Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  finxpsuclem Structured version   Visualization version   GIF version

Theorem finxpsuclem 37363
Description: Lemma for finxpsuc 37364. (Contributed by ML, 24-Oct-2020.)
Hypothesis
Ref Expression
finxpsuclem.1 𝐹 = (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))
Assertion
Ref Expression
finxpsuclem ((𝑁 ∈ ω ∧ 1o𝑁) → (𝑈↑↑suc 𝑁) = ((𝑈↑↑𝑁) × 𝑈))
Distinct variable groups:   𝑛,𝑁,𝑥   𝑈,𝑛,𝑥
Allowed substitution hints:   𝐹(𝑥,𝑛)

Proof of Theorem finxpsuclem
Dummy variables 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 peano2 7929 . . . . . . . . . 10 (𝑁 ∈ ω → suc 𝑁 ∈ ω)
21adantr 480 . . . . . . . . 9 ((𝑁 ∈ ω ∧ 1o𝑁) → suc 𝑁 ∈ ω)
3 1on 8534 . . . . . . . . . . . . 13 1o ∈ On
43onordi 6506 . . . . . . . . . . . 12 Ord 1o
5 nnord 7911 . . . . . . . . . . . 12 (𝑁 ∈ ω → Ord 𝑁)
6 ordsseleq 6424 . . . . . . . . . . . 12 ((Ord 1o ∧ Ord 𝑁) → (1o𝑁 ↔ (1o𝑁 ∨ 1o = 𝑁)))
74, 5, 6sylancr 586 . . . . . . . . . . 11 (𝑁 ∈ ω → (1o𝑁 ↔ (1o𝑁 ∨ 1o = 𝑁)))
87biimpa 476 . . . . . . . . . 10 ((𝑁 ∈ ω ∧ 1o𝑁) → (1o𝑁 ∨ 1o = 𝑁))
9 elelsuc 6468 . . . . . . . . . . . . 13 (1o𝑁 → 1o ∈ suc 𝑁)
109a1i 11 . . . . . . . . . . . 12 (𝑁 ∈ ω → (1o𝑁 → 1o ∈ suc 𝑁))
11 sucidg 6476 . . . . . . . . . . . . 13 (𝑁 ∈ ω → 𝑁 ∈ suc 𝑁)
12 eleq1 2832 . . . . . . . . . . . . 13 (1o = 𝑁 → (1o ∈ suc 𝑁𝑁 ∈ suc 𝑁))
1311, 12syl5ibrcom 247 . . . . . . . . . . . 12 (𝑁 ∈ ω → (1o = 𝑁 → 1o ∈ suc 𝑁))
1410, 13jaod 858 . . . . . . . . . . 11 (𝑁 ∈ ω → ((1o𝑁 ∨ 1o = 𝑁) → 1o ∈ suc 𝑁))
1514adantr 480 . . . . . . . . . 10 ((𝑁 ∈ ω ∧ 1o𝑁) → ((1o𝑁 ∨ 1o = 𝑁) → 1o ∈ suc 𝑁))
168, 15mpd 15 . . . . . . . . 9 ((𝑁 ∈ ω ∧ 1o𝑁) → 1o ∈ suc 𝑁)
17 finxpsuclem.1 . . . . . . . . . 10 𝐹 = (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))
1817finxpreclem6 37362 . . . . . . . . 9 ((suc 𝑁 ∈ ω ∧ 1o ∈ suc 𝑁) → (𝑈↑↑suc 𝑁) ⊆ (V × 𝑈))
192, 16, 18syl2anc 583 . . . . . . . 8 ((𝑁 ∈ ω ∧ 1o𝑁) → (𝑈↑↑suc 𝑁) ⊆ (V × 𝑈))
2019sselda 4008 . . . . . . 7 (((𝑁 ∈ ω ∧ 1o𝑁) ∧ 𝑦 ∈ (𝑈↑↑suc 𝑁)) → 𝑦 ∈ (V × 𝑈))
211ad2antrr 725 . . . . . . . . . . . . 13 (((𝑁 ∈ ω ∧ 1o𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → suc 𝑁 ∈ ω)
22 df-2o 8523 . . . . . . . . . . . . . . 15 2o = suc 1o
23 ordsucsssuc 7859 . . . . . . . . . . . . . . . . 17 ((Ord 1o ∧ Ord 𝑁) → (1o𝑁 ↔ suc 1o ⊆ suc 𝑁))
244, 5, 23sylancr 586 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ω → (1o𝑁 ↔ suc 1o ⊆ suc 𝑁))
2524biimpa 476 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ω ∧ 1o𝑁) → suc 1o ⊆ suc 𝑁)
2622, 25eqsstrid 4057 . . . . . . . . . . . . . 14 ((𝑁 ∈ ω ∧ 1o𝑁) → 2o ⊆ suc 𝑁)
2726adantr 480 . . . . . . . . . . . . 13 (((𝑁 ∈ ω ∧ 1o𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → 2o ⊆ suc 𝑁)
28 simpr 484 . . . . . . . . . . . . 13 (((𝑁 ∈ ω ∧ 1o𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → 𝑦 ∈ (V × 𝑈))
2917finxpreclem4 37360 . . . . . . . . . . . . 13 (((suc 𝑁 ∈ ω ∧ 2o ⊆ suc 𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (rec(𝐹, ⟨suc 𝑁, 𝑦⟩)‘suc 𝑁) = (rec(𝐹, ⟨ suc 𝑁, (1st𝑦)⟩)‘ suc 𝑁))
3021, 27, 28, 29syl21anc 837 . . . . . . . . . . . 12 (((𝑁 ∈ ω ∧ 1o𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (rec(𝐹, ⟨suc 𝑁, 𝑦⟩)‘suc 𝑁) = (rec(𝐹, ⟨ suc 𝑁, (1st𝑦)⟩)‘ suc 𝑁))
31 ordunisuc 7868 . . . . . . . . . . . . . . . 16 (Ord 𝑁 suc 𝑁 = 𝑁)
325, 31syl 17 . . . . . . . . . . . . . . 15 (𝑁 ∈ ω → suc 𝑁 = 𝑁)
33 opeq1 4897 . . . . . . . . . . . . . . . 16 ( suc 𝑁 = 𝑁 → ⟨ suc 𝑁, (1st𝑦)⟩ = ⟨𝑁, (1st𝑦)⟩)
34 rdgeq2 8468 . . . . . . . . . . . . . . . 16 (⟨ suc 𝑁, (1st𝑦)⟩ = ⟨𝑁, (1st𝑦)⟩ → rec(𝐹, ⟨ suc 𝑁, (1st𝑦)⟩) = rec(𝐹, ⟨𝑁, (1st𝑦)⟩))
3533, 34syl 17 . . . . . . . . . . . . . . 15 ( suc 𝑁 = 𝑁 → rec(𝐹, ⟨ suc 𝑁, (1st𝑦)⟩) = rec(𝐹, ⟨𝑁, (1st𝑦)⟩))
3632, 35syl 17 . . . . . . . . . . . . . 14 (𝑁 ∈ ω → rec(𝐹, ⟨ suc 𝑁, (1st𝑦)⟩) = rec(𝐹, ⟨𝑁, (1st𝑦)⟩))
3736, 32fveq12d 6927 . . . . . . . . . . . . 13 (𝑁 ∈ ω → (rec(𝐹, ⟨ suc 𝑁, (1st𝑦)⟩)‘ suc 𝑁) = (rec(𝐹, ⟨𝑁, (1st𝑦)⟩)‘𝑁))
3837ad2antrr 725 . . . . . . . . . . . 12 (((𝑁 ∈ ω ∧ 1o𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (rec(𝐹, ⟨ suc 𝑁, (1st𝑦)⟩)‘ suc 𝑁) = (rec(𝐹, ⟨𝑁, (1st𝑦)⟩)‘𝑁))
3930, 38eqtrd 2780 . . . . . . . . . . 11 (((𝑁 ∈ ω ∧ 1o𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (rec(𝐹, ⟨suc 𝑁, 𝑦⟩)‘suc 𝑁) = (rec(𝐹, ⟨𝑁, (1st𝑦)⟩)‘𝑁))
4039eqeq2d 2751 . . . . . . . . . 10 (((𝑁 ∈ ω ∧ 1o𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (∅ = (rec(𝐹, ⟨suc 𝑁, 𝑦⟩)‘suc 𝑁) ↔ ∅ = (rec(𝐹, ⟨𝑁, (1st𝑦)⟩)‘𝑁)))
4117dffinxpf 37351 . . . . . . . . . . . . 13 (𝑈↑↑suc 𝑁) = {𝑦 ∣ (suc 𝑁 ∈ ω ∧ ∅ = (rec(𝐹, ⟨suc 𝑁, 𝑦⟩)‘suc 𝑁))}
4241eqabri 2888 . . . . . . . . . . . 12 (𝑦 ∈ (𝑈↑↑suc 𝑁) ↔ (suc 𝑁 ∈ ω ∧ ∅ = (rec(𝐹, ⟨suc 𝑁, 𝑦⟩)‘suc 𝑁)))
431biantrurd 532 . . . . . . . . . . . 12 (𝑁 ∈ ω → (∅ = (rec(𝐹, ⟨suc 𝑁, 𝑦⟩)‘suc 𝑁) ↔ (suc 𝑁 ∈ ω ∧ ∅ = (rec(𝐹, ⟨suc 𝑁, 𝑦⟩)‘suc 𝑁))))
4442, 43bitr4id 290 . . . . . . . . . . 11 (𝑁 ∈ ω → (𝑦 ∈ (𝑈↑↑suc 𝑁) ↔ ∅ = (rec(𝐹, ⟨suc 𝑁, 𝑦⟩)‘suc 𝑁)))
4544ad2antrr 725 . . . . . . . . . 10 (((𝑁 ∈ ω ∧ 1o𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (𝑦 ∈ (𝑈↑↑suc 𝑁) ↔ ∅ = (rec(𝐹, ⟨suc 𝑁, 𝑦⟩)‘suc 𝑁)))
46 fvex 6933 . . . . . . . . . . . . 13 (1st𝑦) ∈ V
47 opeq2 4898 . . . . . . . . . . . . . . . . 17 (𝑧 = (1st𝑦) → ⟨𝑁, 𝑧⟩ = ⟨𝑁, (1st𝑦)⟩)
48 rdgeq2 8468 . . . . . . . . . . . . . . . . 17 (⟨𝑁, 𝑧⟩ = ⟨𝑁, (1st𝑦)⟩ → rec(𝐹, ⟨𝑁, 𝑧⟩) = rec(𝐹, ⟨𝑁, (1st𝑦)⟩))
4947, 48syl 17 . . . . . . . . . . . . . . . 16 (𝑧 = (1st𝑦) → rec(𝐹, ⟨𝑁, 𝑧⟩) = rec(𝐹, ⟨𝑁, (1st𝑦)⟩))
5049fveq1d 6922 . . . . . . . . . . . . . . 15 (𝑧 = (1st𝑦) → (rec(𝐹, ⟨𝑁, 𝑧⟩)‘𝑁) = (rec(𝐹, ⟨𝑁, (1st𝑦)⟩)‘𝑁))
5150eqeq2d 2751 . . . . . . . . . . . . . 14 (𝑧 = (1st𝑦) → (∅ = (rec(𝐹, ⟨𝑁, 𝑧⟩)‘𝑁) ↔ ∅ = (rec(𝐹, ⟨𝑁, (1st𝑦)⟩)‘𝑁)))
5251anbi2d 629 . . . . . . . . . . . . 13 (𝑧 = (1st𝑦) → ((𝑁 ∈ ω ∧ ∅ = (rec(𝐹, ⟨𝑁, 𝑧⟩)‘𝑁)) ↔ (𝑁 ∈ ω ∧ ∅ = (rec(𝐹, ⟨𝑁, (1st𝑦)⟩)‘𝑁))))
5317dffinxpf 37351 . . . . . . . . . . . . 13 (𝑈↑↑𝑁) = {𝑧 ∣ (𝑁 ∈ ω ∧ ∅ = (rec(𝐹, ⟨𝑁, 𝑧⟩)‘𝑁))}
5446, 52, 53elab2 3698 . . . . . . . . . . . 12 ((1st𝑦) ∈ (𝑈↑↑𝑁) ↔ (𝑁 ∈ ω ∧ ∅ = (rec(𝐹, ⟨𝑁, (1st𝑦)⟩)‘𝑁)))
5554baib 535 . . . . . . . . . . 11 (𝑁 ∈ ω → ((1st𝑦) ∈ (𝑈↑↑𝑁) ↔ ∅ = (rec(𝐹, ⟨𝑁, (1st𝑦)⟩)‘𝑁)))
5655ad2antrr 725 . . . . . . . . . 10 (((𝑁 ∈ ω ∧ 1o𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → ((1st𝑦) ∈ (𝑈↑↑𝑁) ↔ ∅ = (rec(𝐹, ⟨𝑁, (1st𝑦)⟩)‘𝑁)))
5740, 45, 563bitr4d 311 . . . . . . . . 9 (((𝑁 ∈ ω ∧ 1o𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (𝑦 ∈ (𝑈↑↑suc 𝑁) ↔ (1st𝑦) ∈ (𝑈↑↑𝑁)))
5857biimpd 229 . . . . . . . 8 (((𝑁 ∈ ω ∧ 1o𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (𝑦 ∈ (𝑈↑↑suc 𝑁) → (1st𝑦) ∈ (𝑈↑↑𝑁)))
5958impancom 451 . . . . . . 7 (((𝑁 ∈ ω ∧ 1o𝑁) ∧ 𝑦 ∈ (𝑈↑↑suc 𝑁)) → (𝑦 ∈ (V × 𝑈) → (1st𝑦) ∈ (𝑈↑↑𝑁)))
6020, 59mpd 15 . . . . . 6 (((𝑁 ∈ ω ∧ 1o𝑁) ∧ 𝑦 ∈ (𝑈↑↑suc 𝑁)) → (1st𝑦) ∈ (𝑈↑↑𝑁))
6160ex 412 . . . . 5 ((𝑁 ∈ ω ∧ 1o𝑁) → (𝑦 ∈ (𝑈↑↑suc 𝑁) → (1st𝑦) ∈ (𝑈↑↑𝑁)))
6220ex 412 . . . . 5 ((𝑁 ∈ ω ∧ 1o𝑁) → (𝑦 ∈ (𝑈↑↑suc 𝑁) → 𝑦 ∈ (V × 𝑈)))
6361, 62jcad 512 . . . 4 ((𝑁 ∈ ω ∧ 1o𝑁) → (𝑦 ∈ (𝑈↑↑suc 𝑁) → ((1st𝑦) ∈ (𝑈↑↑𝑁) ∧ 𝑦 ∈ (V × 𝑈))))
6457exbiri 810 . . . . . 6 ((𝑁 ∈ ω ∧ 1o𝑁) → (𝑦 ∈ (V × 𝑈) → ((1st𝑦) ∈ (𝑈↑↑𝑁) → 𝑦 ∈ (𝑈↑↑suc 𝑁))))
6564impd 410 . . . . 5 ((𝑁 ∈ ω ∧ 1o𝑁) → ((𝑦 ∈ (V × 𝑈) ∧ (1st𝑦) ∈ (𝑈↑↑𝑁)) → 𝑦 ∈ (𝑈↑↑suc 𝑁)))
6665ancomsd 465 . . . 4 ((𝑁 ∈ ω ∧ 1o𝑁) → (((1st𝑦) ∈ (𝑈↑↑𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → 𝑦 ∈ (𝑈↑↑suc 𝑁)))
6763, 66impbid 212 . . 3 ((𝑁 ∈ ω ∧ 1o𝑁) → (𝑦 ∈ (𝑈↑↑suc 𝑁) ↔ ((1st𝑦) ∈ (𝑈↑↑𝑁) ∧ 𝑦 ∈ (V × 𝑈))))
68 elxp8 37337 . . 3 (𝑦 ∈ ((𝑈↑↑𝑁) × 𝑈) ↔ ((1st𝑦) ∈ (𝑈↑↑𝑁) ∧ 𝑦 ∈ (V × 𝑈)))
6967, 68bitr4di 289 . 2 ((𝑁 ∈ ω ∧ 1o𝑁) → (𝑦 ∈ (𝑈↑↑suc 𝑁) ↔ 𝑦 ∈ ((𝑈↑↑𝑁) × 𝑈)))
7069eqrdv 2738 1 ((𝑁 ∈ ω ∧ 1o𝑁) → (𝑈↑↑suc 𝑁) = ((𝑈↑↑𝑁) × 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wcel 2108  Vcvv 3488  wss 3976  c0 4352  ifcif 4548  cop 4654   cuni 4931   × cxp 5698  Ord word 6394  suc csuc 6397  cfv 6573  cmpo 7450  ωcom 7903  1st c1st 8028  reccrdg 8465  1oc1o 8515  2oc2o 8516  ↑↑cfinxp 37349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-en 9004  df-fin 9007  df-finxp 37350
This theorem is referenced by:  finxpsuc  37364
  Copyright terms: Public domain W3C validator