Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elintima Structured version   Visualization version   GIF version

Theorem elintima 43686
Description: Element of intersection of images. (Contributed by RP, 13-Apr-2020.)
Assertion
Ref Expression
elintima (𝑦 {𝑥 ∣ ∃𝑎𝐴 𝑥 = (𝑎𝐵)} ↔ ∀𝑎𝐴𝑏𝐵𝑏, 𝑦⟩ ∈ 𝑎)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑦,𝑎   𝐵,𝑏   𝑎,𝑏,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑦,𝑎,𝑏)   𝐵(𝑦,𝑎)

Proof of Theorem elintima
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 vex 3440 . . 3 𝑦 ∈ V
21elint2 4899 . 2 (𝑦 {𝑥 ∣ ∃𝑎𝐴 𝑥 = (𝑎𝐵)} ↔ ∀𝑧 ∈ {𝑥 ∣ ∃𝑎𝐴 𝑥 = (𝑎𝐵)}𝑦𝑧)
3 elequ2 2126 . . . 4 (𝑧 = 𝑥 → (𝑦𝑧𝑦𝑥))
43ralab2 3651 . . 3 (∀𝑧 ∈ {𝑥 ∣ ∃𝑎𝐴 𝑥 = (𝑎𝐵)}𝑦𝑧 ↔ ∀𝑥(∃𝑎𝐴 𝑥 = (𝑎𝐵) → 𝑦𝑥))
5 df-rex 3057 . . . . . . 7 (∃𝑎𝐴 𝑥 = (𝑎𝐵) ↔ ∃𝑎(𝑎𝐴𝑥 = (𝑎𝐵)))
65imbi1i 349 . . . . . 6 ((∃𝑎𝐴 𝑥 = (𝑎𝐵) → 𝑦𝑥) ↔ (∃𝑎(𝑎𝐴𝑥 = (𝑎𝐵)) → 𝑦𝑥))
7 19.23v 1943 . . . . . 6 (∀𝑎((𝑎𝐴𝑥 = (𝑎𝐵)) → 𝑦𝑥) ↔ (∃𝑎(𝑎𝐴𝑥 = (𝑎𝐵)) → 𝑦𝑥))
8 simpr 484 . . . . . . . . . 10 ((𝑎𝐴𝑥 = (𝑎𝐵)) → 𝑥 = (𝑎𝐵))
98eleq2d 2817 . . . . . . . . 9 ((𝑎𝐴𝑥 = (𝑎𝐵)) → (𝑦𝑥𝑦 ∈ (𝑎𝐵)))
109pm5.74i 271 . . . . . . . 8 (((𝑎𝐴𝑥 = (𝑎𝐵)) → 𝑦𝑥) ↔ ((𝑎𝐴𝑥 = (𝑎𝐵)) → 𝑦 ∈ (𝑎𝐵)))
111elima 6009 . . . . . . . . . 10 (𝑦 ∈ (𝑎𝐵) ↔ ∃𝑏𝐵 𝑏𝑎𝑦)
12 df-br 5087 . . . . . . . . . . 11 (𝑏𝑎𝑦 ↔ ⟨𝑏, 𝑦⟩ ∈ 𝑎)
1312rexbii 3079 . . . . . . . . . 10 (∃𝑏𝐵 𝑏𝑎𝑦 ↔ ∃𝑏𝐵𝑏, 𝑦⟩ ∈ 𝑎)
1411, 13bitri 275 . . . . . . . . 9 (𝑦 ∈ (𝑎𝐵) ↔ ∃𝑏𝐵𝑏, 𝑦⟩ ∈ 𝑎)
1514imbi2i 336 . . . . . . . 8 (((𝑎𝐴𝑥 = (𝑎𝐵)) → 𝑦 ∈ (𝑎𝐵)) ↔ ((𝑎𝐴𝑥 = (𝑎𝐵)) → ∃𝑏𝐵𝑏, 𝑦⟩ ∈ 𝑎))
1610, 15bitri 275 . . . . . . 7 (((𝑎𝐴𝑥 = (𝑎𝐵)) → 𝑦𝑥) ↔ ((𝑎𝐴𝑥 = (𝑎𝐵)) → ∃𝑏𝐵𝑏, 𝑦⟩ ∈ 𝑎))
1716albii 1820 . . . . . 6 (∀𝑎((𝑎𝐴𝑥 = (𝑎𝐵)) → 𝑦𝑥) ↔ ∀𝑎((𝑎𝐴𝑥 = (𝑎𝐵)) → ∃𝑏𝐵𝑏, 𝑦⟩ ∈ 𝑎))
186, 7, 173bitr2i 299 . . . . 5 ((∃𝑎𝐴 𝑥 = (𝑎𝐵) → 𝑦𝑥) ↔ ∀𝑎((𝑎𝐴𝑥 = (𝑎𝐵)) → ∃𝑏𝐵𝑏, 𝑦⟩ ∈ 𝑎))
1918albii 1820 . . . 4 (∀𝑥(∃𝑎𝐴 𝑥 = (𝑎𝐵) → 𝑦𝑥) ↔ ∀𝑥𝑎((𝑎𝐴𝑥 = (𝑎𝐵)) → ∃𝑏𝐵𝑏, 𝑦⟩ ∈ 𝑎))
20 19.23v 1943 . . . . . . 7 (∀𝑥((𝑎𝐴𝑥 = (𝑎𝐵)) → ∃𝑏𝐵𝑏, 𝑦⟩ ∈ 𝑎) ↔ (∃𝑥(𝑎𝐴𝑥 = (𝑎𝐵)) → ∃𝑏𝐵𝑏, 𝑦⟩ ∈ 𝑎))
21 vex 3440 . . . . . . . . . . 11 𝑎 ∈ V
2221imaex 7839 . . . . . . . . . 10 (𝑎𝐵) ∈ V
2322isseti 3454 . . . . . . . . 9 𝑥 𝑥 = (𝑎𝐵)
24 19.42v 1954 . . . . . . . . 9 (∃𝑥(𝑎𝐴𝑥 = (𝑎𝐵)) ↔ (𝑎𝐴 ∧ ∃𝑥 𝑥 = (𝑎𝐵)))
2523, 24mpbiran2 710 . . . . . . . 8 (∃𝑥(𝑎𝐴𝑥 = (𝑎𝐵)) ↔ 𝑎𝐴)
2625imbi1i 349 . . . . . . 7 ((∃𝑥(𝑎𝐴𝑥 = (𝑎𝐵)) → ∃𝑏𝐵𝑏, 𝑦⟩ ∈ 𝑎) ↔ (𝑎𝐴 → ∃𝑏𝐵𝑏, 𝑦⟩ ∈ 𝑎))
2720, 26bitri 275 . . . . . 6 (∀𝑥((𝑎𝐴𝑥 = (𝑎𝐵)) → ∃𝑏𝐵𝑏, 𝑦⟩ ∈ 𝑎) ↔ (𝑎𝐴 → ∃𝑏𝐵𝑏, 𝑦⟩ ∈ 𝑎))
2827albii 1820 . . . . 5 (∀𝑎𝑥((𝑎𝐴𝑥 = (𝑎𝐵)) → ∃𝑏𝐵𝑏, 𝑦⟩ ∈ 𝑎) ↔ ∀𝑎(𝑎𝐴 → ∃𝑏𝐵𝑏, 𝑦⟩ ∈ 𝑎))
29 alcom 2162 . . . . 5 (∀𝑥𝑎((𝑎𝐴𝑥 = (𝑎𝐵)) → ∃𝑏𝐵𝑏, 𝑦⟩ ∈ 𝑎) ↔ ∀𝑎𝑥((𝑎𝐴𝑥 = (𝑎𝐵)) → ∃𝑏𝐵𝑏, 𝑦⟩ ∈ 𝑎))
30 df-ral 3048 . . . . 5 (∀𝑎𝐴𝑏𝐵𝑏, 𝑦⟩ ∈ 𝑎 ↔ ∀𝑎(𝑎𝐴 → ∃𝑏𝐵𝑏, 𝑦⟩ ∈ 𝑎))
3128, 29, 303bitr4i 303 . . . 4 (∀𝑥𝑎((𝑎𝐴𝑥 = (𝑎𝐵)) → ∃𝑏𝐵𝑏, 𝑦⟩ ∈ 𝑎) ↔ ∀𝑎𝐴𝑏𝐵𝑏, 𝑦⟩ ∈ 𝑎)
3219, 31bitri 275 . . 3 (∀𝑥(∃𝑎𝐴 𝑥 = (𝑎𝐵) → 𝑦𝑥) ↔ ∀𝑎𝐴𝑏𝐵𝑏, 𝑦⟩ ∈ 𝑎)
334, 32bitri 275 . 2 (∀𝑧 ∈ {𝑥 ∣ ∃𝑎𝐴 𝑥 = (𝑎𝐵)}𝑦𝑧 ↔ ∀𝑎𝐴𝑏𝐵𝑏, 𝑦⟩ ∈ 𝑎)
342, 33bitri 275 1 (𝑦 {𝑥 ∣ ∃𝑎𝐴 𝑥 = (𝑎𝐵)} ↔ ∀𝑎𝐴𝑏𝐵𝑏, 𝑦⟩ ∈ 𝑎)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1539   = wceq 1541  wex 1780  wcel 2111  {cab 2709  wral 3047  wrex 3056  cop 4577   cint 4892   class class class wbr 5086  cima 5614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-br 5087  df-opab 5149  df-xp 5617  df-cnv 5619  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624
This theorem is referenced by:  intimass  43687  intimag  43689
  Copyright terms: Public domain W3C validator