Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  intidl Structured version   Visualization version   GIF version

Theorem intidl 34858
Description: The intersection of a nonempty collection of ideals is an ideal. (Contributed by Jeff Madsen, 10-Jun-2010.)
Assertion
Ref Expression
intidl ((𝑅 ∈ RingOps ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅)) → 𝐶 ∈ (Idl‘𝑅))

Proof of Theorem intidl
Dummy variables 𝑖 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 intssuni 4804 . . . 4 (𝐶 ≠ ∅ → 𝐶 𝐶)
213ad2ant2 1127 . . 3 ((𝑅 ∈ RingOps ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅)) → 𝐶 𝐶)
3 ssel2 3884 . . . . . . . 8 ((𝐶 ⊆ (Idl‘𝑅) ∧ 𝑖𝐶) → 𝑖 ∈ (Idl‘𝑅))
4 eqid 2795 . . . . . . . . 9 (1st𝑅) = (1st𝑅)
5 eqid 2795 . . . . . . . . 9 ran (1st𝑅) = ran (1st𝑅)
64, 5idlss 34845 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) → 𝑖 ⊆ ran (1st𝑅))
73, 6sylan2 592 . . . . . . 7 ((𝑅 ∈ RingOps ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ 𝑖𝐶)) → 𝑖 ⊆ ran (1st𝑅))
87anassrs 468 . . . . . 6 (((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ 𝑖𝐶) → 𝑖 ⊆ ran (1st𝑅))
98ralrimiva 3149 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) → ∀𝑖𝐶 𝑖 ⊆ ran (1st𝑅))
1093adant2 1124 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅)) → ∀𝑖𝐶 𝑖 ⊆ ran (1st𝑅))
11 unissb 4776 . . . 4 ( 𝐶 ⊆ ran (1st𝑅) ↔ ∀𝑖𝐶 𝑖 ⊆ ran (1st𝑅))
1210, 11sylibr 235 . . 3 ((𝑅 ∈ RingOps ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅)) → 𝐶 ⊆ ran (1st𝑅))
132, 12sstrd 3899 . 2 ((𝑅 ∈ RingOps ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅)) → 𝐶 ⊆ ran (1st𝑅))
14 eqid 2795 . . . . . . . 8 (GId‘(1st𝑅)) = (GId‘(1st𝑅))
154, 14idl0cl 34847 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) → (GId‘(1st𝑅)) ∈ 𝑖)
163, 15sylan2 592 . . . . . 6 ((𝑅 ∈ RingOps ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ 𝑖𝐶)) → (GId‘(1st𝑅)) ∈ 𝑖)
1716anassrs 468 . . . . 5 (((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ 𝑖𝐶) → (GId‘(1st𝑅)) ∈ 𝑖)
1817ralrimiva 3149 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) → ∀𝑖𝐶 (GId‘(1st𝑅)) ∈ 𝑖)
19 fvex 6551 . . . . 5 (GId‘(1st𝑅)) ∈ V
2019elint2 4789 . . . 4 ((GId‘(1st𝑅)) ∈ 𝐶 ↔ ∀𝑖𝐶 (GId‘(1st𝑅)) ∈ 𝑖)
2118, 20sylibr 235 . . 3 ((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) → (GId‘(1st𝑅)) ∈ 𝐶)
22213adant2 1124 . 2 ((𝑅 ∈ RingOps ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅)) → (GId‘(1st𝑅)) ∈ 𝐶)
23 vex 3440 . . . . . 6 𝑥 ∈ V
2423elint2 4789 . . . . 5 (𝑥 𝐶 ↔ ∀𝑖𝐶 𝑥𝑖)
25 vex 3440 . . . . . . . . . 10 𝑦 ∈ V
2625elint2 4789 . . . . . . . . 9 (𝑦 𝐶 ↔ ∀𝑖𝐶 𝑦𝑖)
27 r19.26 3137 . . . . . . . . . . 11 (∀𝑖𝐶 (𝑥𝑖𝑦𝑖) ↔ (∀𝑖𝐶 𝑥𝑖 ∧ ∀𝑖𝐶 𝑦𝑖))
284idladdcl 34848 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ (𝑥𝑖𝑦𝑖)) → (𝑥(1st𝑅)𝑦) ∈ 𝑖)
2928ex 413 . . . . . . . . . . . . . . 15 ((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) → ((𝑥𝑖𝑦𝑖) → (𝑥(1st𝑅)𝑦) ∈ 𝑖))
303, 29sylan2 592 . . . . . . . . . . . . . 14 ((𝑅 ∈ RingOps ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ 𝑖𝐶)) → ((𝑥𝑖𝑦𝑖) → (𝑥(1st𝑅)𝑦) ∈ 𝑖))
3130anassrs 468 . . . . . . . . . . . . 13 (((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ 𝑖𝐶) → ((𝑥𝑖𝑦𝑖) → (𝑥(1st𝑅)𝑦) ∈ 𝑖))
3231ralimdva 3144 . . . . . . . . . . . 12 ((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) → (∀𝑖𝐶 (𝑥𝑖𝑦𝑖) → ∀𝑖𝐶 (𝑥(1st𝑅)𝑦) ∈ 𝑖))
33 ovex 7048 . . . . . . . . . . . . 13 (𝑥(1st𝑅)𝑦) ∈ V
3433elint2 4789 . . . . . . . . . . . 12 ((𝑥(1st𝑅)𝑦) ∈ 𝐶 ↔ ∀𝑖𝐶 (𝑥(1st𝑅)𝑦) ∈ 𝑖)
3532, 34syl6ibr 253 . . . . . . . . . . 11 ((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) → (∀𝑖𝐶 (𝑥𝑖𝑦𝑖) → (𝑥(1st𝑅)𝑦) ∈ 𝐶))
3627, 35syl5bir 244 . . . . . . . . . 10 ((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) → ((∀𝑖𝐶 𝑥𝑖 ∧ ∀𝑖𝐶 𝑦𝑖) → (𝑥(1st𝑅)𝑦) ∈ 𝐶))
3736expdimp 453 . . . . . . . . 9 (((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ ∀𝑖𝐶 𝑥𝑖) → (∀𝑖𝐶 𝑦𝑖 → (𝑥(1st𝑅)𝑦) ∈ 𝐶))
3826, 37syl5bi 243 . . . . . . . 8 (((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ ∀𝑖𝐶 𝑥𝑖) → (𝑦 𝐶 → (𝑥(1st𝑅)𝑦) ∈ 𝐶))
3938ralrimiv 3148 . . . . . . 7 (((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ ∀𝑖𝐶 𝑥𝑖) → ∀𝑦 𝐶(𝑥(1st𝑅)𝑦) ∈ 𝐶)
40 eqid 2795 . . . . . . . . . . . . . . . . . . . 20 (2nd𝑅) = (2nd𝑅)
414, 40, 5idllmulcl 34849 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ (𝑥𝑖𝑧 ∈ ran (1st𝑅))) → (𝑧(2nd𝑅)𝑥) ∈ 𝑖)
4241anass1rs 651 . . . . . . . . . . . . . . . . . 18 ((((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ 𝑧 ∈ ran (1st𝑅)) ∧ 𝑥𝑖) → (𝑧(2nd𝑅)𝑥) ∈ 𝑖)
4342ex 413 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝑥𝑖 → (𝑧(2nd𝑅)𝑥) ∈ 𝑖))
4443an32s 648 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ RingOps ∧ 𝑧 ∈ ran (1st𝑅)) ∧ 𝑖 ∈ (Idl‘𝑅)) → (𝑥𝑖 → (𝑧(2nd𝑅)𝑥) ∈ 𝑖))
453, 44sylan2 592 . . . . . . . . . . . . . . 15 (((𝑅 ∈ RingOps ∧ 𝑧 ∈ ran (1st𝑅)) ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ 𝑖𝐶)) → (𝑥𝑖 → (𝑧(2nd𝑅)𝑥) ∈ 𝑖))
4645an4s 656 . . . . . . . . . . . . . 14 (((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ (𝑧 ∈ ran (1st𝑅) ∧ 𝑖𝐶)) → (𝑥𝑖 → (𝑧(2nd𝑅)𝑥) ∈ 𝑖))
4746anassrs 468 . . . . . . . . . . . . 13 ((((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ 𝑧 ∈ ran (1st𝑅)) ∧ 𝑖𝐶) → (𝑥𝑖 → (𝑧(2nd𝑅)𝑥) ∈ 𝑖))
4847ralimdva 3144 . . . . . . . . . . . 12 (((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ 𝑧 ∈ ran (1st𝑅)) → (∀𝑖𝐶 𝑥𝑖 → ∀𝑖𝐶 (𝑧(2nd𝑅)𝑥) ∈ 𝑖))
4948imp 407 . . . . . . . . . . 11 ((((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ 𝑧 ∈ ran (1st𝑅)) ∧ ∀𝑖𝐶 𝑥𝑖) → ∀𝑖𝐶 (𝑧(2nd𝑅)𝑥) ∈ 𝑖)
50 ovex 7048 . . . . . . . . . . . 12 (𝑧(2nd𝑅)𝑥) ∈ V
5150elint2 4789 . . . . . . . . . . 11 ((𝑧(2nd𝑅)𝑥) ∈ 𝐶 ↔ ∀𝑖𝐶 (𝑧(2nd𝑅)𝑥) ∈ 𝑖)
5249, 51sylibr 235 . . . . . . . . . 10 ((((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ 𝑧 ∈ ran (1st𝑅)) ∧ ∀𝑖𝐶 𝑥𝑖) → (𝑧(2nd𝑅)𝑥) ∈ 𝐶)
534, 40, 5idlrmulcl 34850 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ (𝑥𝑖𝑧 ∈ ran (1st𝑅))) → (𝑥(2nd𝑅)𝑧) ∈ 𝑖)
5453anass1rs 651 . . . . . . . . . . . . . . . . . 18 ((((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ 𝑧 ∈ ran (1st𝑅)) ∧ 𝑥𝑖) → (𝑥(2nd𝑅)𝑧) ∈ 𝑖)
5554ex 413 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝑥𝑖 → (𝑥(2nd𝑅)𝑧) ∈ 𝑖))
5655an32s 648 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ RingOps ∧ 𝑧 ∈ ran (1st𝑅)) ∧ 𝑖 ∈ (Idl‘𝑅)) → (𝑥𝑖 → (𝑥(2nd𝑅)𝑧) ∈ 𝑖))
573, 56sylan2 592 . . . . . . . . . . . . . . 15 (((𝑅 ∈ RingOps ∧ 𝑧 ∈ ran (1st𝑅)) ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ 𝑖𝐶)) → (𝑥𝑖 → (𝑥(2nd𝑅)𝑧) ∈ 𝑖))
5857an4s 656 . . . . . . . . . . . . . 14 (((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ (𝑧 ∈ ran (1st𝑅) ∧ 𝑖𝐶)) → (𝑥𝑖 → (𝑥(2nd𝑅)𝑧) ∈ 𝑖))
5958anassrs 468 . . . . . . . . . . . . 13 ((((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ 𝑧 ∈ ran (1st𝑅)) ∧ 𝑖𝐶) → (𝑥𝑖 → (𝑥(2nd𝑅)𝑧) ∈ 𝑖))
6059ralimdva 3144 . . . . . . . . . . . 12 (((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ 𝑧 ∈ ran (1st𝑅)) → (∀𝑖𝐶 𝑥𝑖 → ∀𝑖𝐶 (𝑥(2nd𝑅)𝑧) ∈ 𝑖))
6160imp 407 . . . . . . . . . . 11 ((((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ 𝑧 ∈ ran (1st𝑅)) ∧ ∀𝑖𝐶 𝑥𝑖) → ∀𝑖𝐶 (𝑥(2nd𝑅)𝑧) ∈ 𝑖)
62 ovex 7048 . . . . . . . . . . . 12 (𝑥(2nd𝑅)𝑧) ∈ V
6362elint2 4789 . . . . . . . . . . 11 ((𝑥(2nd𝑅)𝑧) ∈ 𝐶 ↔ ∀𝑖𝐶 (𝑥(2nd𝑅)𝑧) ∈ 𝑖)
6461, 63sylibr 235 . . . . . . . . . 10 ((((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ 𝑧 ∈ ran (1st𝑅)) ∧ ∀𝑖𝐶 𝑥𝑖) → (𝑥(2nd𝑅)𝑧) ∈ 𝐶)
6552, 64jca 512 . . . . . . . . 9 ((((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ 𝑧 ∈ ran (1st𝑅)) ∧ ∀𝑖𝐶 𝑥𝑖) → ((𝑧(2nd𝑅)𝑥) ∈ 𝐶 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐶))
6665an32s 648 . . . . . . . 8 ((((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ ∀𝑖𝐶 𝑥𝑖) ∧ 𝑧 ∈ ran (1st𝑅)) → ((𝑧(2nd𝑅)𝑥) ∈ 𝐶 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐶))
6766ralrimiva 3149 . . . . . . 7 (((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ ∀𝑖𝐶 𝑥𝑖) → ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ 𝐶 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐶))
6839, 67jca 512 . . . . . 6 (((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ ∀𝑖𝐶 𝑥𝑖) → (∀𝑦 𝐶(𝑥(1st𝑅)𝑦) ∈ 𝐶 ∧ ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ 𝐶 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐶)))
6968ex 413 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) → (∀𝑖𝐶 𝑥𝑖 → (∀𝑦 𝐶(𝑥(1st𝑅)𝑦) ∈ 𝐶 ∧ ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ 𝐶 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐶))))
7024, 69syl5bi 243 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) → (𝑥 𝐶 → (∀𝑦 𝐶(𝑥(1st𝑅)𝑦) ∈ 𝐶 ∧ ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ 𝐶 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐶))))
7170ralrimiv 3148 . . 3 ((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) → ∀𝑥 𝐶(∀𝑦 𝐶(𝑥(1st𝑅)𝑦) ∈ 𝐶 ∧ ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ 𝐶 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐶)))
72713adant2 1124 . 2 ((𝑅 ∈ RingOps ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅)) → ∀𝑥 𝐶(∀𝑦 𝐶(𝑥(1st𝑅)𝑦) ∈ 𝐶 ∧ ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ 𝐶 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐶)))
734, 40, 5, 14isidl 34843 . . 3 (𝑅 ∈ RingOps → ( 𝐶 ∈ (Idl‘𝑅) ↔ ( 𝐶 ⊆ ran (1st𝑅) ∧ (GId‘(1st𝑅)) ∈ 𝐶 ∧ ∀𝑥 𝐶(∀𝑦 𝐶(𝑥(1st𝑅)𝑦) ∈ 𝐶 ∧ ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ 𝐶 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐶)))))
74733ad2ant1 1126 . 2 ((𝑅 ∈ RingOps ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅)) → ( 𝐶 ∈ (Idl‘𝑅) ↔ ( 𝐶 ⊆ ran (1st𝑅) ∧ (GId‘(1st𝑅)) ∈ 𝐶 ∧ ∀𝑥 𝐶(∀𝑦 𝐶(𝑥(1st𝑅)𝑦) ∈ 𝐶 ∧ ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ 𝐶 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐶)))))
7513, 22, 72, 74mpbir3and 1335 1 ((𝑅 ∈ RingOps ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅)) → 𝐶 ∈ (Idl‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1080  wcel 2081  wne 2984  wral 3105  wss 3859  c0 4211   cuni 4745   cint 4782  ran crn 5444  cfv 6225  (class class class)co 7016  1st c1st 7543  2nd c2nd 7544  GIdcgi 27958  RingOpscrngo 34723  Idlcidl 34836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-ral 3110  df-rex 3111  df-rab 3114  df-v 3439  df-sbc 3707  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-op 4479  df-uni 4746  df-int 4783  df-br 4963  df-opab 5025  df-mpt 5042  df-id 5348  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-iota 6189  df-fun 6227  df-fv 6233  df-ov 7019  df-idl 34839
This theorem is referenced by:  inidl  34859  igenidl  34892
  Copyright terms: Public domain W3C validator