Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  intidl Structured version   Visualization version   GIF version

Theorem intidl 38048
Description: The intersection of a nonempty collection of ideals is an ideal. (Contributed by Jeff Madsen, 10-Jun-2010.)
Assertion
Ref Expression
intidl ((𝑅 ∈ RingOps ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅)) → 𝐶 ∈ (Idl‘𝑅))

Proof of Theorem intidl
Dummy variables 𝑖 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 intssuni 4918 . . . 4 (𝐶 ≠ ∅ → 𝐶 𝐶)
213ad2ant2 1134 . . 3 ((𝑅 ∈ RingOps ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅)) → 𝐶 𝐶)
3 ssel2 3927 . . . . . . . 8 ((𝐶 ⊆ (Idl‘𝑅) ∧ 𝑖𝐶) → 𝑖 ∈ (Idl‘𝑅))
4 eqid 2730 . . . . . . . . 9 (1st𝑅) = (1st𝑅)
5 eqid 2730 . . . . . . . . 9 ran (1st𝑅) = ran (1st𝑅)
64, 5idlss 38035 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) → 𝑖 ⊆ ran (1st𝑅))
73, 6sylan2 593 . . . . . . 7 ((𝑅 ∈ RingOps ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ 𝑖𝐶)) → 𝑖 ⊆ ran (1st𝑅))
87anassrs 467 . . . . . 6 (((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ 𝑖𝐶) → 𝑖 ⊆ ran (1st𝑅))
98ralrimiva 3122 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) → ∀𝑖𝐶 𝑖 ⊆ ran (1st𝑅))
1093adant2 1131 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅)) → ∀𝑖𝐶 𝑖 ⊆ ran (1st𝑅))
11 unissb 4889 . . . 4 ( 𝐶 ⊆ ran (1st𝑅) ↔ ∀𝑖𝐶 𝑖 ⊆ ran (1st𝑅))
1210, 11sylibr 234 . . 3 ((𝑅 ∈ RingOps ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅)) → 𝐶 ⊆ ran (1st𝑅))
132, 12sstrd 3943 . 2 ((𝑅 ∈ RingOps ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅)) → 𝐶 ⊆ ran (1st𝑅))
14 eqid 2730 . . . . . . . 8 (GId‘(1st𝑅)) = (GId‘(1st𝑅))
154, 14idl0cl 38037 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) → (GId‘(1st𝑅)) ∈ 𝑖)
163, 15sylan2 593 . . . . . 6 ((𝑅 ∈ RingOps ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ 𝑖𝐶)) → (GId‘(1st𝑅)) ∈ 𝑖)
1716anassrs 467 . . . . 5 (((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ 𝑖𝐶) → (GId‘(1st𝑅)) ∈ 𝑖)
1817ralrimiva 3122 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) → ∀𝑖𝐶 (GId‘(1st𝑅)) ∈ 𝑖)
19 fvex 6830 . . . . 5 (GId‘(1st𝑅)) ∈ V
2019elint2 4902 . . . 4 ((GId‘(1st𝑅)) ∈ 𝐶 ↔ ∀𝑖𝐶 (GId‘(1st𝑅)) ∈ 𝑖)
2118, 20sylibr 234 . . 3 ((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) → (GId‘(1st𝑅)) ∈ 𝐶)
22213adant2 1131 . 2 ((𝑅 ∈ RingOps ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅)) → (GId‘(1st𝑅)) ∈ 𝐶)
23 vex 3438 . . . . . 6 𝑥 ∈ V
2423elint2 4902 . . . . 5 (𝑥 𝐶 ↔ ∀𝑖𝐶 𝑥𝑖)
25 vex 3438 . . . . . . . . . 10 𝑦 ∈ V
2625elint2 4902 . . . . . . . . 9 (𝑦 𝐶 ↔ ∀𝑖𝐶 𝑦𝑖)
27 r19.26 3090 . . . . . . . . . . 11 (∀𝑖𝐶 (𝑥𝑖𝑦𝑖) ↔ (∀𝑖𝐶 𝑥𝑖 ∧ ∀𝑖𝐶 𝑦𝑖))
284idladdcl 38038 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ (𝑥𝑖𝑦𝑖)) → (𝑥(1st𝑅)𝑦) ∈ 𝑖)
2928ex 412 . . . . . . . . . . . . . . 15 ((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) → ((𝑥𝑖𝑦𝑖) → (𝑥(1st𝑅)𝑦) ∈ 𝑖))
303, 29sylan2 593 . . . . . . . . . . . . . 14 ((𝑅 ∈ RingOps ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ 𝑖𝐶)) → ((𝑥𝑖𝑦𝑖) → (𝑥(1st𝑅)𝑦) ∈ 𝑖))
3130anassrs 467 . . . . . . . . . . . . 13 (((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ 𝑖𝐶) → ((𝑥𝑖𝑦𝑖) → (𝑥(1st𝑅)𝑦) ∈ 𝑖))
3231ralimdva 3142 . . . . . . . . . . . 12 ((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) → (∀𝑖𝐶 (𝑥𝑖𝑦𝑖) → ∀𝑖𝐶 (𝑥(1st𝑅)𝑦) ∈ 𝑖))
33 ovex 7374 . . . . . . . . . . . . 13 (𝑥(1st𝑅)𝑦) ∈ V
3433elint2 4902 . . . . . . . . . . . 12 ((𝑥(1st𝑅)𝑦) ∈ 𝐶 ↔ ∀𝑖𝐶 (𝑥(1st𝑅)𝑦) ∈ 𝑖)
3532, 34imbitrrdi 252 . . . . . . . . . . 11 ((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) → (∀𝑖𝐶 (𝑥𝑖𝑦𝑖) → (𝑥(1st𝑅)𝑦) ∈ 𝐶))
3627, 35biimtrrid 243 . . . . . . . . . 10 ((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) → ((∀𝑖𝐶 𝑥𝑖 ∧ ∀𝑖𝐶 𝑦𝑖) → (𝑥(1st𝑅)𝑦) ∈ 𝐶))
3736expdimp 452 . . . . . . . . 9 (((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ ∀𝑖𝐶 𝑥𝑖) → (∀𝑖𝐶 𝑦𝑖 → (𝑥(1st𝑅)𝑦) ∈ 𝐶))
3826, 37biimtrid 242 . . . . . . . 8 (((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ ∀𝑖𝐶 𝑥𝑖) → (𝑦 𝐶 → (𝑥(1st𝑅)𝑦) ∈ 𝐶))
3938ralrimiv 3121 . . . . . . 7 (((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ ∀𝑖𝐶 𝑥𝑖) → ∀𝑦 𝐶(𝑥(1st𝑅)𝑦) ∈ 𝐶)
40 eqid 2730 . . . . . . . . . . . . . . . . . . . 20 (2nd𝑅) = (2nd𝑅)
414, 40, 5idllmulcl 38039 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ (𝑥𝑖𝑧 ∈ ran (1st𝑅))) → (𝑧(2nd𝑅)𝑥) ∈ 𝑖)
4241anass1rs 655 . . . . . . . . . . . . . . . . . 18 ((((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ 𝑧 ∈ ran (1st𝑅)) ∧ 𝑥𝑖) → (𝑧(2nd𝑅)𝑥) ∈ 𝑖)
4342ex 412 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝑥𝑖 → (𝑧(2nd𝑅)𝑥) ∈ 𝑖))
4443an32s 652 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ RingOps ∧ 𝑧 ∈ ran (1st𝑅)) ∧ 𝑖 ∈ (Idl‘𝑅)) → (𝑥𝑖 → (𝑧(2nd𝑅)𝑥) ∈ 𝑖))
453, 44sylan2 593 . . . . . . . . . . . . . . 15 (((𝑅 ∈ RingOps ∧ 𝑧 ∈ ran (1st𝑅)) ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ 𝑖𝐶)) → (𝑥𝑖 → (𝑧(2nd𝑅)𝑥) ∈ 𝑖))
4645an4s 660 . . . . . . . . . . . . . 14 (((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ (𝑧 ∈ ran (1st𝑅) ∧ 𝑖𝐶)) → (𝑥𝑖 → (𝑧(2nd𝑅)𝑥) ∈ 𝑖))
4746anassrs 467 . . . . . . . . . . . . 13 ((((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ 𝑧 ∈ ran (1st𝑅)) ∧ 𝑖𝐶) → (𝑥𝑖 → (𝑧(2nd𝑅)𝑥) ∈ 𝑖))
4847ralimdva 3142 . . . . . . . . . . . 12 (((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ 𝑧 ∈ ran (1st𝑅)) → (∀𝑖𝐶 𝑥𝑖 → ∀𝑖𝐶 (𝑧(2nd𝑅)𝑥) ∈ 𝑖))
4948imp 406 . . . . . . . . . . 11 ((((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ 𝑧 ∈ ran (1st𝑅)) ∧ ∀𝑖𝐶 𝑥𝑖) → ∀𝑖𝐶 (𝑧(2nd𝑅)𝑥) ∈ 𝑖)
50 ovex 7374 . . . . . . . . . . . 12 (𝑧(2nd𝑅)𝑥) ∈ V
5150elint2 4902 . . . . . . . . . . 11 ((𝑧(2nd𝑅)𝑥) ∈ 𝐶 ↔ ∀𝑖𝐶 (𝑧(2nd𝑅)𝑥) ∈ 𝑖)
5249, 51sylibr 234 . . . . . . . . . 10 ((((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ 𝑧 ∈ ran (1st𝑅)) ∧ ∀𝑖𝐶 𝑥𝑖) → (𝑧(2nd𝑅)𝑥) ∈ 𝐶)
534, 40, 5idlrmulcl 38040 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ (𝑥𝑖𝑧 ∈ ran (1st𝑅))) → (𝑥(2nd𝑅)𝑧) ∈ 𝑖)
5453anass1rs 655 . . . . . . . . . . . . . . . . . 18 ((((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ 𝑧 ∈ ran (1st𝑅)) ∧ 𝑥𝑖) → (𝑥(2nd𝑅)𝑧) ∈ 𝑖)
5554ex 412 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝑥𝑖 → (𝑥(2nd𝑅)𝑧) ∈ 𝑖))
5655an32s 652 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ RingOps ∧ 𝑧 ∈ ran (1st𝑅)) ∧ 𝑖 ∈ (Idl‘𝑅)) → (𝑥𝑖 → (𝑥(2nd𝑅)𝑧) ∈ 𝑖))
573, 56sylan2 593 . . . . . . . . . . . . . . 15 (((𝑅 ∈ RingOps ∧ 𝑧 ∈ ran (1st𝑅)) ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ 𝑖𝐶)) → (𝑥𝑖 → (𝑥(2nd𝑅)𝑧) ∈ 𝑖))
5857an4s 660 . . . . . . . . . . . . . 14 (((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ (𝑧 ∈ ran (1st𝑅) ∧ 𝑖𝐶)) → (𝑥𝑖 → (𝑥(2nd𝑅)𝑧) ∈ 𝑖))
5958anassrs 467 . . . . . . . . . . . . 13 ((((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ 𝑧 ∈ ran (1st𝑅)) ∧ 𝑖𝐶) → (𝑥𝑖 → (𝑥(2nd𝑅)𝑧) ∈ 𝑖))
6059ralimdva 3142 . . . . . . . . . . . 12 (((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ 𝑧 ∈ ran (1st𝑅)) → (∀𝑖𝐶 𝑥𝑖 → ∀𝑖𝐶 (𝑥(2nd𝑅)𝑧) ∈ 𝑖))
6160imp 406 . . . . . . . . . . 11 ((((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ 𝑧 ∈ ran (1st𝑅)) ∧ ∀𝑖𝐶 𝑥𝑖) → ∀𝑖𝐶 (𝑥(2nd𝑅)𝑧) ∈ 𝑖)
62 ovex 7374 . . . . . . . . . . . 12 (𝑥(2nd𝑅)𝑧) ∈ V
6362elint2 4902 . . . . . . . . . . 11 ((𝑥(2nd𝑅)𝑧) ∈ 𝐶 ↔ ∀𝑖𝐶 (𝑥(2nd𝑅)𝑧) ∈ 𝑖)
6461, 63sylibr 234 . . . . . . . . . 10 ((((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ 𝑧 ∈ ran (1st𝑅)) ∧ ∀𝑖𝐶 𝑥𝑖) → (𝑥(2nd𝑅)𝑧) ∈ 𝐶)
6552, 64jca 511 . . . . . . . . 9 ((((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ 𝑧 ∈ ran (1st𝑅)) ∧ ∀𝑖𝐶 𝑥𝑖) → ((𝑧(2nd𝑅)𝑥) ∈ 𝐶 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐶))
6665an32s 652 . . . . . . . 8 ((((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ ∀𝑖𝐶 𝑥𝑖) ∧ 𝑧 ∈ ran (1st𝑅)) → ((𝑧(2nd𝑅)𝑥) ∈ 𝐶 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐶))
6766ralrimiva 3122 . . . . . . 7 (((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ ∀𝑖𝐶 𝑥𝑖) → ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ 𝐶 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐶))
6839, 67jca 511 . . . . . 6 (((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ ∀𝑖𝐶 𝑥𝑖) → (∀𝑦 𝐶(𝑥(1st𝑅)𝑦) ∈ 𝐶 ∧ ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ 𝐶 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐶)))
6968ex 412 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) → (∀𝑖𝐶 𝑥𝑖 → (∀𝑦 𝐶(𝑥(1st𝑅)𝑦) ∈ 𝐶 ∧ ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ 𝐶 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐶))))
7024, 69biimtrid 242 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) → (𝑥 𝐶 → (∀𝑦 𝐶(𝑥(1st𝑅)𝑦) ∈ 𝐶 ∧ ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ 𝐶 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐶))))
7170ralrimiv 3121 . . 3 ((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) → ∀𝑥 𝐶(∀𝑦 𝐶(𝑥(1st𝑅)𝑦) ∈ 𝐶 ∧ ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ 𝐶 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐶)))
72713adant2 1131 . 2 ((𝑅 ∈ RingOps ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅)) → ∀𝑥 𝐶(∀𝑦 𝐶(𝑥(1st𝑅)𝑦) ∈ 𝐶 ∧ ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ 𝐶 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐶)))
734, 40, 5, 14isidl 38033 . . 3 (𝑅 ∈ RingOps → ( 𝐶 ∈ (Idl‘𝑅) ↔ ( 𝐶 ⊆ ran (1st𝑅) ∧ (GId‘(1st𝑅)) ∈ 𝐶 ∧ ∀𝑥 𝐶(∀𝑦 𝐶(𝑥(1st𝑅)𝑦) ∈ 𝐶 ∧ ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ 𝐶 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐶)))))
74733ad2ant1 1133 . 2 ((𝑅 ∈ RingOps ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅)) → ( 𝐶 ∈ (Idl‘𝑅) ↔ ( 𝐶 ⊆ ran (1st𝑅) ∧ (GId‘(1st𝑅)) ∈ 𝐶 ∧ ∀𝑥 𝐶(∀𝑦 𝐶(𝑥(1st𝑅)𝑦) ∈ 𝐶 ∧ ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ 𝐶 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐶)))))
7513, 22, 72, 74mpbir3and 1343 1 ((𝑅 ∈ RingOps ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅)) → 𝐶 ∈ (Idl‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2110  wne 2926  wral 3045  wss 3900  c0 4281   cuni 4857   cint 4895  ran crn 5615  cfv 6477  (class class class)co 7341  1st c1st 7914  2nd c2nd 7915  GIdcgi 30460  RingOpscrngo 37913  Idlcidl 38026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-int 4896  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-iota 6433  df-fun 6479  df-fv 6485  df-ov 7344  df-idl 38029
This theorem is referenced by:  inidl  38049  igenidl  38082
  Copyright terms: Public domain W3C validator