Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mzpincl Structured version   Visualization version   GIF version

Theorem mzpincl 40556
Description: Polynomial closedness is a universal first-order property and passes to intersections. This is where the closure properties of the polynomial ring itself are proved. (Contributed by Stefan O'Rear, 4-Oct-2014.)
Assertion
Ref Expression
mzpincl (𝑉 ∈ V → (mzPoly‘𝑉) ∈ (mzPolyCld‘𝑉))

Proof of Theorem mzpincl
Dummy variables 𝑓 𝑔 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mzpval 40554 . 2 (𝑉 ∈ V → (mzPoly‘𝑉) = (mzPolyCld‘𝑉))
2 mzpclall 40549 . . . . 5 (𝑉 ∈ V → (ℤ ↑m (ℤ ↑m 𝑉)) ∈ (mzPolyCld‘𝑉))
3 intss1 4894 . . . . 5 ((ℤ ↑m (ℤ ↑m 𝑉)) ∈ (mzPolyCld‘𝑉) → (mzPolyCld‘𝑉) ⊆ (ℤ ↑m (ℤ ↑m 𝑉)))
42, 3syl 17 . . . 4 (𝑉 ∈ V → (mzPolyCld‘𝑉) ⊆ (ℤ ↑m (ℤ ↑m 𝑉)))
5 simpr 485 . . . . . . . . 9 (((𝑉 ∈ V ∧ 𝑓 ∈ ℤ) ∧ 𝑎 ∈ (mzPolyCld‘𝑉)) → 𝑎 ∈ (mzPolyCld‘𝑉))
6 simplr 766 . . . . . . . . 9 (((𝑉 ∈ V ∧ 𝑓 ∈ ℤ) ∧ 𝑎 ∈ (mzPolyCld‘𝑉)) → 𝑓 ∈ ℤ)
7 mzpcl1 40551 . . . . . . . . 9 ((𝑎 ∈ (mzPolyCld‘𝑉) ∧ 𝑓 ∈ ℤ) → ((ℤ ↑m 𝑉) × {𝑓}) ∈ 𝑎)
85, 6, 7syl2anc 584 . . . . . . . 8 (((𝑉 ∈ V ∧ 𝑓 ∈ ℤ) ∧ 𝑎 ∈ (mzPolyCld‘𝑉)) → ((ℤ ↑m 𝑉) × {𝑓}) ∈ 𝑎)
98ralrimiva 3103 . . . . . . 7 ((𝑉 ∈ V ∧ 𝑓 ∈ ℤ) → ∀𝑎 ∈ (mzPolyCld‘𝑉)((ℤ ↑m 𝑉) × {𝑓}) ∈ 𝑎)
10 ovex 7308 . . . . . . . . 9 (ℤ ↑m 𝑉) ∈ V
11 snex 5354 . . . . . . . . 9 {𝑓} ∈ V
1210, 11xpex 7603 . . . . . . . 8 ((ℤ ↑m 𝑉) × {𝑓}) ∈ V
1312elint2 4886 . . . . . . 7 (((ℤ ↑m 𝑉) × {𝑓}) ∈ (mzPolyCld‘𝑉) ↔ ∀𝑎 ∈ (mzPolyCld‘𝑉)((ℤ ↑m 𝑉) × {𝑓}) ∈ 𝑎)
149, 13sylibr 233 . . . . . 6 ((𝑉 ∈ V ∧ 𝑓 ∈ ℤ) → ((ℤ ↑m 𝑉) × {𝑓}) ∈ (mzPolyCld‘𝑉))
1514ralrimiva 3103 . . . . 5 (𝑉 ∈ V → ∀𝑓 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑓}) ∈ (mzPolyCld‘𝑉))
16 simpr 485 . . . . . . . . 9 (((𝑉 ∈ V ∧ 𝑓𝑉) ∧ 𝑎 ∈ (mzPolyCld‘𝑉)) → 𝑎 ∈ (mzPolyCld‘𝑉))
17 simplr 766 . . . . . . . . 9 (((𝑉 ∈ V ∧ 𝑓𝑉) ∧ 𝑎 ∈ (mzPolyCld‘𝑉)) → 𝑓𝑉)
18 mzpcl2 40552 . . . . . . . . 9 ((𝑎 ∈ (mzPolyCld‘𝑉) ∧ 𝑓𝑉) → (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ 𝑎)
1916, 17, 18syl2anc 584 . . . . . . . 8 (((𝑉 ∈ V ∧ 𝑓𝑉) ∧ 𝑎 ∈ (mzPolyCld‘𝑉)) → (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ 𝑎)
2019ralrimiva 3103 . . . . . . 7 ((𝑉 ∈ V ∧ 𝑓𝑉) → ∀𝑎 ∈ (mzPolyCld‘𝑉)(𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ 𝑎)
2110mptex 7099 . . . . . . . 8 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ V
2221elint2 4886 . . . . . . 7 ((𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ (mzPolyCld‘𝑉) ↔ ∀𝑎 ∈ (mzPolyCld‘𝑉)(𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ 𝑎)
2320, 22sylibr 233 . . . . . 6 ((𝑉 ∈ V ∧ 𝑓𝑉) → (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ (mzPolyCld‘𝑉))
2423ralrimiva 3103 . . . . 5 (𝑉 ∈ V → ∀𝑓𝑉 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ (mzPolyCld‘𝑉))
2515, 24jca 512 . . . 4 (𝑉 ∈ V → (∀𝑓 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑓}) ∈ (mzPolyCld‘𝑉) ∧ ∀𝑓𝑉 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ (mzPolyCld‘𝑉)))
26 vex 3436 . . . . . . . . 9 𝑓 ∈ V
2726elint2 4886 . . . . . . . 8 (𝑓 (mzPolyCld‘𝑉) ↔ ∀𝑎 ∈ (mzPolyCld‘𝑉)𝑓𝑎)
28 vex 3436 . . . . . . . . 9 𝑔 ∈ V
2928elint2 4886 . . . . . . . 8 (𝑔 (mzPolyCld‘𝑉) ↔ ∀𝑎 ∈ (mzPolyCld‘𝑉)𝑔𝑎)
30 mzpcl34 40553 . . . . . . . . . . 11 ((𝑎 ∈ (mzPolyCld‘𝑉) ∧ 𝑓𝑎𝑔𝑎) → ((𝑓f + 𝑔) ∈ 𝑎 ∧ (𝑓f · 𝑔) ∈ 𝑎))
31303expib 1121 . . . . . . . . . 10 (𝑎 ∈ (mzPolyCld‘𝑉) → ((𝑓𝑎𝑔𝑎) → ((𝑓f + 𝑔) ∈ 𝑎 ∧ (𝑓f · 𝑔) ∈ 𝑎)))
3231ralimia 3085 . . . . . . . . 9 (∀𝑎 ∈ (mzPolyCld‘𝑉)(𝑓𝑎𝑔𝑎) → ∀𝑎 ∈ (mzPolyCld‘𝑉)((𝑓f + 𝑔) ∈ 𝑎 ∧ (𝑓f · 𝑔) ∈ 𝑎))
33 r19.26 3095 . . . . . . . . 9 (∀𝑎 ∈ (mzPolyCld‘𝑉)(𝑓𝑎𝑔𝑎) ↔ (∀𝑎 ∈ (mzPolyCld‘𝑉)𝑓𝑎 ∧ ∀𝑎 ∈ (mzPolyCld‘𝑉)𝑔𝑎))
34 r19.26 3095 . . . . . . . . 9 (∀𝑎 ∈ (mzPolyCld‘𝑉)((𝑓f + 𝑔) ∈ 𝑎 ∧ (𝑓f · 𝑔) ∈ 𝑎) ↔ (∀𝑎 ∈ (mzPolyCld‘𝑉)(𝑓f + 𝑔) ∈ 𝑎 ∧ ∀𝑎 ∈ (mzPolyCld‘𝑉)(𝑓f · 𝑔) ∈ 𝑎))
3532, 33, 343imtr3i 291 . . . . . . . 8 ((∀𝑎 ∈ (mzPolyCld‘𝑉)𝑓𝑎 ∧ ∀𝑎 ∈ (mzPolyCld‘𝑉)𝑔𝑎) → (∀𝑎 ∈ (mzPolyCld‘𝑉)(𝑓f + 𝑔) ∈ 𝑎 ∧ ∀𝑎 ∈ (mzPolyCld‘𝑉)(𝑓f · 𝑔) ∈ 𝑎))
3627, 29, 35syl2anb 598 . . . . . . 7 ((𝑓 (mzPolyCld‘𝑉) ∧ 𝑔 (mzPolyCld‘𝑉)) → (∀𝑎 ∈ (mzPolyCld‘𝑉)(𝑓f + 𝑔) ∈ 𝑎 ∧ ∀𝑎 ∈ (mzPolyCld‘𝑉)(𝑓f · 𝑔) ∈ 𝑎))
37 ovex 7308 . . . . . . . . 9 (𝑓f + 𝑔) ∈ V
3837elint2 4886 . . . . . . . 8 ((𝑓f + 𝑔) ∈ (mzPolyCld‘𝑉) ↔ ∀𝑎 ∈ (mzPolyCld‘𝑉)(𝑓f + 𝑔) ∈ 𝑎)
39 ovex 7308 . . . . . . . . 9 (𝑓f · 𝑔) ∈ V
4039elint2 4886 . . . . . . . 8 ((𝑓f · 𝑔) ∈ (mzPolyCld‘𝑉) ↔ ∀𝑎 ∈ (mzPolyCld‘𝑉)(𝑓f · 𝑔) ∈ 𝑎)
4138, 40anbi12i 627 . . . . . . 7 (((𝑓f + 𝑔) ∈ (mzPolyCld‘𝑉) ∧ (𝑓f · 𝑔) ∈ (mzPolyCld‘𝑉)) ↔ (∀𝑎 ∈ (mzPolyCld‘𝑉)(𝑓f + 𝑔) ∈ 𝑎 ∧ ∀𝑎 ∈ (mzPolyCld‘𝑉)(𝑓f · 𝑔) ∈ 𝑎))
4236, 41sylibr 233 . . . . . 6 ((𝑓 (mzPolyCld‘𝑉) ∧ 𝑔 (mzPolyCld‘𝑉)) → ((𝑓f + 𝑔) ∈ (mzPolyCld‘𝑉) ∧ (𝑓f · 𝑔) ∈ (mzPolyCld‘𝑉)))
4342a1i 11 . . . . 5 (𝑉 ∈ V → ((𝑓 (mzPolyCld‘𝑉) ∧ 𝑔 (mzPolyCld‘𝑉)) → ((𝑓f + 𝑔) ∈ (mzPolyCld‘𝑉) ∧ (𝑓f · 𝑔) ∈ (mzPolyCld‘𝑉))))
4443ralrimivv 3122 . . . 4 (𝑉 ∈ V → ∀𝑓 (mzPolyCld‘𝑉)∀𝑔 (mzPolyCld‘𝑉)((𝑓f + 𝑔) ∈ (mzPolyCld‘𝑉) ∧ (𝑓f · 𝑔) ∈ (mzPolyCld‘𝑉)))
454, 25, 44jca32 516 . . 3 (𝑉 ∈ V → ( (mzPolyCld‘𝑉) ⊆ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑓}) ∈ (mzPolyCld‘𝑉) ∧ ∀𝑓𝑉 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ (mzPolyCld‘𝑉)) ∧ ∀𝑓 (mzPolyCld‘𝑉)∀𝑔 (mzPolyCld‘𝑉)((𝑓f + 𝑔) ∈ (mzPolyCld‘𝑉) ∧ (𝑓f · 𝑔) ∈ (mzPolyCld‘𝑉)))))
46 elmzpcl 40548 . . 3 (𝑉 ∈ V → ( (mzPolyCld‘𝑉) ∈ (mzPolyCld‘𝑉) ↔ ( (mzPolyCld‘𝑉) ⊆ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑓}) ∈ (mzPolyCld‘𝑉) ∧ ∀𝑓𝑉 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ (mzPolyCld‘𝑉)) ∧ ∀𝑓 (mzPolyCld‘𝑉)∀𝑔 (mzPolyCld‘𝑉)((𝑓f + 𝑔) ∈ (mzPolyCld‘𝑉) ∧ (𝑓f · 𝑔) ∈ (mzPolyCld‘𝑉))))))
4745, 46mpbird 256 . 2 (𝑉 ∈ V → (mzPolyCld‘𝑉) ∈ (mzPolyCld‘𝑉))
481, 47eqeltrd 2839 1 (𝑉 ∈ V → (mzPoly‘𝑉) ∈ (mzPolyCld‘𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2106  wral 3064  Vcvv 3432  wss 3887  {csn 4561   cint 4879  cmpt 5157   × cxp 5587  cfv 6433  (class class class)co 7275  f cof 7531  m cmap 8615   + caddc 10874   · cmul 10876  cz 12319  mzPolyCldcmzpcl 40543  mzPolycmzp 40544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-mzpcl 40545  df-mzp 40546
This theorem is referenced by:  mzpconst  40557  mzpproj  40559  mzpadd  40560  mzpmul  40561
  Copyright terms: Public domain W3C validator