Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mzpincl Structured version   Visualization version   GIF version

Theorem mzpincl 40536
Description: Polynomial closedness is a universal first-order property and passes to intersections. This is where the closure properties of the polynomial ring itself are proved. (Contributed by Stefan O'Rear, 4-Oct-2014.)
Assertion
Ref Expression
mzpincl (𝑉 ∈ V → (mzPoly‘𝑉) ∈ (mzPolyCld‘𝑉))

Proof of Theorem mzpincl
Dummy variables 𝑓 𝑔 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mzpval 40534 . 2 (𝑉 ∈ V → (mzPoly‘𝑉) = (mzPolyCld‘𝑉))
2 mzpclall 40529 . . . . 5 (𝑉 ∈ V → (ℤ ↑m (ℤ ↑m 𝑉)) ∈ (mzPolyCld‘𝑉))
3 intss1 4899 . . . . 5 ((ℤ ↑m (ℤ ↑m 𝑉)) ∈ (mzPolyCld‘𝑉) → (mzPolyCld‘𝑉) ⊆ (ℤ ↑m (ℤ ↑m 𝑉)))
42, 3syl 17 . . . 4 (𝑉 ∈ V → (mzPolyCld‘𝑉) ⊆ (ℤ ↑m (ℤ ↑m 𝑉)))
5 simpr 484 . . . . . . . . 9 (((𝑉 ∈ V ∧ 𝑓 ∈ ℤ) ∧ 𝑎 ∈ (mzPolyCld‘𝑉)) → 𝑎 ∈ (mzPolyCld‘𝑉))
6 simplr 765 . . . . . . . . 9 (((𝑉 ∈ V ∧ 𝑓 ∈ ℤ) ∧ 𝑎 ∈ (mzPolyCld‘𝑉)) → 𝑓 ∈ ℤ)
7 mzpcl1 40531 . . . . . . . . 9 ((𝑎 ∈ (mzPolyCld‘𝑉) ∧ 𝑓 ∈ ℤ) → ((ℤ ↑m 𝑉) × {𝑓}) ∈ 𝑎)
85, 6, 7syl2anc 583 . . . . . . . 8 (((𝑉 ∈ V ∧ 𝑓 ∈ ℤ) ∧ 𝑎 ∈ (mzPolyCld‘𝑉)) → ((ℤ ↑m 𝑉) × {𝑓}) ∈ 𝑎)
98ralrimiva 3109 . . . . . . 7 ((𝑉 ∈ V ∧ 𝑓 ∈ ℤ) → ∀𝑎 ∈ (mzPolyCld‘𝑉)((ℤ ↑m 𝑉) × {𝑓}) ∈ 𝑎)
10 ovex 7301 . . . . . . . . 9 (ℤ ↑m 𝑉) ∈ V
11 snex 5357 . . . . . . . . 9 {𝑓} ∈ V
1210, 11xpex 7594 . . . . . . . 8 ((ℤ ↑m 𝑉) × {𝑓}) ∈ V
1312elint2 4891 . . . . . . 7 (((ℤ ↑m 𝑉) × {𝑓}) ∈ (mzPolyCld‘𝑉) ↔ ∀𝑎 ∈ (mzPolyCld‘𝑉)((ℤ ↑m 𝑉) × {𝑓}) ∈ 𝑎)
149, 13sylibr 233 . . . . . 6 ((𝑉 ∈ V ∧ 𝑓 ∈ ℤ) → ((ℤ ↑m 𝑉) × {𝑓}) ∈ (mzPolyCld‘𝑉))
1514ralrimiva 3109 . . . . 5 (𝑉 ∈ V → ∀𝑓 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑓}) ∈ (mzPolyCld‘𝑉))
16 simpr 484 . . . . . . . . 9 (((𝑉 ∈ V ∧ 𝑓𝑉) ∧ 𝑎 ∈ (mzPolyCld‘𝑉)) → 𝑎 ∈ (mzPolyCld‘𝑉))
17 simplr 765 . . . . . . . . 9 (((𝑉 ∈ V ∧ 𝑓𝑉) ∧ 𝑎 ∈ (mzPolyCld‘𝑉)) → 𝑓𝑉)
18 mzpcl2 40532 . . . . . . . . 9 ((𝑎 ∈ (mzPolyCld‘𝑉) ∧ 𝑓𝑉) → (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ 𝑎)
1916, 17, 18syl2anc 583 . . . . . . . 8 (((𝑉 ∈ V ∧ 𝑓𝑉) ∧ 𝑎 ∈ (mzPolyCld‘𝑉)) → (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ 𝑎)
2019ralrimiva 3109 . . . . . . 7 ((𝑉 ∈ V ∧ 𝑓𝑉) → ∀𝑎 ∈ (mzPolyCld‘𝑉)(𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ 𝑎)
2110mptex 7093 . . . . . . . 8 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ V
2221elint2 4891 . . . . . . 7 ((𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ (mzPolyCld‘𝑉) ↔ ∀𝑎 ∈ (mzPolyCld‘𝑉)(𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ 𝑎)
2320, 22sylibr 233 . . . . . 6 ((𝑉 ∈ V ∧ 𝑓𝑉) → (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ (mzPolyCld‘𝑉))
2423ralrimiva 3109 . . . . 5 (𝑉 ∈ V → ∀𝑓𝑉 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ (mzPolyCld‘𝑉))
2515, 24jca 511 . . . 4 (𝑉 ∈ V → (∀𝑓 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑓}) ∈ (mzPolyCld‘𝑉) ∧ ∀𝑓𝑉 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ (mzPolyCld‘𝑉)))
26 vex 3434 . . . . . . . . 9 𝑓 ∈ V
2726elint2 4891 . . . . . . . 8 (𝑓 (mzPolyCld‘𝑉) ↔ ∀𝑎 ∈ (mzPolyCld‘𝑉)𝑓𝑎)
28 vex 3434 . . . . . . . . 9 𝑔 ∈ V
2928elint2 4891 . . . . . . . 8 (𝑔 (mzPolyCld‘𝑉) ↔ ∀𝑎 ∈ (mzPolyCld‘𝑉)𝑔𝑎)
30 mzpcl34 40533 . . . . . . . . . . 11 ((𝑎 ∈ (mzPolyCld‘𝑉) ∧ 𝑓𝑎𝑔𝑎) → ((𝑓f + 𝑔) ∈ 𝑎 ∧ (𝑓f · 𝑔) ∈ 𝑎))
31303expib 1120 . . . . . . . . . 10 (𝑎 ∈ (mzPolyCld‘𝑉) → ((𝑓𝑎𝑔𝑎) → ((𝑓f + 𝑔) ∈ 𝑎 ∧ (𝑓f · 𝑔) ∈ 𝑎)))
3231ralimia 3086 . . . . . . . . 9 (∀𝑎 ∈ (mzPolyCld‘𝑉)(𝑓𝑎𝑔𝑎) → ∀𝑎 ∈ (mzPolyCld‘𝑉)((𝑓f + 𝑔) ∈ 𝑎 ∧ (𝑓f · 𝑔) ∈ 𝑎))
33 r19.26 3096 . . . . . . . . 9 (∀𝑎 ∈ (mzPolyCld‘𝑉)(𝑓𝑎𝑔𝑎) ↔ (∀𝑎 ∈ (mzPolyCld‘𝑉)𝑓𝑎 ∧ ∀𝑎 ∈ (mzPolyCld‘𝑉)𝑔𝑎))
34 r19.26 3096 . . . . . . . . 9 (∀𝑎 ∈ (mzPolyCld‘𝑉)((𝑓f + 𝑔) ∈ 𝑎 ∧ (𝑓f · 𝑔) ∈ 𝑎) ↔ (∀𝑎 ∈ (mzPolyCld‘𝑉)(𝑓f + 𝑔) ∈ 𝑎 ∧ ∀𝑎 ∈ (mzPolyCld‘𝑉)(𝑓f · 𝑔) ∈ 𝑎))
3532, 33, 343imtr3i 290 . . . . . . . 8 ((∀𝑎 ∈ (mzPolyCld‘𝑉)𝑓𝑎 ∧ ∀𝑎 ∈ (mzPolyCld‘𝑉)𝑔𝑎) → (∀𝑎 ∈ (mzPolyCld‘𝑉)(𝑓f + 𝑔) ∈ 𝑎 ∧ ∀𝑎 ∈ (mzPolyCld‘𝑉)(𝑓f · 𝑔) ∈ 𝑎))
3627, 29, 35syl2anb 597 . . . . . . 7 ((𝑓 (mzPolyCld‘𝑉) ∧ 𝑔 (mzPolyCld‘𝑉)) → (∀𝑎 ∈ (mzPolyCld‘𝑉)(𝑓f + 𝑔) ∈ 𝑎 ∧ ∀𝑎 ∈ (mzPolyCld‘𝑉)(𝑓f · 𝑔) ∈ 𝑎))
37 ovex 7301 . . . . . . . . 9 (𝑓f + 𝑔) ∈ V
3837elint2 4891 . . . . . . . 8 ((𝑓f + 𝑔) ∈ (mzPolyCld‘𝑉) ↔ ∀𝑎 ∈ (mzPolyCld‘𝑉)(𝑓f + 𝑔) ∈ 𝑎)
39 ovex 7301 . . . . . . . . 9 (𝑓f · 𝑔) ∈ V
4039elint2 4891 . . . . . . . 8 ((𝑓f · 𝑔) ∈ (mzPolyCld‘𝑉) ↔ ∀𝑎 ∈ (mzPolyCld‘𝑉)(𝑓f · 𝑔) ∈ 𝑎)
4138, 40anbi12i 626 . . . . . . 7 (((𝑓f + 𝑔) ∈ (mzPolyCld‘𝑉) ∧ (𝑓f · 𝑔) ∈ (mzPolyCld‘𝑉)) ↔ (∀𝑎 ∈ (mzPolyCld‘𝑉)(𝑓f + 𝑔) ∈ 𝑎 ∧ ∀𝑎 ∈ (mzPolyCld‘𝑉)(𝑓f · 𝑔) ∈ 𝑎))
4236, 41sylibr 233 . . . . . 6 ((𝑓 (mzPolyCld‘𝑉) ∧ 𝑔 (mzPolyCld‘𝑉)) → ((𝑓f + 𝑔) ∈ (mzPolyCld‘𝑉) ∧ (𝑓f · 𝑔) ∈ (mzPolyCld‘𝑉)))
4342a1i 11 . . . . 5 (𝑉 ∈ V → ((𝑓 (mzPolyCld‘𝑉) ∧ 𝑔 (mzPolyCld‘𝑉)) → ((𝑓f + 𝑔) ∈ (mzPolyCld‘𝑉) ∧ (𝑓f · 𝑔) ∈ (mzPolyCld‘𝑉))))
4443ralrimivv 3115 . . . 4 (𝑉 ∈ V → ∀𝑓 (mzPolyCld‘𝑉)∀𝑔 (mzPolyCld‘𝑉)((𝑓f + 𝑔) ∈ (mzPolyCld‘𝑉) ∧ (𝑓f · 𝑔) ∈ (mzPolyCld‘𝑉)))
454, 25, 44jca32 515 . . 3 (𝑉 ∈ V → ( (mzPolyCld‘𝑉) ⊆ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑓}) ∈ (mzPolyCld‘𝑉) ∧ ∀𝑓𝑉 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ (mzPolyCld‘𝑉)) ∧ ∀𝑓 (mzPolyCld‘𝑉)∀𝑔 (mzPolyCld‘𝑉)((𝑓f + 𝑔) ∈ (mzPolyCld‘𝑉) ∧ (𝑓f · 𝑔) ∈ (mzPolyCld‘𝑉)))))
46 elmzpcl 40528 . . 3 (𝑉 ∈ V → ( (mzPolyCld‘𝑉) ∈ (mzPolyCld‘𝑉) ↔ ( (mzPolyCld‘𝑉) ⊆ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑓}) ∈ (mzPolyCld‘𝑉) ∧ ∀𝑓𝑉 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ (mzPolyCld‘𝑉)) ∧ ∀𝑓 (mzPolyCld‘𝑉)∀𝑔 (mzPolyCld‘𝑉)((𝑓f + 𝑔) ∈ (mzPolyCld‘𝑉) ∧ (𝑓f · 𝑔) ∈ (mzPolyCld‘𝑉))))))
4745, 46mpbird 256 . 2 (𝑉 ∈ V → (mzPolyCld‘𝑉) ∈ (mzPolyCld‘𝑉))
481, 47eqeltrd 2840 1 (𝑉 ∈ V → (mzPoly‘𝑉) ∈ (mzPolyCld‘𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wral 3065  Vcvv 3430  wss 3891  {csn 4566   cint 4884  cmpt 5161   × cxp 5586  cfv 6430  (class class class)co 7268  f cof 7522  m cmap 8589   + caddc 10858   · cmul 10860  cz 12302  mzPolyCldcmzpcl 40523  mzPolycmzp 40524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-int 4885  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-of 7524  df-om 7701  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-er 8472  df-map 8591  df-en 8708  df-dom 8709  df-sdom 8710  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-nn 11957  df-n0 12217  df-z 12303  df-mzpcl 40525  df-mzp 40526
This theorem is referenced by:  mzpconst  40537  mzpproj  40539  mzpadd  40540  mzpmul  40541
  Copyright terms: Public domain W3C validator