Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mzpincl Structured version   Visualization version   GIF version

Theorem mzpincl 42750
Description: Polynomial closedness is a universal first-order property and passes to intersections. This is where the closure properties of the polynomial ring itself are proved. (Contributed by Stefan O'Rear, 4-Oct-2014.)
Assertion
Ref Expression
mzpincl (𝑉 ∈ V → (mzPoly‘𝑉) ∈ (mzPolyCld‘𝑉))

Proof of Theorem mzpincl
Dummy variables 𝑓 𝑔 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mzpval 42748 . 2 (𝑉 ∈ V → (mzPoly‘𝑉) = (mzPolyCld‘𝑉))
2 mzpclall 42743 . . . . 5 (𝑉 ∈ V → (ℤ ↑m (ℤ ↑m 𝑉)) ∈ (mzPolyCld‘𝑉))
3 intss1 4962 . . . . 5 ((ℤ ↑m (ℤ ↑m 𝑉)) ∈ (mzPolyCld‘𝑉) → (mzPolyCld‘𝑉) ⊆ (ℤ ↑m (ℤ ↑m 𝑉)))
42, 3syl 17 . . . 4 (𝑉 ∈ V → (mzPolyCld‘𝑉) ⊆ (ℤ ↑m (ℤ ↑m 𝑉)))
5 simpr 484 . . . . . . . . 9 (((𝑉 ∈ V ∧ 𝑓 ∈ ℤ) ∧ 𝑎 ∈ (mzPolyCld‘𝑉)) → 𝑎 ∈ (mzPolyCld‘𝑉))
6 simplr 768 . . . . . . . . 9 (((𝑉 ∈ V ∧ 𝑓 ∈ ℤ) ∧ 𝑎 ∈ (mzPolyCld‘𝑉)) → 𝑓 ∈ ℤ)
7 mzpcl1 42745 . . . . . . . . 9 ((𝑎 ∈ (mzPolyCld‘𝑉) ∧ 𝑓 ∈ ℤ) → ((ℤ ↑m 𝑉) × {𝑓}) ∈ 𝑎)
85, 6, 7syl2anc 584 . . . . . . . 8 (((𝑉 ∈ V ∧ 𝑓 ∈ ℤ) ∧ 𝑎 ∈ (mzPolyCld‘𝑉)) → ((ℤ ↑m 𝑉) × {𝑓}) ∈ 𝑎)
98ralrimiva 3145 . . . . . . 7 ((𝑉 ∈ V ∧ 𝑓 ∈ ℤ) → ∀𝑎 ∈ (mzPolyCld‘𝑉)((ℤ ↑m 𝑉) × {𝑓}) ∈ 𝑎)
10 ovex 7465 . . . . . . . . 9 (ℤ ↑m 𝑉) ∈ V
11 vsnex 5433 . . . . . . . . 9 {𝑓} ∈ V
1210, 11xpex 7774 . . . . . . . 8 ((ℤ ↑m 𝑉) × {𝑓}) ∈ V
1312elint2 4952 . . . . . . 7 (((ℤ ↑m 𝑉) × {𝑓}) ∈ (mzPolyCld‘𝑉) ↔ ∀𝑎 ∈ (mzPolyCld‘𝑉)((ℤ ↑m 𝑉) × {𝑓}) ∈ 𝑎)
149, 13sylibr 234 . . . . . 6 ((𝑉 ∈ V ∧ 𝑓 ∈ ℤ) → ((ℤ ↑m 𝑉) × {𝑓}) ∈ (mzPolyCld‘𝑉))
1514ralrimiva 3145 . . . . 5 (𝑉 ∈ V → ∀𝑓 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑓}) ∈ (mzPolyCld‘𝑉))
16 simpr 484 . . . . . . . . 9 (((𝑉 ∈ V ∧ 𝑓𝑉) ∧ 𝑎 ∈ (mzPolyCld‘𝑉)) → 𝑎 ∈ (mzPolyCld‘𝑉))
17 simplr 768 . . . . . . . . 9 (((𝑉 ∈ V ∧ 𝑓𝑉) ∧ 𝑎 ∈ (mzPolyCld‘𝑉)) → 𝑓𝑉)
18 mzpcl2 42746 . . . . . . . . 9 ((𝑎 ∈ (mzPolyCld‘𝑉) ∧ 𝑓𝑉) → (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ 𝑎)
1916, 17, 18syl2anc 584 . . . . . . . 8 (((𝑉 ∈ V ∧ 𝑓𝑉) ∧ 𝑎 ∈ (mzPolyCld‘𝑉)) → (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ 𝑎)
2019ralrimiva 3145 . . . . . . 7 ((𝑉 ∈ V ∧ 𝑓𝑉) → ∀𝑎 ∈ (mzPolyCld‘𝑉)(𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ 𝑎)
2110mptex 7244 . . . . . . . 8 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ V
2221elint2 4952 . . . . . . 7 ((𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ (mzPolyCld‘𝑉) ↔ ∀𝑎 ∈ (mzPolyCld‘𝑉)(𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ 𝑎)
2320, 22sylibr 234 . . . . . 6 ((𝑉 ∈ V ∧ 𝑓𝑉) → (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ (mzPolyCld‘𝑉))
2423ralrimiva 3145 . . . . 5 (𝑉 ∈ V → ∀𝑓𝑉 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ (mzPolyCld‘𝑉))
2515, 24jca 511 . . . 4 (𝑉 ∈ V → (∀𝑓 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑓}) ∈ (mzPolyCld‘𝑉) ∧ ∀𝑓𝑉 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ (mzPolyCld‘𝑉)))
26 vex 3483 . . . . . . . . 9 𝑓 ∈ V
2726elint2 4952 . . . . . . . 8 (𝑓 (mzPolyCld‘𝑉) ↔ ∀𝑎 ∈ (mzPolyCld‘𝑉)𝑓𝑎)
28 vex 3483 . . . . . . . . 9 𝑔 ∈ V
2928elint2 4952 . . . . . . . 8 (𝑔 (mzPolyCld‘𝑉) ↔ ∀𝑎 ∈ (mzPolyCld‘𝑉)𝑔𝑎)
30 mzpcl34 42747 . . . . . . . . . . 11 ((𝑎 ∈ (mzPolyCld‘𝑉) ∧ 𝑓𝑎𝑔𝑎) → ((𝑓f + 𝑔) ∈ 𝑎 ∧ (𝑓f · 𝑔) ∈ 𝑎))
31303expib 1122 . . . . . . . . . 10 (𝑎 ∈ (mzPolyCld‘𝑉) → ((𝑓𝑎𝑔𝑎) → ((𝑓f + 𝑔) ∈ 𝑎 ∧ (𝑓f · 𝑔) ∈ 𝑎)))
3231ralimia 3079 . . . . . . . . 9 (∀𝑎 ∈ (mzPolyCld‘𝑉)(𝑓𝑎𝑔𝑎) → ∀𝑎 ∈ (mzPolyCld‘𝑉)((𝑓f + 𝑔) ∈ 𝑎 ∧ (𝑓f · 𝑔) ∈ 𝑎))
33 r19.26 3110 . . . . . . . . 9 (∀𝑎 ∈ (mzPolyCld‘𝑉)(𝑓𝑎𝑔𝑎) ↔ (∀𝑎 ∈ (mzPolyCld‘𝑉)𝑓𝑎 ∧ ∀𝑎 ∈ (mzPolyCld‘𝑉)𝑔𝑎))
34 r19.26 3110 . . . . . . . . 9 (∀𝑎 ∈ (mzPolyCld‘𝑉)((𝑓f + 𝑔) ∈ 𝑎 ∧ (𝑓f · 𝑔) ∈ 𝑎) ↔ (∀𝑎 ∈ (mzPolyCld‘𝑉)(𝑓f + 𝑔) ∈ 𝑎 ∧ ∀𝑎 ∈ (mzPolyCld‘𝑉)(𝑓f · 𝑔) ∈ 𝑎))
3532, 33, 343imtr3i 291 . . . . . . . 8 ((∀𝑎 ∈ (mzPolyCld‘𝑉)𝑓𝑎 ∧ ∀𝑎 ∈ (mzPolyCld‘𝑉)𝑔𝑎) → (∀𝑎 ∈ (mzPolyCld‘𝑉)(𝑓f + 𝑔) ∈ 𝑎 ∧ ∀𝑎 ∈ (mzPolyCld‘𝑉)(𝑓f · 𝑔) ∈ 𝑎))
3627, 29, 35syl2anb 598 . . . . . . 7 ((𝑓 (mzPolyCld‘𝑉) ∧ 𝑔 (mzPolyCld‘𝑉)) → (∀𝑎 ∈ (mzPolyCld‘𝑉)(𝑓f + 𝑔) ∈ 𝑎 ∧ ∀𝑎 ∈ (mzPolyCld‘𝑉)(𝑓f · 𝑔) ∈ 𝑎))
37 ovex 7465 . . . . . . . . 9 (𝑓f + 𝑔) ∈ V
3837elint2 4952 . . . . . . . 8 ((𝑓f + 𝑔) ∈ (mzPolyCld‘𝑉) ↔ ∀𝑎 ∈ (mzPolyCld‘𝑉)(𝑓f + 𝑔) ∈ 𝑎)
39 ovex 7465 . . . . . . . . 9 (𝑓f · 𝑔) ∈ V
4039elint2 4952 . . . . . . . 8 ((𝑓f · 𝑔) ∈ (mzPolyCld‘𝑉) ↔ ∀𝑎 ∈ (mzPolyCld‘𝑉)(𝑓f · 𝑔) ∈ 𝑎)
4138, 40anbi12i 628 . . . . . . 7 (((𝑓f + 𝑔) ∈ (mzPolyCld‘𝑉) ∧ (𝑓f · 𝑔) ∈ (mzPolyCld‘𝑉)) ↔ (∀𝑎 ∈ (mzPolyCld‘𝑉)(𝑓f + 𝑔) ∈ 𝑎 ∧ ∀𝑎 ∈ (mzPolyCld‘𝑉)(𝑓f · 𝑔) ∈ 𝑎))
4236, 41sylibr 234 . . . . . 6 ((𝑓 (mzPolyCld‘𝑉) ∧ 𝑔 (mzPolyCld‘𝑉)) → ((𝑓f + 𝑔) ∈ (mzPolyCld‘𝑉) ∧ (𝑓f · 𝑔) ∈ (mzPolyCld‘𝑉)))
4342a1i 11 . . . . 5 (𝑉 ∈ V → ((𝑓 (mzPolyCld‘𝑉) ∧ 𝑔 (mzPolyCld‘𝑉)) → ((𝑓f + 𝑔) ∈ (mzPolyCld‘𝑉) ∧ (𝑓f · 𝑔) ∈ (mzPolyCld‘𝑉))))
4443ralrimivv 3199 . . . 4 (𝑉 ∈ V → ∀𝑓 (mzPolyCld‘𝑉)∀𝑔 (mzPolyCld‘𝑉)((𝑓f + 𝑔) ∈ (mzPolyCld‘𝑉) ∧ (𝑓f · 𝑔) ∈ (mzPolyCld‘𝑉)))
454, 25, 44jca32 515 . . 3 (𝑉 ∈ V → ( (mzPolyCld‘𝑉) ⊆ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑓}) ∈ (mzPolyCld‘𝑉) ∧ ∀𝑓𝑉 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ (mzPolyCld‘𝑉)) ∧ ∀𝑓 (mzPolyCld‘𝑉)∀𝑔 (mzPolyCld‘𝑉)((𝑓f + 𝑔) ∈ (mzPolyCld‘𝑉) ∧ (𝑓f · 𝑔) ∈ (mzPolyCld‘𝑉)))))
46 elmzpcl 42742 . . 3 (𝑉 ∈ V → ( (mzPolyCld‘𝑉) ∈ (mzPolyCld‘𝑉) ↔ ( (mzPolyCld‘𝑉) ⊆ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑓}) ∈ (mzPolyCld‘𝑉) ∧ ∀𝑓𝑉 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ (mzPolyCld‘𝑉)) ∧ ∀𝑓 (mzPolyCld‘𝑉)∀𝑔 (mzPolyCld‘𝑉)((𝑓f + 𝑔) ∈ (mzPolyCld‘𝑉) ∧ (𝑓f · 𝑔) ∈ (mzPolyCld‘𝑉))))))
4745, 46mpbird 257 . 2 (𝑉 ∈ V → (mzPolyCld‘𝑉) ∈ (mzPolyCld‘𝑉))
481, 47eqeltrd 2840 1 (𝑉 ∈ V → (mzPoly‘𝑉) ∈ (mzPolyCld‘𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2107  wral 3060  Vcvv 3479  wss 3950  {csn 4625   cint 4945  cmpt 5224   × cxp 5682  cfv 6560  (class class class)co 7432  f cof 7696  m cmap 8867   + caddc 11159   · cmul 11161  cz 12615  mzPolyCldcmzpcl 42737  mzPolycmzp 42738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-om 7889  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-er 8746  df-map 8869  df-en 8987  df-dom 8988  df-sdom 8989  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-n0 12529  df-z 12616  df-mzpcl 42739  df-mzp 42740
This theorem is referenced by:  mzpconst  42751  mzpproj  42753  mzpadd  42754  mzpmul  42755
  Copyright terms: Public domain W3C validator