Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mzpincl Structured version   Visualization version   GIF version

Theorem mzpincl 42837
Description: Polynomial closedness is a universal first-order property and passes to intersections. This is where the closure properties of the polynomial ring itself are proved. (Contributed by Stefan O'Rear, 4-Oct-2014.)
Assertion
Ref Expression
mzpincl (𝑉 ∈ V → (mzPoly‘𝑉) ∈ (mzPolyCld‘𝑉))

Proof of Theorem mzpincl
Dummy variables 𝑓 𝑔 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mzpval 42835 . 2 (𝑉 ∈ V → (mzPoly‘𝑉) = (mzPolyCld‘𝑉))
2 mzpclall 42830 . . . . 5 (𝑉 ∈ V → (ℤ ↑m (ℤ ↑m 𝑉)) ∈ (mzPolyCld‘𝑉))
3 intss1 4911 . . . . 5 ((ℤ ↑m (ℤ ↑m 𝑉)) ∈ (mzPolyCld‘𝑉) → (mzPolyCld‘𝑉) ⊆ (ℤ ↑m (ℤ ↑m 𝑉)))
42, 3syl 17 . . . 4 (𝑉 ∈ V → (mzPolyCld‘𝑉) ⊆ (ℤ ↑m (ℤ ↑m 𝑉)))
5 simpr 484 . . . . . . . . 9 (((𝑉 ∈ V ∧ 𝑓 ∈ ℤ) ∧ 𝑎 ∈ (mzPolyCld‘𝑉)) → 𝑎 ∈ (mzPolyCld‘𝑉))
6 simplr 768 . . . . . . . . 9 (((𝑉 ∈ V ∧ 𝑓 ∈ ℤ) ∧ 𝑎 ∈ (mzPolyCld‘𝑉)) → 𝑓 ∈ ℤ)
7 mzpcl1 42832 . . . . . . . . 9 ((𝑎 ∈ (mzPolyCld‘𝑉) ∧ 𝑓 ∈ ℤ) → ((ℤ ↑m 𝑉) × {𝑓}) ∈ 𝑎)
85, 6, 7syl2anc 584 . . . . . . . 8 (((𝑉 ∈ V ∧ 𝑓 ∈ ℤ) ∧ 𝑎 ∈ (mzPolyCld‘𝑉)) → ((ℤ ↑m 𝑉) × {𝑓}) ∈ 𝑎)
98ralrimiva 3124 . . . . . . 7 ((𝑉 ∈ V ∧ 𝑓 ∈ ℤ) → ∀𝑎 ∈ (mzPolyCld‘𝑉)((ℤ ↑m 𝑉) × {𝑓}) ∈ 𝑎)
10 ovex 7379 . . . . . . . . 9 (ℤ ↑m 𝑉) ∈ V
11 vsnex 5370 . . . . . . . . 9 {𝑓} ∈ V
1210, 11xpex 7686 . . . . . . . 8 ((ℤ ↑m 𝑉) × {𝑓}) ∈ V
1312elint2 4902 . . . . . . 7 (((ℤ ↑m 𝑉) × {𝑓}) ∈ (mzPolyCld‘𝑉) ↔ ∀𝑎 ∈ (mzPolyCld‘𝑉)((ℤ ↑m 𝑉) × {𝑓}) ∈ 𝑎)
149, 13sylibr 234 . . . . . 6 ((𝑉 ∈ V ∧ 𝑓 ∈ ℤ) → ((ℤ ↑m 𝑉) × {𝑓}) ∈ (mzPolyCld‘𝑉))
1514ralrimiva 3124 . . . . 5 (𝑉 ∈ V → ∀𝑓 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑓}) ∈ (mzPolyCld‘𝑉))
16 simpr 484 . . . . . . . . 9 (((𝑉 ∈ V ∧ 𝑓𝑉) ∧ 𝑎 ∈ (mzPolyCld‘𝑉)) → 𝑎 ∈ (mzPolyCld‘𝑉))
17 simplr 768 . . . . . . . . 9 (((𝑉 ∈ V ∧ 𝑓𝑉) ∧ 𝑎 ∈ (mzPolyCld‘𝑉)) → 𝑓𝑉)
18 mzpcl2 42833 . . . . . . . . 9 ((𝑎 ∈ (mzPolyCld‘𝑉) ∧ 𝑓𝑉) → (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ 𝑎)
1916, 17, 18syl2anc 584 . . . . . . . 8 (((𝑉 ∈ V ∧ 𝑓𝑉) ∧ 𝑎 ∈ (mzPolyCld‘𝑉)) → (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ 𝑎)
2019ralrimiva 3124 . . . . . . 7 ((𝑉 ∈ V ∧ 𝑓𝑉) → ∀𝑎 ∈ (mzPolyCld‘𝑉)(𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ 𝑎)
2110mptex 7157 . . . . . . . 8 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ V
2221elint2 4902 . . . . . . 7 ((𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ (mzPolyCld‘𝑉) ↔ ∀𝑎 ∈ (mzPolyCld‘𝑉)(𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ 𝑎)
2320, 22sylibr 234 . . . . . 6 ((𝑉 ∈ V ∧ 𝑓𝑉) → (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ (mzPolyCld‘𝑉))
2423ralrimiva 3124 . . . . 5 (𝑉 ∈ V → ∀𝑓𝑉 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ (mzPolyCld‘𝑉))
2515, 24jca 511 . . . 4 (𝑉 ∈ V → (∀𝑓 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑓}) ∈ (mzPolyCld‘𝑉) ∧ ∀𝑓𝑉 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ (mzPolyCld‘𝑉)))
26 vex 3440 . . . . . . . . 9 𝑓 ∈ V
2726elint2 4902 . . . . . . . 8 (𝑓 (mzPolyCld‘𝑉) ↔ ∀𝑎 ∈ (mzPolyCld‘𝑉)𝑓𝑎)
28 vex 3440 . . . . . . . . 9 𝑔 ∈ V
2928elint2 4902 . . . . . . . 8 (𝑔 (mzPolyCld‘𝑉) ↔ ∀𝑎 ∈ (mzPolyCld‘𝑉)𝑔𝑎)
30 mzpcl34 42834 . . . . . . . . . . 11 ((𝑎 ∈ (mzPolyCld‘𝑉) ∧ 𝑓𝑎𝑔𝑎) → ((𝑓f + 𝑔) ∈ 𝑎 ∧ (𝑓f · 𝑔) ∈ 𝑎))
31303expib 1122 . . . . . . . . . 10 (𝑎 ∈ (mzPolyCld‘𝑉) → ((𝑓𝑎𝑔𝑎) → ((𝑓f + 𝑔) ∈ 𝑎 ∧ (𝑓f · 𝑔) ∈ 𝑎)))
3231ralimia 3066 . . . . . . . . 9 (∀𝑎 ∈ (mzPolyCld‘𝑉)(𝑓𝑎𝑔𝑎) → ∀𝑎 ∈ (mzPolyCld‘𝑉)((𝑓f + 𝑔) ∈ 𝑎 ∧ (𝑓f · 𝑔) ∈ 𝑎))
33 r19.26 3092 . . . . . . . . 9 (∀𝑎 ∈ (mzPolyCld‘𝑉)(𝑓𝑎𝑔𝑎) ↔ (∀𝑎 ∈ (mzPolyCld‘𝑉)𝑓𝑎 ∧ ∀𝑎 ∈ (mzPolyCld‘𝑉)𝑔𝑎))
34 r19.26 3092 . . . . . . . . 9 (∀𝑎 ∈ (mzPolyCld‘𝑉)((𝑓f + 𝑔) ∈ 𝑎 ∧ (𝑓f · 𝑔) ∈ 𝑎) ↔ (∀𝑎 ∈ (mzPolyCld‘𝑉)(𝑓f + 𝑔) ∈ 𝑎 ∧ ∀𝑎 ∈ (mzPolyCld‘𝑉)(𝑓f · 𝑔) ∈ 𝑎))
3532, 33, 343imtr3i 291 . . . . . . . 8 ((∀𝑎 ∈ (mzPolyCld‘𝑉)𝑓𝑎 ∧ ∀𝑎 ∈ (mzPolyCld‘𝑉)𝑔𝑎) → (∀𝑎 ∈ (mzPolyCld‘𝑉)(𝑓f + 𝑔) ∈ 𝑎 ∧ ∀𝑎 ∈ (mzPolyCld‘𝑉)(𝑓f · 𝑔) ∈ 𝑎))
3627, 29, 35syl2anb 598 . . . . . . 7 ((𝑓 (mzPolyCld‘𝑉) ∧ 𝑔 (mzPolyCld‘𝑉)) → (∀𝑎 ∈ (mzPolyCld‘𝑉)(𝑓f + 𝑔) ∈ 𝑎 ∧ ∀𝑎 ∈ (mzPolyCld‘𝑉)(𝑓f · 𝑔) ∈ 𝑎))
37 ovex 7379 . . . . . . . . 9 (𝑓f + 𝑔) ∈ V
3837elint2 4902 . . . . . . . 8 ((𝑓f + 𝑔) ∈ (mzPolyCld‘𝑉) ↔ ∀𝑎 ∈ (mzPolyCld‘𝑉)(𝑓f + 𝑔) ∈ 𝑎)
39 ovex 7379 . . . . . . . . 9 (𝑓f · 𝑔) ∈ V
4039elint2 4902 . . . . . . . 8 ((𝑓f · 𝑔) ∈ (mzPolyCld‘𝑉) ↔ ∀𝑎 ∈ (mzPolyCld‘𝑉)(𝑓f · 𝑔) ∈ 𝑎)
4138, 40anbi12i 628 . . . . . . 7 (((𝑓f + 𝑔) ∈ (mzPolyCld‘𝑉) ∧ (𝑓f · 𝑔) ∈ (mzPolyCld‘𝑉)) ↔ (∀𝑎 ∈ (mzPolyCld‘𝑉)(𝑓f + 𝑔) ∈ 𝑎 ∧ ∀𝑎 ∈ (mzPolyCld‘𝑉)(𝑓f · 𝑔) ∈ 𝑎))
4236, 41sylibr 234 . . . . . 6 ((𝑓 (mzPolyCld‘𝑉) ∧ 𝑔 (mzPolyCld‘𝑉)) → ((𝑓f + 𝑔) ∈ (mzPolyCld‘𝑉) ∧ (𝑓f · 𝑔) ∈ (mzPolyCld‘𝑉)))
4342a1i 11 . . . . 5 (𝑉 ∈ V → ((𝑓 (mzPolyCld‘𝑉) ∧ 𝑔 (mzPolyCld‘𝑉)) → ((𝑓f + 𝑔) ∈ (mzPolyCld‘𝑉) ∧ (𝑓f · 𝑔) ∈ (mzPolyCld‘𝑉))))
4443ralrimivv 3173 . . . 4 (𝑉 ∈ V → ∀𝑓 (mzPolyCld‘𝑉)∀𝑔 (mzPolyCld‘𝑉)((𝑓f + 𝑔) ∈ (mzPolyCld‘𝑉) ∧ (𝑓f · 𝑔) ∈ (mzPolyCld‘𝑉)))
454, 25, 44jca32 515 . . 3 (𝑉 ∈ V → ( (mzPolyCld‘𝑉) ⊆ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑓}) ∈ (mzPolyCld‘𝑉) ∧ ∀𝑓𝑉 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ (mzPolyCld‘𝑉)) ∧ ∀𝑓 (mzPolyCld‘𝑉)∀𝑔 (mzPolyCld‘𝑉)((𝑓f + 𝑔) ∈ (mzPolyCld‘𝑉) ∧ (𝑓f · 𝑔) ∈ (mzPolyCld‘𝑉)))))
46 elmzpcl 42829 . . 3 (𝑉 ∈ V → ( (mzPolyCld‘𝑉) ∈ (mzPolyCld‘𝑉) ↔ ( (mzPolyCld‘𝑉) ⊆ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑓}) ∈ (mzPolyCld‘𝑉) ∧ ∀𝑓𝑉 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ (mzPolyCld‘𝑉)) ∧ ∀𝑓 (mzPolyCld‘𝑉)∀𝑔 (mzPolyCld‘𝑉)((𝑓f + 𝑔) ∈ (mzPolyCld‘𝑉) ∧ (𝑓f · 𝑔) ∈ (mzPolyCld‘𝑉))))))
4745, 46mpbird 257 . 2 (𝑉 ∈ V → (mzPolyCld‘𝑉) ∈ (mzPolyCld‘𝑉))
481, 47eqeltrd 2831 1 (𝑉 ∈ V → (mzPoly‘𝑉) ∈ (mzPolyCld‘𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2111  wral 3047  Vcvv 3436  wss 3897  {csn 4573   cint 4895  cmpt 5170   × cxp 5612  cfv 6481  (class class class)co 7346  f cof 7608  m cmap 8750   + caddc 11009   · cmul 11011  cz 12468  mzPolyCldcmzpcl 42824  mzPolycmzp 42825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-z 12469  df-mzpcl 42826  df-mzp 42827
This theorem is referenced by:  mzpconst  42838  mzpproj  42840  mzpadd  42841  mzpmul  42842
  Copyright terms: Public domain W3C validator