 1o𝑁) → (𝑈↑↑suc 𝑁) = ((𝑈↑↑𝑁) × 𝑈))
Distinct variable groups:   𝑛,𝑁,𝑥   𝑈,𝑛,𝑥
Allowed substitution hints:   𝐹(𝑥,𝑛)

Proof of Theorem finxpsuclem
Dummy variables 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 peano2 7881 . . . . . . . . . 10 (𝑁 ∈ ω → suc 𝑁 ∈ ω)
21adantr 482 . . . . . . . . 9 ((𝑁 ∈ ω ∧ 1o𝑁) → suc 𝑁 ∈ ω)
3 1on 8478 . . . . . . . . . . . . 13 1o ∈ On
43onordi 6476 . . . . . . . . . . . 12 Ord 1o
5 nnord 7863 . . . . . . . . . . . 12 (𝑁 ∈ ω → Ord 𝑁)
6 ordsseleq 6394 . . . . . . . . . . . 12 ((Ord 1o ∧ Ord 𝑁) → (1o𝑁 ↔ (1o𝑁 ∨ 1o = 𝑁)))
74, 5, 6sylancr 588 . . . . . . . . . . 11 (𝑁 ∈ ω → (1o𝑁 ↔ (1o𝑁 ∨ 1o = 𝑁)))
87biimpa 478 . . . . . . . . . 10 ((𝑁 ∈ ω ∧ 1o𝑁) → (1o𝑁 ∨ 1o = 𝑁))
9 elelsuc 6438 . . . . . . . . . . . . 13 (1o𝑁 → 1o ∈ suc 𝑁)
109a1i 11 . . . . . . . . . . . 12 (𝑁 ∈ ω → (1o𝑁 → 1o ∈ suc 𝑁))
11 sucidg 6446 . . . . . . . . . . . . 13 (𝑁 ∈ ω → 𝑁 ∈ suc 𝑁)
12 eleq1 2822 . . . . . . . . . . . . 13 (1o = 𝑁 → (1o ∈ suc 𝑁𝑁 ∈ suc 𝑁))
1311, 12syl5ibrcom 246 . . . . . . . . . . . 12 (𝑁 ∈ ω → (1o = 𝑁 → 1o ∈ suc 𝑁))
1410, 13jaod 858 . . . . . . . . . . 11 (𝑁 ∈ ω → ((1o𝑁 ∨ 1o = 𝑁) → 1o ∈ suc 𝑁))
1514adantr 482 . . . . . . . . . 10 ((𝑁 ∈ ω ∧ 1o𝑁) → ((1o𝑁 ∨ 1o = 𝑁) → 1o ∈ suc 𝑁))
168, 15mpd 15 . . . . . . . . 9 ((𝑁 ∈ ω ∧ 1o𝑁) → 1o ∈ suc 𝑁)
17 finxpsuclem.1 . . . . . . . . . 10 𝐹 = (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))
1817finxpreclem6 36277 . . . . . . . . 9 ((suc 𝑁 ∈ ω ∧ 1o ∈ suc 𝑁) → (𝑈↑↑suc 𝑁) ⊆ (V × 𝑈))
192, 16, 18syl2anc 585 . . . . . . . 8 ((𝑁 ∈ ω ∧ 1o𝑁) → (𝑈↑↑suc 𝑁) ⊆ (V × 𝑈))
2019sselda 3983 . . . . . . 7 (((𝑁 ∈ ω ∧ 1o𝑁) ∧ 𝑦 ∈ (𝑈↑↑suc 𝑁)) → 𝑦 ∈ (V × 𝑈))
211ad2antrr 725 . . . . . . . . . . . . 13 (((𝑁 ∈ ω ∧ 1o𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → suc 𝑁 ∈ ω)
22 df-2o 8467 . . . . . . . . . . . . . . 15 2o = suc 1o
23 ordsucsssuc 7811 . . . . . . . . . . . . . . . . 17 ((Ord 1o ∧ Ord 𝑁) → (1o𝑁 ↔ suc 1o ⊆ suc 𝑁))
244, 5, 23sylancr 588 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ω → (1o𝑁 ↔ suc 1o ⊆ suc 𝑁))
2524biimpa 478 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ω ∧ 1o𝑁) → suc 1o ⊆ suc 𝑁)
2622, 25eqsstrid 4031 . . . . . . . . . . . . . 14 ((𝑁 ∈ ω ∧ 1o𝑁) → 2o ⊆ suc 𝑁)
2726adantr 482 . . . . . . . . . . . . 13 (((𝑁 ∈ ω ∧ 1o𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → 2o ⊆ suc 𝑁)
28 simpr 486 . . . . . . . . . . . . 13 (((𝑁 ∈ ω ∧ 1o𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → 𝑦 ∈ (V × 𝑈))
2917finxpreclem4 36275 . . . . . . . . . . . . 13 (((suc 𝑁 ∈ ω ∧ 2o ⊆ suc 𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (rec(𝐹, ⟨suc 𝑁, 𝑦⟩)‘suc 𝑁) = (rec(𝐹, ⟨ suc 𝑁, (1st𝑦)⟩)‘ suc 𝑁))
3021, 27, 28, 29syl21anc 837 . . . . . . . . . . . 12 (((𝑁 ∈ ω ∧ 1o𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (rec(𝐹, ⟨suc 𝑁, 𝑦⟩)‘suc 𝑁) = (rec(𝐹, ⟨ suc 𝑁, (1st𝑦)⟩)‘ suc 𝑁))
31 ordunisuc 7820 . . . . . . . . . . . . . . . 16 (Ord 𝑁 suc 𝑁 = 𝑁)
325, 31syl 17 . . . . . . . . . . . . . . 15 (𝑁 ∈ ω → suc 𝑁 = 𝑁)
33 opeq1 4874 . . . . . . . . . . . . . . . 16 ( suc 𝑁 = 𝑁 → ⟨ suc 𝑁, (1st𝑦)⟩ = ⟨𝑁, (1st𝑦)⟩)
34 rdgeq2 8412 . . . . . . . . . . . . . . . 16 (⟨ suc 𝑁, (1st𝑦)⟩ = ⟨𝑁, (1st𝑦)⟩ → rec(𝐹, ⟨ suc 𝑁, (1st𝑦)⟩) = rec(𝐹, ⟨𝑁, (1st𝑦)⟩))
3533, 34syl 17 . . . . . . . . . . . . . . 15 ( suc 𝑁 = 𝑁 → rec(𝐹, ⟨ suc 𝑁, (1st𝑦)⟩) = rec(𝐹, ⟨𝑁, (1st𝑦)⟩))
3632, 35syl 17 . . . . . . . . . . . . . 14 (𝑁 ∈ ω → rec(𝐹, ⟨ suc 𝑁, (1st𝑦)⟩) = rec(𝐹, ⟨𝑁, (1st𝑦)⟩))
3736, 32fveq12d 6899 . . . . . . . . . . . . 13 (𝑁 ∈ ω → (rec(𝐹, ⟨ suc 𝑁, (1st𝑦)⟩)‘ suc 𝑁) = (rec(𝐹, ⟨𝑁, (1st𝑦)⟩)‘𝑁))
3837ad2antrr 725 . . . . . . . . . . . 12 (((𝑁 ∈ ω ∧ 1o𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (rec(𝐹, ⟨ suc 𝑁, (1st𝑦)⟩)‘ suc 𝑁) = (rec(𝐹, ⟨𝑁, (1st𝑦)⟩)‘𝑁))
3930, 38eqtrd 2773 . . . . . . . . . . 11 (((𝑁 ∈ ω ∧ 1o𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (rec(𝐹, ⟨suc 𝑁, 𝑦⟩)‘suc 𝑁) = (rec(𝐹, ⟨𝑁, (1st𝑦)⟩)‘𝑁))
4039eqeq2d 2744 . . . . . . . . . 10 (((𝑁 ∈ ω ∧ 1o𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (∅ = (rec(𝐹, ⟨suc 𝑁, 𝑦⟩)‘suc 𝑁) ↔ ∅ = (rec(𝐹, ⟨𝑁, (1st𝑦)⟩)‘𝑁)))
4117dffinxpf 36266 . . . . . . . . . . . . 13 (𝑈↑↑suc 𝑁) = {𝑦 ∣ (suc 𝑁 ∈ ω ∧ ∅ = (rec(𝐹, ⟨suc 𝑁, 𝑦⟩)‘suc 𝑁))}
4241eqabri 2878 . . . . . . . . . . . 12 (𝑦 ∈ (𝑈↑↑suc 𝑁) ↔ (suc 𝑁 ∈ ω ∧ ∅ = (rec(𝐹, ⟨suc 𝑁, 𝑦⟩)‘suc 𝑁)))
431biantrurd 534 . . . . . . . . . . . 12 (𝑁 ∈ ω → (∅ = (rec(𝐹, ⟨suc 𝑁, 𝑦⟩)‘suc 𝑁) ↔ (suc 𝑁 ∈ ω ∧ ∅ = (rec(𝐹, ⟨suc 𝑁, 𝑦⟩)‘suc 𝑁))))
4442, 43bitr4id 290 . . . . . . . . . . 11 (𝑁 ∈ ω → (𝑦 ∈ (𝑈↑↑suc 𝑁) ↔ ∅ = (rec(𝐹, ⟨suc 𝑁, 𝑦⟩)‘suc 𝑁)))
4544ad2antrr 725 . . . . . . . . . 10 (((𝑁 ∈ ω ∧ 1o𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (𝑦 ∈ (𝑈↑↑suc 𝑁) ↔ ∅ = (rec(𝐹, ⟨suc 𝑁, 𝑦⟩)‘suc 𝑁)))
46 fvex 6905 . . . . . . . . . . . . 13 (1st𝑦) ∈ V
47 opeq2 4875 . . . . . . . . . . . . . . . . 17 (𝑧 = (1st𝑦) → ⟨𝑁, 𝑧⟩ = ⟨𝑁, (1st𝑦)⟩)
48 rdgeq2 8412 . . . . . . . . . . . . . . . . 17 (⟨𝑁, 𝑧⟩ = ⟨𝑁, (1st𝑦)⟩ → rec(𝐹, ⟨𝑁, 𝑧⟩) = rec(𝐹, ⟨𝑁, (1st𝑦)⟩))
4947, 48syl 17 . . . . . . . . . . . . . . . 16 (𝑧 = (1st𝑦) → rec(𝐹, ⟨𝑁, 𝑧⟩) = rec(𝐹, ⟨𝑁, (1st𝑦)⟩))
5049fveq1d 6894 . . . . . . . . . . . . . . 15 (𝑧 = (1st𝑦) → (rec(𝐹, ⟨𝑁, 𝑧⟩)‘𝑁) = (rec(𝐹, ⟨𝑁, (1st𝑦)⟩)‘𝑁))
5150eqeq2d 2744 . . . . . . . . . . . . . 14 (𝑧 = (1st𝑦) → (∅ = (rec(𝐹, ⟨𝑁, 𝑧⟩)‘𝑁) ↔ ∅ = (rec(𝐹, ⟨𝑁, (1st𝑦)⟩)‘𝑁)))
5251anbi2d 630 . . . . . . . . . . . . 13 (𝑧 = (1st𝑦) → ((𝑁 ∈ ω ∧ ∅ = (rec(𝐹, ⟨𝑁, 𝑧⟩)‘𝑁)) ↔ (𝑁 ∈ ω ∧ ∅ = (rec(𝐹, ⟨𝑁, (1st𝑦)⟩)‘𝑁))))
5317dffinxpf 36266 . . . . . . . . . . . . 13 (𝑈↑↑𝑁) = {𝑧 ∣ (𝑁 ∈ ω ∧ ∅ = (rec(𝐹, ⟨𝑁, 𝑧⟩)‘𝑁))}
5446, 52, 53elab2 3673 . . . . . . . . . . . 12 ((1st𝑦) ∈ (𝑈↑↑𝑁) ↔ (𝑁 ∈ ω ∧ ∅ = (rec(𝐹, ⟨𝑁, (1st𝑦)⟩)‘𝑁)))
5554baib 537 . . . . . . . . . . 11 (𝑁 ∈ ω → ((1st𝑦) ∈ (𝑈↑↑𝑁) ↔ ∅ = (rec(𝐹, ⟨𝑁, (1st𝑦)⟩)‘𝑁)))
5655ad2antrr 725 . . . . . . . . . 10 (((𝑁 ∈ ω ∧ 1o𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → ((1st𝑦) ∈ (𝑈↑↑𝑁) ↔ ∅ = (rec(𝐹, ⟨𝑁, (1st𝑦)⟩)‘𝑁)))
5740, 45, 563bitr4d 311 . . . . . . . . 9 (((𝑁 ∈ ω ∧ 1o𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (𝑦 ∈ (𝑈↑↑suc 𝑁) ↔ (1st𝑦) ∈ (𝑈↑↑𝑁)))
5857biimpd 228 . . . . . . . 8 (((𝑁 ∈ ω ∧ 1o𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (𝑦 ∈ (𝑈↑↑suc 𝑁) → (1st𝑦) ∈ (𝑈↑↑𝑁)))
5958impancom 453 . . . . . . 7 (((𝑁 ∈ ω ∧ 1o𝑁) ∧ 𝑦 ∈ (𝑈↑↑suc 𝑁)) → (𝑦 ∈ (V × 𝑈) → (1st𝑦) ∈ (𝑈↑↑𝑁)))
6020, 59mpd 15 . . . . . 6 (((𝑁 ∈ ω ∧ 1o𝑁) ∧ 𝑦 ∈ (𝑈↑↑suc 𝑁)) → (1st𝑦) ∈ (𝑈↑↑𝑁))
6160ex 414 . . . . 5 ((𝑁 ∈ ω ∧ 1o𝑁) → (𝑦 ∈ (𝑈↑↑suc 𝑁) → (1st𝑦) ∈ (𝑈↑↑𝑁)))
6220ex 414 . . . . 5 ((𝑁 ∈ ω ∧ 1o𝑁) → (𝑦 ∈ (𝑈↑↑suc 𝑁) → 𝑦 ∈ (V × 𝑈)))
6361, 62jcad 514 . . . 4 ((𝑁 ∈ ω ∧ 1o𝑁) → (𝑦 ∈ (𝑈↑↑suc 𝑁) → ((1st𝑦) ∈ (𝑈↑↑𝑁) ∧ 𝑦 ∈ (V × 𝑈))))
6457exbiri 810 . . . . . 6 ((𝑁 ∈ ω ∧ 1o𝑁) → (𝑦 ∈ (V × 𝑈) → ((1st𝑦) ∈ (𝑈↑↑𝑁) → 𝑦 ∈ (𝑈↑↑suc 𝑁))))
6564impd 412 . . . . 5 ((𝑁 ∈ ω ∧ 1o𝑁) → ((𝑦 ∈ (V × 𝑈) ∧ (1st𝑦) ∈ (𝑈↑↑𝑁)) → 𝑦 ∈ (𝑈↑↑suc 𝑁)))
6665ancomsd 467 . . . 4 ((𝑁 ∈ ω ∧ 1o𝑁) → (((1st𝑦) ∈ (𝑈↑↑𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → 𝑦 ∈ (𝑈↑↑suc 𝑁)))
6763, 66impbid 211 . . 3 ((𝑁 ∈ ω ∧ 1o𝑁) → (𝑦 ∈ (𝑈↑↑suc 𝑁) ↔ ((1st𝑦) ∈ (𝑈↑↑𝑁) ∧ 𝑦 ∈ (V × 𝑈))))
68 elxp8 36252 . . 3 (𝑦 ∈ ((𝑈↑↑𝑁) × 𝑈) ↔ ((1st𝑦) ∈ (𝑈↑↑𝑁) ∧ 𝑦 ∈ (V × 𝑈)))
6967, 68bitr4di 289 . 2 ((𝑁 ∈ ω ∧ 1o𝑁) → (𝑦 ∈ (𝑈↑↑suc 𝑁) ↔ 𝑦 ∈ ((𝑈↑↑𝑁) × 𝑈)))
7069eqrdv 2731 1 ((𝑁 ∈ ω ∧ 1o𝑁) → (𝑈↑↑suc 𝑁) = ((𝑈↑↑𝑁) × 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wo 846   = wceq 1542  wcel 2107  Vcvv 3475  wss 3949  c0 4323  ifcif 4529  cop 4635   cuni 4909   × cxp 5675  Ord word 6364  suc csuc 6367  cfv 6544  cmpo 7411  ωcom 7855  1st c1st 7973  reccrdg 8409  1oc1o 8459  2oc2o 8460  ↑↑cfinxp 36264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-2o 8467  df-oadd 8470  df-en 8940  df-fin 8943  df-finxp 36265
This theorem is referenced by:  finxpsuc  36279
  Copyright terms: Public domain W3C validator