Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zart0 Structured version   Visualization version   GIF version

Theorem zart0 33845
Description: The Zariski topology is T0 . Corollary 1.1.8 of [EGA] p. 81. (Contributed by Thierry Arnoux, 16-Jun-2024.)
Hypotheses
Ref Expression
zartop.1 𝑆 = (Spec‘𝑅)
zartop.2 𝐽 = (TopOpen‘𝑆)
Assertion
Ref Expression
zart0 (𝑅 ∈ CRing → 𝐽 ∈ Kol2)

Proof of Theorem zart0
Dummy variables 𝑖 𝑗 𝑘 𝑑 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zartop.1 . . . 4 𝑆 = (Spec‘𝑅)
2 zartop.2 . . . 4 𝐽 = (TopOpen‘𝑆)
31, 2zartop 33842 . . 3 (𝑅 ∈ CRing → 𝐽 ∈ Top)
4 sseq2 3964 . . . . . . . . . . 11 (𝑗 = 𝑥 → (𝑥𝑗𝑥𝑥))
5 simpr 484 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) → 𝑥 ∈ (PrmIdeal‘𝑅))
6 ssidd 3961 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) → 𝑥𝑥)
74, 5, 6elrabd 3652 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) → 𝑥 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑥𝑗})
87ad2antrr 726 . . . . . . . . 9 ((((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑑 ∈ ran (𝑘 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗})(𝑥𝑑𝑦𝑑)) → 𝑥 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑥𝑗})
9 sseq1 3963 . . . . . . . . . . . . . 14 (𝑘 = 𝑖 → (𝑘𝑗𝑖𝑗))
109rabbidv 3404 . . . . . . . . . . . . 13 (𝑘 = 𝑖 → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
1110cbvmptv 5199 . . . . . . . . . . . 12 (𝑘 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗}) = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
12 crngring 20148 . . . . . . . . . . . . . 14 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
1312ad2antrr 726 . . . . . . . . . . . . 13 (((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) → 𝑅 ∈ Ring)
14 simplr 768 . . . . . . . . . . . . 13 (((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) → 𝑥 ∈ (PrmIdeal‘𝑅))
15 prmidlidl 33391 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) → 𝑥 ∈ (LIdeal‘𝑅))
1613, 14, 15syl2anc 584 . . . . . . . . . . . 12 (((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) → 𝑥 ∈ (LIdeal‘𝑅))
17 fvex 6839 . . . . . . . . . . . . . 14 (PrmIdeal‘𝑅) ∈ V
1817rabex 5281 . . . . . . . . . . . . 13 {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑥𝑗} ∈ V
1918a1i 11 . . . . . . . . . . . 12 (((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑥𝑗} ∈ V)
20 sseq1 3963 . . . . . . . . . . . . . . 15 (𝑖 = 𝑥 → (𝑖𝑗𝑥𝑗))
2120rabbidv 3404 . . . . . . . . . . . . . 14 (𝑖 = 𝑥 → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑥𝑗})
2221eqcomd 2735 . . . . . . . . . . . . 13 (𝑖 = 𝑥 → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑥𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
2322adantl 481 . . . . . . . . . . . 12 ((((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) ∧ 𝑖 = 𝑥) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑥𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
2411, 16, 19, 23elrnmptdv 5911 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑥𝑗} ∈ ran (𝑘 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗}))
25 simpr 484 . . . . . . . . . . . . 13 ((((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) ∧ 𝑑 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑥𝑗}) → 𝑑 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑥𝑗})
2625eleq2d 2814 . . . . . . . . . . . 12 ((((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) ∧ 𝑑 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑥𝑗}) → (𝑥𝑑𝑥 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑥𝑗}))
2725eleq2d 2814 . . . . . . . . . . . 12 ((((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) ∧ 𝑑 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑥𝑗}) → (𝑦𝑑𝑦 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑥𝑗}))
2826, 27bibi12d 345 . . . . . . . . . . 11 ((((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) ∧ 𝑑 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑥𝑗}) → ((𝑥𝑑𝑦𝑑) ↔ (𝑥 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑥𝑗} ↔ 𝑦 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑥𝑗})))
2924, 28rspcdv 3571 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) → (∀𝑑 ∈ ran (𝑘 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗})(𝑥𝑑𝑦𝑑) → (𝑥 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑥𝑗} ↔ 𝑦 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑥𝑗})))
3029imp 406 . . . . . . . . 9 ((((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑑 ∈ ran (𝑘 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗})(𝑥𝑑𝑦𝑑)) → (𝑥 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑥𝑗} ↔ 𝑦 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑥𝑗}))
318, 30mpbid 232 . . . . . . . 8 ((((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑑 ∈ ran (𝑘 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗})(𝑥𝑑𝑦𝑑)) → 𝑦 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑥𝑗})
32 sseq2 3964 . . . . . . . . . 10 (𝑗 = 𝑦 → (𝑥𝑗𝑥𝑦))
3332elrab 3650 . . . . . . . . 9 (𝑦 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑥𝑗} ↔ (𝑦 ∈ (PrmIdeal‘𝑅) ∧ 𝑥𝑦))
3433simprbi 496 . . . . . . . 8 (𝑦 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑥𝑗} → 𝑥𝑦)
3531, 34syl 17 . . . . . . 7 ((((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑑 ∈ ran (𝑘 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗})(𝑥𝑑𝑦𝑑)) → 𝑥𝑦)
36 sseq2 3964 . . . . . . . . . . 11 (𝑗 = 𝑦 → (𝑦𝑗𝑦𝑦))
37 simpr 484 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) → 𝑦 ∈ (PrmIdeal‘𝑅))
38 ssidd 3961 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) → 𝑦𝑦)
3936, 37, 38elrabd 3652 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) → 𝑦 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑦𝑗})
4039ad4ant13 751 . . . . . . . . 9 ((((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑑 ∈ ran (𝑘 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗})(𝑥𝑑𝑦𝑑)) → 𝑦 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑦𝑗})
41 simpr 484 . . . . . . . . . . . . 13 (((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) → 𝑦 ∈ (PrmIdeal‘𝑅))
42 prmidlidl 33391 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) → 𝑦 ∈ (LIdeal‘𝑅))
4313, 41, 42syl2anc 584 . . . . . . . . . . . 12 (((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) → 𝑦 ∈ (LIdeal‘𝑅))
4417rabex 5281 . . . . . . . . . . . . 13 {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑦𝑗} ∈ V
4544a1i 11 . . . . . . . . . . . 12 (((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑦𝑗} ∈ V)
46 sseq1 3963 . . . . . . . . . . . . . . 15 (𝑖 = 𝑦 → (𝑖𝑗𝑦𝑗))
4746rabbidv 3404 . . . . . . . . . . . . . 14 (𝑖 = 𝑦 → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑦𝑗})
4847eqcomd 2735 . . . . . . . . . . . . 13 (𝑖 = 𝑦 → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑦𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
4948adantl 481 . . . . . . . . . . . 12 ((((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) ∧ 𝑖 = 𝑦) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑦𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
5011, 43, 45, 49elrnmptdv 5911 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑦𝑗} ∈ ran (𝑘 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗}))
51 simpr 484 . . . . . . . . . . . . 13 ((((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) ∧ 𝑑 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑦𝑗}) → 𝑑 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑦𝑗})
5251eleq2d 2814 . . . . . . . . . . . 12 ((((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) ∧ 𝑑 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑦𝑗}) → (𝑥𝑑𝑥 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑦𝑗}))
5351eleq2d 2814 . . . . . . . . . . . 12 ((((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) ∧ 𝑑 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑦𝑗}) → (𝑦𝑑𝑦 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑦𝑗}))
5452, 53bibi12d 345 . . . . . . . . . . 11 ((((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) ∧ 𝑑 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑦𝑗}) → ((𝑥𝑑𝑦𝑑) ↔ (𝑥 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑦𝑗} ↔ 𝑦 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑦𝑗})))
5550, 54rspcdv 3571 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) → (∀𝑑 ∈ ran (𝑘 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗})(𝑥𝑑𝑦𝑑) → (𝑥 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑦𝑗} ↔ 𝑦 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑦𝑗})))
5655imp 406 . . . . . . . . 9 ((((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑑 ∈ ran (𝑘 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗})(𝑥𝑑𝑦𝑑)) → (𝑥 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑦𝑗} ↔ 𝑦 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑦𝑗}))
5740, 56mpbird 257 . . . . . . . 8 ((((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑑 ∈ ran (𝑘 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗})(𝑥𝑑𝑦𝑑)) → 𝑥 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑦𝑗})
58 sseq2 3964 . . . . . . . . . 10 (𝑗 = 𝑥 → (𝑦𝑗𝑦𝑥))
5958elrab 3650 . . . . . . . . 9 (𝑥 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑦𝑗} ↔ (𝑥 ∈ (PrmIdeal‘𝑅) ∧ 𝑦𝑥))
6059simprbi 496 . . . . . . . 8 (𝑥 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑦𝑗} → 𝑦𝑥)
6157, 60syl 17 . . . . . . 7 ((((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑑 ∈ ran (𝑘 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗})(𝑥𝑑𝑦𝑑)) → 𝑦𝑥)
6235, 61eqssd 3955 . . . . . 6 ((((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑑 ∈ ran (𝑘 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗})(𝑥𝑑𝑦𝑑)) → 𝑥 = 𝑦)
6362ex 412 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) → (∀𝑑 ∈ ran (𝑘 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗})(𝑥𝑑𝑦𝑑) → 𝑥 = 𝑦))
6463anasss 466 . . . 4 ((𝑅 ∈ CRing ∧ (𝑥 ∈ (PrmIdeal‘𝑅) ∧ 𝑦 ∈ (PrmIdeal‘𝑅))) → (∀𝑑 ∈ ran (𝑘 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗})(𝑥𝑑𝑦𝑑) → 𝑥 = 𝑦))
6564ralrimivva 3172 . . 3 (𝑅 ∈ CRing → ∀𝑥 ∈ (PrmIdeal‘𝑅)∀𝑦 ∈ (PrmIdeal‘𝑅)(∀𝑑 ∈ ran (𝑘 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗})(𝑥𝑑𝑦𝑑) → 𝑥 = 𝑦))
663, 65jca 511 . 2 (𝑅 ∈ CRing → (𝐽 ∈ Top ∧ ∀𝑥 ∈ (PrmIdeal‘𝑅)∀𝑦 ∈ (PrmIdeal‘𝑅)(∀𝑑 ∈ ran (𝑘 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗})(𝑥𝑑𝑦𝑑) → 𝑥 = 𝑦)))
67 eqid 2729 . . . . 5 (PrmIdeal‘𝑅) = (PrmIdeal‘𝑅)
681, 2, 67zartopon 33843 . . . 4 (𝑅 ∈ CRing → 𝐽 ∈ (TopOn‘(PrmIdeal‘𝑅)))
69 toponuni 22817 . . . 4 (𝐽 ∈ (TopOn‘(PrmIdeal‘𝑅)) → (PrmIdeal‘𝑅) = 𝐽)
7068, 69syl 17 . . 3 (𝑅 ∈ CRing → (PrmIdeal‘𝑅) = 𝐽)
711, 2, 67, 11zartopn 33841 . . . 4 (𝑅 ∈ CRing → (𝐽 ∈ (TopOn‘(PrmIdeal‘𝑅)) ∧ ran (𝑘 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗}) = (Clsd‘𝐽)))
7271simprd 495 . . 3 (𝑅 ∈ CRing → ran (𝑘 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗}) = (Clsd‘𝐽))
7370, 72ist0cld 33799 . 2 (𝑅 ∈ CRing → (𝐽 ∈ Kol2 ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ (PrmIdeal‘𝑅)∀𝑦 ∈ (PrmIdeal‘𝑅)(∀𝑑 ∈ ran (𝑘 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗})(𝑥𝑑𝑦𝑑) → 𝑥 = 𝑦))))
7466, 73mpbird 257 1 (𝑅 ∈ CRing → 𝐽 ∈ Kol2)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  {crab 3396  Vcvv 3438  wss 3905   cuni 4861  cmpt 5176  ran crn 5624  cfv 6486  TopOpenctopn 17343  Ringcrg 20136  CRingccrg 20137  LIdealclidl 21131  Topctop 22796  TopOnctopon 22813  Clsdccld 22919  Kol2ct0 23209  PrmIdealcprmidl 33382  Speccrspec 33828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-ac2 10376  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-rpss 7663  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-oadd 8399  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-dju 9816  df-card 9854  df-ac 10029  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-fz 13429  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-rest 17344  df-topn 17345  df-0g 17363  df-mre 17506  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-grp 18833  df-minusg 18834  df-sbg 18835  df-subg 19020  df-cntz 19214  df-lsm 19533  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-cring 20139  df-subrg 20473  df-lmod 20783  df-lss 20853  df-lsp 20893  df-sra 21095  df-rgmod 21096  df-lidl 21133  df-rsp 21134  df-lpidl 21247  df-top 22797  df-topon 22814  df-cld 22922  df-t0 23216  df-prmidl 33383  df-mxidl 33407  df-idlsrg 33448  df-rspec 33829
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator