Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zart0 Structured version   Visualization version   GIF version

Theorem zart0 32847
Description: The Zariski topology is T0 . Corollary 1.1.8 of [EGA] p. 81. (Contributed by Thierry Arnoux, 16-Jun-2024.)
Hypotheses
Ref Expression
zartop.1 𝑆 = (Specβ€˜π‘…)
zartop.2 𝐽 = (TopOpenβ€˜π‘†)
Assertion
Ref Expression
zart0 (𝑅 ∈ CRing β†’ 𝐽 ∈ Kol2)

Proof of Theorem zart0
Dummy variables 𝑖 𝑗 π‘˜ 𝑑 π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zartop.1 . . . 4 𝑆 = (Specβ€˜π‘…)
2 zartop.2 . . . 4 𝐽 = (TopOpenβ€˜π‘†)
31, 2zartop 32844 . . 3 (𝑅 ∈ CRing β†’ 𝐽 ∈ Top)
4 sseq2 4007 . . . . . . . . . . 11 (𝑗 = π‘₯ β†’ (π‘₯ βŠ† 𝑗 ↔ π‘₯ βŠ† π‘₯))
5 simpr 485 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ π‘₯ ∈ (PrmIdealβ€˜π‘…)) β†’ π‘₯ ∈ (PrmIdealβ€˜π‘…))
6 ssidd 4004 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ π‘₯ ∈ (PrmIdealβ€˜π‘…)) β†’ π‘₯ βŠ† π‘₯)
74, 5, 6elrabd 3684 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ π‘₯ ∈ (PrmIdealβ€˜π‘…)) β†’ π‘₯ ∈ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ π‘₯ βŠ† 𝑗})
87ad2antrr 724 . . . . . . . . 9 ((((𝑅 ∈ CRing ∧ π‘₯ ∈ (PrmIdealβ€˜π‘…)) ∧ 𝑦 ∈ (PrmIdealβ€˜π‘…)) ∧ βˆ€π‘‘ ∈ ran (π‘˜ ∈ (LIdealβ€˜π‘…) ↦ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ π‘˜ βŠ† 𝑗})(π‘₯ ∈ 𝑑 ↔ 𝑦 ∈ 𝑑)) β†’ π‘₯ ∈ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ π‘₯ βŠ† 𝑗})
9 sseq1 4006 . . . . . . . . . . . . . 14 (π‘˜ = 𝑖 β†’ (π‘˜ βŠ† 𝑗 ↔ 𝑖 βŠ† 𝑗))
109rabbidv 3440 . . . . . . . . . . . . 13 (π‘˜ = 𝑖 β†’ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ π‘˜ βŠ† 𝑗} = {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑖 βŠ† 𝑗})
1110cbvmptv 5260 . . . . . . . . . . . 12 (π‘˜ ∈ (LIdealβ€˜π‘…) ↦ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ π‘˜ βŠ† 𝑗}) = (𝑖 ∈ (LIdealβ€˜π‘…) ↦ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑖 βŠ† 𝑗})
12 crngring 20061 . . . . . . . . . . . . . 14 (𝑅 ∈ CRing β†’ 𝑅 ∈ Ring)
1312ad2antrr 724 . . . . . . . . . . . . 13 (((𝑅 ∈ CRing ∧ π‘₯ ∈ (PrmIdealβ€˜π‘…)) ∧ 𝑦 ∈ (PrmIdealβ€˜π‘…)) β†’ 𝑅 ∈ Ring)
14 simplr 767 . . . . . . . . . . . . 13 (((𝑅 ∈ CRing ∧ π‘₯ ∈ (PrmIdealβ€˜π‘…)) ∧ 𝑦 ∈ (PrmIdealβ€˜π‘…)) β†’ π‘₯ ∈ (PrmIdealβ€˜π‘…))
15 prmidlidl 32550 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ π‘₯ ∈ (PrmIdealβ€˜π‘…)) β†’ π‘₯ ∈ (LIdealβ€˜π‘…))
1613, 14, 15syl2anc 584 . . . . . . . . . . . 12 (((𝑅 ∈ CRing ∧ π‘₯ ∈ (PrmIdealβ€˜π‘…)) ∧ 𝑦 ∈ (PrmIdealβ€˜π‘…)) β†’ π‘₯ ∈ (LIdealβ€˜π‘…))
17 fvex 6901 . . . . . . . . . . . . . 14 (PrmIdealβ€˜π‘…) ∈ V
1817rabex 5331 . . . . . . . . . . . . 13 {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ π‘₯ βŠ† 𝑗} ∈ V
1918a1i 11 . . . . . . . . . . . 12 (((𝑅 ∈ CRing ∧ π‘₯ ∈ (PrmIdealβ€˜π‘…)) ∧ 𝑦 ∈ (PrmIdealβ€˜π‘…)) β†’ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ π‘₯ βŠ† 𝑗} ∈ V)
20 sseq1 4006 . . . . . . . . . . . . . . 15 (𝑖 = π‘₯ β†’ (𝑖 βŠ† 𝑗 ↔ π‘₯ βŠ† 𝑗))
2120rabbidv 3440 . . . . . . . . . . . . . 14 (𝑖 = π‘₯ β†’ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑖 βŠ† 𝑗} = {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ π‘₯ βŠ† 𝑗})
2221eqcomd 2738 . . . . . . . . . . . . 13 (𝑖 = π‘₯ β†’ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ π‘₯ βŠ† 𝑗} = {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑖 βŠ† 𝑗})
2322adantl 482 . . . . . . . . . . . 12 ((((𝑅 ∈ CRing ∧ π‘₯ ∈ (PrmIdealβ€˜π‘…)) ∧ 𝑦 ∈ (PrmIdealβ€˜π‘…)) ∧ 𝑖 = π‘₯) β†’ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ π‘₯ βŠ† 𝑗} = {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑖 βŠ† 𝑗})
2411, 16, 19, 23elrnmptdv 5959 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ π‘₯ ∈ (PrmIdealβ€˜π‘…)) ∧ 𝑦 ∈ (PrmIdealβ€˜π‘…)) β†’ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ π‘₯ βŠ† 𝑗} ∈ ran (π‘˜ ∈ (LIdealβ€˜π‘…) ↦ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ π‘˜ βŠ† 𝑗}))
25 simpr 485 . . . . . . . . . . . . 13 ((((𝑅 ∈ CRing ∧ π‘₯ ∈ (PrmIdealβ€˜π‘…)) ∧ 𝑦 ∈ (PrmIdealβ€˜π‘…)) ∧ 𝑑 = {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ π‘₯ βŠ† 𝑗}) β†’ 𝑑 = {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ π‘₯ βŠ† 𝑗})
2625eleq2d 2819 . . . . . . . . . . . 12 ((((𝑅 ∈ CRing ∧ π‘₯ ∈ (PrmIdealβ€˜π‘…)) ∧ 𝑦 ∈ (PrmIdealβ€˜π‘…)) ∧ 𝑑 = {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ π‘₯ βŠ† 𝑗}) β†’ (π‘₯ ∈ 𝑑 ↔ π‘₯ ∈ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ π‘₯ βŠ† 𝑗}))
2725eleq2d 2819 . . . . . . . . . . . 12 ((((𝑅 ∈ CRing ∧ π‘₯ ∈ (PrmIdealβ€˜π‘…)) ∧ 𝑦 ∈ (PrmIdealβ€˜π‘…)) ∧ 𝑑 = {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ π‘₯ βŠ† 𝑗}) β†’ (𝑦 ∈ 𝑑 ↔ 𝑦 ∈ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ π‘₯ βŠ† 𝑗}))
2826, 27bibi12d 345 . . . . . . . . . . 11 ((((𝑅 ∈ CRing ∧ π‘₯ ∈ (PrmIdealβ€˜π‘…)) ∧ 𝑦 ∈ (PrmIdealβ€˜π‘…)) ∧ 𝑑 = {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ π‘₯ βŠ† 𝑗}) β†’ ((π‘₯ ∈ 𝑑 ↔ 𝑦 ∈ 𝑑) ↔ (π‘₯ ∈ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ π‘₯ βŠ† 𝑗} ↔ 𝑦 ∈ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ π‘₯ βŠ† 𝑗})))
2924, 28rspcdv 3604 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ π‘₯ ∈ (PrmIdealβ€˜π‘…)) ∧ 𝑦 ∈ (PrmIdealβ€˜π‘…)) β†’ (βˆ€π‘‘ ∈ ran (π‘˜ ∈ (LIdealβ€˜π‘…) ↦ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ π‘˜ βŠ† 𝑗})(π‘₯ ∈ 𝑑 ↔ 𝑦 ∈ 𝑑) β†’ (π‘₯ ∈ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ π‘₯ βŠ† 𝑗} ↔ 𝑦 ∈ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ π‘₯ βŠ† 𝑗})))
3029imp 407 . . . . . . . . 9 ((((𝑅 ∈ CRing ∧ π‘₯ ∈ (PrmIdealβ€˜π‘…)) ∧ 𝑦 ∈ (PrmIdealβ€˜π‘…)) ∧ βˆ€π‘‘ ∈ ran (π‘˜ ∈ (LIdealβ€˜π‘…) ↦ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ π‘˜ βŠ† 𝑗})(π‘₯ ∈ 𝑑 ↔ 𝑦 ∈ 𝑑)) β†’ (π‘₯ ∈ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ π‘₯ βŠ† 𝑗} ↔ 𝑦 ∈ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ π‘₯ βŠ† 𝑗}))
318, 30mpbid 231 . . . . . . . 8 ((((𝑅 ∈ CRing ∧ π‘₯ ∈ (PrmIdealβ€˜π‘…)) ∧ 𝑦 ∈ (PrmIdealβ€˜π‘…)) ∧ βˆ€π‘‘ ∈ ran (π‘˜ ∈ (LIdealβ€˜π‘…) ↦ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ π‘˜ βŠ† 𝑗})(π‘₯ ∈ 𝑑 ↔ 𝑦 ∈ 𝑑)) β†’ 𝑦 ∈ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ π‘₯ βŠ† 𝑗})
32 sseq2 4007 . . . . . . . . . 10 (𝑗 = 𝑦 β†’ (π‘₯ βŠ† 𝑗 ↔ π‘₯ βŠ† 𝑦))
3332elrab 3682 . . . . . . . . 9 (𝑦 ∈ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ π‘₯ βŠ† 𝑗} ↔ (𝑦 ∈ (PrmIdealβ€˜π‘…) ∧ π‘₯ βŠ† 𝑦))
3433simprbi 497 . . . . . . . 8 (𝑦 ∈ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ π‘₯ βŠ† 𝑗} β†’ π‘₯ βŠ† 𝑦)
3531, 34syl 17 . . . . . . 7 ((((𝑅 ∈ CRing ∧ π‘₯ ∈ (PrmIdealβ€˜π‘…)) ∧ 𝑦 ∈ (PrmIdealβ€˜π‘…)) ∧ βˆ€π‘‘ ∈ ran (π‘˜ ∈ (LIdealβ€˜π‘…) ↦ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ π‘˜ βŠ† 𝑗})(π‘₯ ∈ 𝑑 ↔ 𝑦 ∈ 𝑑)) β†’ π‘₯ βŠ† 𝑦)
36 sseq2 4007 . . . . . . . . . . 11 (𝑗 = 𝑦 β†’ (𝑦 βŠ† 𝑗 ↔ 𝑦 βŠ† 𝑦))
37 simpr 485 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (PrmIdealβ€˜π‘…)) β†’ 𝑦 ∈ (PrmIdealβ€˜π‘…))
38 ssidd 4004 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (PrmIdealβ€˜π‘…)) β†’ 𝑦 βŠ† 𝑦)
3936, 37, 38elrabd 3684 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (PrmIdealβ€˜π‘…)) β†’ 𝑦 ∈ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑦 βŠ† 𝑗})
4039ad4ant13 749 . . . . . . . . 9 ((((𝑅 ∈ CRing ∧ π‘₯ ∈ (PrmIdealβ€˜π‘…)) ∧ 𝑦 ∈ (PrmIdealβ€˜π‘…)) ∧ βˆ€π‘‘ ∈ ran (π‘˜ ∈ (LIdealβ€˜π‘…) ↦ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ π‘˜ βŠ† 𝑗})(π‘₯ ∈ 𝑑 ↔ 𝑦 ∈ 𝑑)) β†’ 𝑦 ∈ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑦 βŠ† 𝑗})
41 simpr 485 . . . . . . . . . . . . 13 (((𝑅 ∈ CRing ∧ π‘₯ ∈ (PrmIdealβ€˜π‘…)) ∧ 𝑦 ∈ (PrmIdealβ€˜π‘…)) β†’ 𝑦 ∈ (PrmIdealβ€˜π‘…))
42 prmidlidl 32550 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑦 ∈ (PrmIdealβ€˜π‘…)) β†’ 𝑦 ∈ (LIdealβ€˜π‘…))
4313, 41, 42syl2anc 584 . . . . . . . . . . . 12 (((𝑅 ∈ CRing ∧ π‘₯ ∈ (PrmIdealβ€˜π‘…)) ∧ 𝑦 ∈ (PrmIdealβ€˜π‘…)) β†’ 𝑦 ∈ (LIdealβ€˜π‘…))
4417rabex 5331 . . . . . . . . . . . . 13 {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑦 βŠ† 𝑗} ∈ V
4544a1i 11 . . . . . . . . . . . 12 (((𝑅 ∈ CRing ∧ π‘₯ ∈ (PrmIdealβ€˜π‘…)) ∧ 𝑦 ∈ (PrmIdealβ€˜π‘…)) β†’ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑦 βŠ† 𝑗} ∈ V)
46 sseq1 4006 . . . . . . . . . . . . . . 15 (𝑖 = 𝑦 β†’ (𝑖 βŠ† 𝑗 ↔ 𝑦 βŠ† 𝑗))
4746rabbidv 3440 . . . . . . . . . . . . . 14 (𝑖 = 𝑦 β†’ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑖 βŠ† 𝑗} = {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑦 βŠ† 𝑗})
4847eqcomd 2738 . . . . . . . . . . . . 13 (𝑖 = 𝑦 β†’ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑦 βŠ† 𝑗} = {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑖 βŠ† 𝑗})
4948adantl 482 . . . . . . . . . . . 12 ((((𝑅 ∈ CRing ∧ π‘₯ ∈ (PrmIdealβ€˜π‘…)) ∧ 𝑦 ∈ (PrmIdealβ€˜π‘…)) ∧ 𝑖 = 𝑦) β†’ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑦 βŠ† 𝑗} = {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑖 βŠ† 𝑗})
5011, 43, 45, 49elrnmptdv 5959 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ π‘₯ ∈ (PrmIdealβ€˜π‘…)) ∧ 𝑦 ∈ (PrmIdealβ€˜π‘…)) β†’ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑦 βŠ† 𝑗} ∈ ran (π‘˜ ∈ (LIdealβ€˜π‘…) ↦ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ π‘˜ βŠ† 𝑗}))
51 simpr 485 . . . . . . . . . . . . 13 ((((𝑅 ∈ CRing ∧ π‘₯ ∈ (PrmIdealβ€˜π‘…)) ∧ 𝑦 ∈ (PrmIdealβ€˜π‘…)) ∧ 𝑑 = {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑦 βŠ† 𝑗}) β†’ 𝑑 = {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑦 βŠ† 𝑗})
5251eleq2d 2819 . . . . . . . . . . . 12 ((((𝑅 ∈ CRing ∧ π‘₯ ∈ (PrmIdealβ€˜π‘…)) ∧ 𝑦 ∈ (PrmIdealβ€˜π‘…)) ∧ 𝑑 = {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑦 βŠ† 𝑗}) β†’ (π‘₯ ∈ 𝑑 ↔ π‘₯ ∈ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑦 βŠ† 𝑗}))
5351eleq2d 2819 . . . . . . . . . . . 12 ((((𝑅 ∈ CRing ∧ π‘₯ ∈ (PrmIdealβ€˜π‘…)) ∧ 𝑦 ∈ (PrmIdealβ€˜π‘…)) ∧ 𝑑 = {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑦 βŠ† 𝑗}) β†’ (𝑦 ∈ 𝑑 ↔ 𝑦 ∈ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑦 βŠ† 𝑗}))
5452, 53bibi12d 345 . . . . . . . . . . 11 ((((𝑅 ∈ CRing ∧ π‘₯ ∈ (PrmIdealβ€˜π‘…)) ∧ 𝑦 ∈ (PrmIdealβ€˜π‘…)) ∧ 𝑑 = {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑦 βŠ† 𝑗}) β†’ ((π‘₯ ∈ 𝑑 ↔ 𝑦 ∈ 𝑑) ↔ (π‘₯ ∈ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑦 βŠ† 𝑗} ↔ 𝑦 ∈ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑦 βŠ† 𝑗})))
5550, 54rspcdv 3604 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ π‘₯ ∈ (PrmIdealβ€˜π‘…)) ∧ 𝑦 ∈ (PrmIdealβ€˜π‘…)) β†’ (βˆ€π‘‘ ∈ ran (π‘˜ ∈ (LIdealβ€˜π‘…) ↦ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ π‘˜ βŠ† 𝑗})(π‘₯ ∈ 𝑑 ↔ 𝑦 ∈ 𝑑) β†’ (π‘₯ ∈ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑦 βŠ† 𝑗} ↔ 𝑦 ∈ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑦 βŠ† 𝑗})))
5655imp 407 . . . . . . . . 9 ((((𝑅 ∈ CRing ∧ π‘₯ ∈ (PrmIdealβ€˜π‘…)) ∧ 𝑦 ∈ (PrmIdealβ€˜π‘…)) ∧ βˆ€π‘‘ ∈ ran (π‘˜ ∈ (LIdealβ€˜π‘…) ↦ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ π‘˜ βŠ† 𝑗})(π‘₯ ∈ 𝑑 ↔ 𝑦 ∈ 𝑑)) β†’ (π‘₯ ∈ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑦 βŠ† 𝑗} ↔ 𝑦 ∈ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑦 βŠ† 𝑗}))
5740, 56mpbird 256 . . . . . . . 8 ((((𝑅 ∈ CRing ∧ π‘₯ ∈ (PrmIdealβ€˜π‘…)) ∧ 𝑦 ∈ (PrmIdealβ€˜π‘…)) ∧ βˆ€π‘‘ ∈ ran (π‘˜ ∈ (LIdealβ€˜π‘…) ↦ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ π‘˜ βŠ† 𝑗})(π‘₯ ∈ 𝑑 ↔ 𝑦 ∈ 𝑑)) β†’ π‘₯ ∈ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑦 βŠ† 𝑗})
58 sseq2 4007 . . . . . . . . . 10 (𝑗 = π‘₯ β†’ (𝑦 βŠ† 𝑗 ↔ 𝑦 βŠ† π‘₯))
5958elrab 3682 . . . . . . . . 9 (π‘₯ ∈ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑦 βŠ† 𝑗} ↔ (π‘₯ ∈ (PrmIdealβ€˜π‘…) ∧ 𝑦 βŠ† π‘₯))
6059simprbi 497 . . . . . . . 8 (π‘₯ ∈ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑦 βŠ† 𝑗} β†’ 𝑦 βŠ† π‘₯)
6157, 60syl 17 . . . . . . 7 ((((𝑅 ∈ CRing ∧ π‘₯ ∈ (PrmIdealβ€˜π‘…)) ∧ 𝑦 ∈ (PrmIdealβ€˜π‘…)) ∧ βˆ€π‘‘ ∈ ran (π‘˜ ∈ (LIdealβ€˜π‘…) ↦ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ π‘˜ βŠ† 𝑗})(π‘₯ ∈ 𝑑 ↔ 𝑦 ∈ 𝑑)) β†’ 𝑦 βŠ† π‘₯)
6235, 61eqssd 3998 . . . . . 6 ((((𝑅 ∈ CRing ∧ π‘₯ ∈ (PrmIdealβ€˜π‘…)) ∧ 𝑦 ∈ (PrmIdealβ€˜π‘…)) ∧ βˆ€π‘‘ ∈ ran (π‘˜ ∈ (LIdealβ€˜π‘…) ↦ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ π‘˜ βŠ† 𝑗})(π‘₯ ∈ 𝑑 ↔ 𝑦 ∈ 𝑑)) β†’ π‘₯ = 𝑦)
6362ex 413 . . . . 5 (((𝑅 ∈ CRing ∧ π‘₯ ∈ (PrmIdealβ€˜π‘…)) ∧ 𝑦 ∈ (PrmIdealβ€˜π‘…)) β†’ (βˆ€π‘‘ ∈ ran (π‘˜ ∈ (LIdealβ€˜π‘…) ↦ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ π‘˜ βŠ† 𝑗})(π‘₯ ∈ 𝑑 ↔ 𝑦 ∈ 𝑑) β†’ π‘₯ = 𝑦))
6463anasss 467 . . . 4 ((𝑅 ∈ CRing ∧ (π‘₯ ∈ (PrmIdealβ€˜π‘…) ∧ 𝑦 ∈ (PrmIdealβ€˜π‘…))) β†’ (βˆ€π‘‘ ∈ ran (π‘˜ ∈ (LIdealβ€˜π‘…) ↦ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ π‘˜ βŠ† 𝑗})(π‘₯ ∈ 𝑑 ↔ 𝑦 ∈ 𝑑) β†’ π‘₯ = 𝑦))
6564ralrimivva 3200 . . 3 (𝑅 ∈ CRing β†’ βˆ€π‘₯ ∈ (PrmIdealβ€˜π‘…)βˆ€π‘¦ ∈ (PrmIdealβ€˜π‘…)(βˆ€π‘‘ ∈ ran (π‘˜ ∈ (LIdealβ€˜π‘…) ↦ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ π‘˜ βŠ† 𝑗})(π‘₯ ∈ 𝑑 ↔ 𝑦 ∈ 𝑑) β†’ π‘₯ = 𝑦))
663, 65jca 512 . 2 (𝑅 ∈ CRing β†’ (𝐽 ∈ Top ∧ βˆ€π‘₯ ∈ (PrmIdealβ€˜π‘…)βˆ€π‘¦ ∈ (PrmIdealβ€˜π‘…)(βˆ€π‘‘ ∈ ran (π‘˜ ∈ (LIdealβ€˜π‘…) ↦ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ π‘˜ βŠ† 𝑗})(π‘₯ ∈ 𝑑 ↔ 𝑦 ∈ 𝑑) β†’ π‘₯ = 𝑦)))
67 eqid 2732 . . . . 5 (PrmIdealβ€˜π‘…) = (PrmIdealβ€˜π‘…)
681, 2, 67zartopon 32845 . . . 4 (𝑅 ∈ CRing β†’ 𝐽 ∈ (TopOnβ€˜(PrmIdealβ€˜π‘…)))
69 toponuni 22407 . . . 4 (𝐽 ∈ (TopOnβ€˜(PrmIdealβ€˜π‘…)) β†’ (PrmIdealβ€˜π‘…) = βˆͺ 𝐽)
7068, 69syl 17 . . 3 (𝑅 ∈ CRing β†’ (PrmIdealβ€˜π‘…) = βˆͺ 𝐽)
711, 2, 67, 11zartopn 32843 . . . 4 (𝑅 ∈ CRing β†’ (𝐽 ∈ (TopOnβ€˜(PrmIdealβ€˜π‘…)) ∧ ran (π‘˜ ∈ (LIdealβ€˜π‘…) ↦ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ π‘˜ βŠ† 𝑗}) = (Clsdβ€˜π½)))
7271simprd 496 . . 3 (𝑅 ∈ CRing β†’ ran (π‘˜ ∈ (LIdealβ€˜π‘…) ↦ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ π‘˜ βŠ† 𝑗}) = (Clsdβ€˜π½))
7370, 72ist0cld 32801 . 2 (𝑅 ∈ CRing β†’ (𝐽 ∈ Kol2 ↔ (𝐽 ∈ Top ∧ βˆ€π‘₯ ∈ (PrmIdealβ€˜π‘…)βˆ€π‘¦ ∈ (PrmIdealβ€˜π‘…)(βˆ€π‘‘ ∈ ran (π‘˜ ∈ (LIdealβ€˜π‘…) ↦ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ π‘˜ βŠ† 𝑗})(π‘₯ ∈ 𝑑 ↔ 𝑦 ∈ 𝑑) β†’ π‘₯ = 𝑦))))
7466, 73mpbird 256 1 (𝑅 ∈ CRing β†’ 𝐽 ∈ Kol2)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  {crab 3432  Vcvv 3474   βŠ† wss 3947  βˆͺ cuni 4907   ↦ cmpt 5230  ran crn 5676  β€˜cfv 6540  TopOpenctopn 17363  Ringcrg 20049  CRingccrg 20050  LIdealclidl 20775  Topctop 22386  TopOnctopon 22403  Clsdccld 22511  Kol2ct0 22801  PrmIdealcprmidl 32541  Speccrspec 32830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-ac2 10454  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-rpss 7709  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-oadd 8466  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-dju 9892  df-card 9930  df-ac 10107  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-fz 13481  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-sca 17209  df-vsca 17210  df-ip 17211  df-tset 17212  df-ple 17213  df-rest 17364  df-topn 17365  df-0g 17383  df-mre 17526  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-submnd 18668  df-grp 18818  df-minusg 18819  df-sbg 18820  df-subg 18997  df-cntz 19175  df-lsm 19498  df-cmn 19644  df-abl 19645  df-mgp 19982  df-ur 19999  df-ring 20051  df-cring 20052  df-subrg 20353  df-lmod 20465  df-lss 20535  df-lsp 20575  df-sra 20777  df-rgmod 20778  df-lidl 20779  df-rsp 20780  df-lpidl 20873  df-top 22387  df-topon 22404  df-cld 22514  df-t0 22808  df-prmidl 32542  df-mxidl 32564  df-idlsrg 32603  df-rspec 32831
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator