Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zart0 Structured version   Visualization version   GIF version

Theorem zart0 33887
Description: The Zariski topology is T0 . Corollary 1.1.8 of [EGA] p. 81. (Contributed by Thierry Arnoux, 16-Jun-2024.)
Hypotheses
Ref Expression
zartop.1 𝑆 = (Spec‘𝑅)
zartop.2 𝐽 = (TopOpen‘𝑆)
Assertion
Ref Expression
zart0 (𝑅 ∈ CRing → 𝐽 ∈ Kol2)

Proof of Theorem zart0
Dummy variables 𝑖 𝑗 𝑘 𝑑 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zartop.1 . . . 4 𝑆 = (Spec‘𝑅)
2 zartop.2 . . . 4 𝐽 = (TopOpen‘𝑆)
31, 2zartop 33884 . . 3 (𝑅 ∈ CRing → 𝐽 ∈ Top)
4 sseq2 3961 . . . . . . . . . . 11 (𝑗 = 𝑥 → (𝑥𝑗𝑥𝑥))
5 simpr 484 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) → 𝑥 ∈ (PrmIdeal‘𝑅))
6 ssidd 3958 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) → 𝑥𝑥)
74, 5, 6elrabd 3649 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) → 𝑥 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑥𝑗})
87ad2antrr 726 . . . . . . . . 9 ((((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑑 ∈ ran (𝑘 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗})(𝑥𝑑𝑦𝑑)) → 𝑥 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑥𝑗})
9 sseq1 3960 . . . . . . . . . . . . . 14 (𝑘 = 𝑖 → (𝑘𝑗𝑖𝑗))
109rabbidv 3402 . . . . . . . . . . . . 13 (𝑘 = 𝑖 → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
1110cbvmptv 5195 . . . . . . . . . . . 12 (𝑘 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗}) = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
12 crngring 20161 . . . . . . . . . . . . . 14 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
1312ad2antrr 726 . . . . . . . . . . . . 13 (((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) → 𝑅 ∈ Ring)
14 simplr 768 . . . . . . . . . . . . 13 (((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) → 𝑥 ∈ (PrmIdeal‘𝑅))
15 prmidlidl 33404 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) → 𝑥 ∈ (LIdeal‘𝑅))
1613, 14, 15syl2anc 584 . . . . . . . . . . . 12 (((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) → 𝑥 ∈ (LIdeal‘𝑅))
17 fvex 6835 . . . . . . . . . . . . . 14 (PrmIdeal‘𝑅) ∈ V
1817rabex 5277 . . . . . . . . . . . . 13 {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑥𝑗} ∈ V
1918a1i 11 . . . . . . . . . . . 12 (((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑥𝑗} ∈ V)
20 sseq1 3960 . . . . . . . . . . . . . . 15 (𝑖 = 𝑥 → (𝑖𝑗𝑥𝑗))
2120rabbidv 3402 . . . . . . . . . . . . . 14 (𝑖 = 𝑥 → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑥𝑗})
2221eqcomd 2737 . . . . . . . . . . . . 13 (𝑖 = 𝑥 → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑥𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
2322adantl 481 . . . . . . . . . . . 12 ((((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) ∧ 𝑖 = 𝑥) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑥𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
2411, 16, 19, 23elrnmptdv 5905 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑥𝑗} ∈ ran (𝑘 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗}))
25 simpr 484 . . . . . . . . . . . . 13 ((((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) ∧ 𝑑 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑥𝑗}) → 𝑑 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑥𝑗})
2625eleq2d 2817 . . . . . . . . . . . 12 ((((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) ∧ 𝑑 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑥𝑗}) → (𝑥𝑑𝑥 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑥𝑗}))
2725eleq2d 2817 . . . . . . . . . . . 12 ((((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) ∧ 𝑑 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑥𝑗}) → (𝑦𝑑𝑦 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑥𝑗}))
2826, 27bibi12d 345 . . . . . . . . . . 11 ((((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) ∧ 𝑑 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑥𝑗}) → ((𝑥𝑑𝑦𝑑) ↔ (𝑥 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑥𝑗} ↔ 𝑦 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑥𝑗})))
2924, 28rspcdv 3569 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) → (∀𝑑 ∈ ran (𝑘 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗})(𝑥𝑑𝑦𝑑) → (𝑥 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑥𝑗} ↔ 𝑦 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑥𝑗})))
3029imp 406 . . . . . . . . 9 ((((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑑 ∈ ran (𝑘 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗})(𝑥𝑑𝑦𝑑)) → (𝑥 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑥𝑗} ↔ 𝑦 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑥𝑗}))
318, 30mpbid 232 . . . . . . . 8 ((((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑑 ∈ ran (𝑘 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗})(𝑥𝑑𝑦𝑑)) → 𝑦 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑥𝑗})
32 sseq2 3961 . . . . . . . . . 10 (𝑗 = 𝑦 → (𝑥𝑗𝑥𝑦))
3332elrab 3647 . . . . . . . . 9 (𝑦 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑥𝑗} ↔ (𝑦 ∈ (PrmIdeal‘𝑅) ∧ 𝑥𝑦))
3433simprbi 496 . . . . . . . 8 (𝑦 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑥𝑗} → 𝑥𝑦)
3531, 34syl 17 . . . . . . 7 ((((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑑 ∈ ran (𝑘 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗})(𝑥𝑑𝑦𝑑)) → 𝑥𝑦)
36 sseq2 3961 . . . . . . . . . . 11 (𝑗 = 𝑦 → (𝑦𝑗𝑦𝑦))
37 simpr 484 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) → 𝑦 ∈ (PrmIdeal‘𝑅))
38 ssidd 3958 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) → 𝑦𝑦)
3936, 37, 38elrabd 3649 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) → 𝑦 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑦𝑗})
4039ad4ant13 751 . . . . . . . . 9 ((((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑑 ∈ ran (𝑘 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗})(𝑥𝑑𝑦𝑑)) → 𝑦 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑦𝑗})
41 simpr 484 . . . . . . . . . . . . 13 (((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) → 𝑦 ∈ (PrmIdeal‘𝑅))
42 prmidlidl 33404 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) → 𝑦 ∈ (LIdeal‘𝑅))
4313, 41, 42syl2anc 584 . . . . . . . . . . . 12 (((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) → 𝑦 ∈ (LIdeal‘𝑅))
4417rabex 5277 . . . . . . . . . . . . 13 {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑦𝑗} ∈ V
4544a1i 11 . . . . . . . . . . . 12 (((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑦𝑗} ∈ V)
46 sseq1 3960 . . . . . . . . . . . . . . 15 (𝑖 = 𝑦 → (𝑖𝑗𝑦𝑗))
4746rabbidv 3402 . . . . . . . . . . . . . 14 (𝑖 = 𝑦 → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑦𝑗})
4847eqcomd 2737 . . . . . . . . . . . . 13 (𝑖 = 𝑦 → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑦𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
4948adantl 481 . . . . . . . . . . . 12 ((((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) ∧ 𝑖 = 𝑦) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑦𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
5011, 43, 45, 49elrnmptdv 5905 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑦𝑗} ∈ ran (𝑘 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗}))
51 simpr 484 . . . . . . . . . . . . 13 ((((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) ∧ 𝑑 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑦𝑗}) → 𝑑 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑦𝑗})
5251eleq2d 2817 . . . . . . . . . . . 12 ((((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) ∧ 𝑑 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑦𝑗}) → (𝑥𝑑𝑥 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑦𝑗}))
5351eleq2d 2817 . . . . . . . . . . . 12 ((((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) ∧ 𝑑 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑦𝑗}) → (𝑦𝑑𝑦 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑦𝑗}))
5452, 53bibi12d 345 . . . . . . . . . . 11 ((((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) ∧ 𝑑 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑦𝑗}) → ((𝑥𝑑𝑦𝑑) ↔ (𝑥 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑦𝑗} ↔ 𝑦 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑦𝑗})))
5550, 54rspcdv 3569 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) → (∀𝑑 ∈ ran (𝑘 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗})(𝑥𝑑𝑦𝑑) → (𝑥 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑦𝑗} ↔ 𝑦 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑦𝑗})))
5655imp 406 . . . . . . . . 9 ((((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑑 ∈ ran (𝑘 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗})(𝑥𝑑𝑦𝑑)) → (𝑥 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑦𝑗} ↔ 𝑦 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑦𝑗}))
5740, 56mpbird 257 . . . . . . . 8 ((((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑑 ∈ ran (𝑘 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗})(𝑥𝑑𝑦𝑑)) → 𝑥 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑦𝑗})
58 sseq2 3961 . . . . . . . . . 10 (𝑗 = 𝑥 → (𝑦𝑗𝑦𝑥))
5958elrab 3647 . . . . . . . . 9 (𝑥 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑦𝑗} ↔ (𝑥 ∈ (PrmIdeal‘𝑅) ∧ 𝑦𝑥))
6059simprbi 496 . . . . . . . 8 (𝑥 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑦𝑗} → 𝑦𝑥)
6157, 60syl 17 . . . . . . 7 ((((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑑 ∈ ran (𝑘 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗})(𝑥𝑑𝑦𝑑)) → 𝑦𝑥)
6235, 61eqssd 3952 . . . . . 6 ((((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑑 ∈ ran (𝑘 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗})(𝑥𝑑𝑦𝑑)) → 𝑥 = 𝑦)
6362ex 412 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) → (∀𝑑 ∈ ran (𝑘 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗})(𝑥𝑑𝑦𝑑) → 𝑥 = 𝑦))
6463anasss 466 . . . 4 ((𝑅 ∈ CRing ∧ (𝑥 ∈ (PrmIdeal‘𝑅) ∧ 𝑦 ∈ (PrmIdeal‘𝑅))) → (∀𝑑 ∈ ran (𝑘 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗})(𝑥𝑑𝑦𝑑) → 𝑥 = 𝑦))
6564ralrimivva 3175 . . 3 (𝑅 ∈ CRing → ∀𝑥 ∈ (PrmIdeal‘𝑅)∀𝑦 ∈ (PrmIdeal‘𝑅)(∀𝑑 ∈ ran (𝑘 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗})(𝑥𝑑𝑦𝑑) → 𝑥 = 𝑦))
663, 65jca 511 . 2 (𝑅 ∈ CRing → (𝐽 ∈ Top ∧ ∀𝑥 ∈ (PrmIdeal‘𝑅)∀𝑦 ∈ (PrmIdeal‘𝑅)(∀𝑑 ∈ ran (𝑘 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗})(𝑥𝑑𝑦𝑑) → 𝑥 = 𝑦)))
67 eqid 2731 . . . . 5 (PrmIdeal‘𝑅) = (PrmIdeal‘𝑅)
681, 2, 67zartopon 33885 . . . 4 (𝑅 ∈ CRing → 𝐽 ∈ (TopOn‘(PrmIdeal‘𝑅)))
69 toponuni 22827 . . . 4 (𝐽 ∈ (TopOn‘(PrmIdeal‘𝑅)) → (PrmIdeal‘𝑅) = 𝐽)
7068, 69syl 17 . . 3 (𝑅 ∈ CRing → (PrmIdeal‘𝑅) = 𝐽)
711, 2, 67, 11zartopn 33883 . . . 4 (𝑅 ∈ CRing → (𝐽 ∈ (TopOn‘(PrmIdeal‘𝑅)) ∧ ran (𝑘 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗}) = (Clsd‘𝐽)))
7271simprd 495 . . 3 (𝑅 ∈ CRing → ran (𝑘 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗}) = (Clsd‘𝐽))
7370, 72ist0cld 33841 . 2 (𝑅 ∈ CRing → (𝐽 ∈ Kol2 ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ (PrmIdeal‘𝑅)∀𝑦 ∈ (PrmIdeal‘𝑅)(∀𝑑 ∈ ran (𝑘 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗})(𝑥𝑑𝑦𝑑) → 𝑥 = 𝑦))))
7466, 73mpbird 257 1 (𝑅 ∈ CRing → 𝐽 ∈ Kol2)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  {crab 3395  Vcvv 3436  wss 3902   cuni 4859  cmpt 5172  ran crn 5617  cfv 6481  TopOpenctopn 17322  Ringcrg 20149  CRingccrg 20150  LIdealclidl 21141  Topctop 22806  TopOnctopon 22823  Clsdccld 22929  Kol2ct0 23219  PrmIdealcprmidl 33395  Speccrspec 33870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-ac2 10351  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-rpss 7656  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-oadd 8389  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-dju 9791  df-card 9829  df-ac 10004  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-5 12188  df-6 12189  df-7 12190  df-8 12191  df-9 12192  df-n0 12379  df-z 12466  df-dec 12586  df-uz 12730  df-fz 13405  df-struct 17055  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-ress 17139  df-plusg 17171  df-mulr 17172  df-sca 17174  df-vsca 17175  df-ip 17176  df-tset 17177  df-ple 17178  df-rest 17323  df-topn 17324  df-0g 17342  df-mre 17485  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-submnd 18689  df-grp 18846  df-minusg 18847  df-sbg 18848  df-subg 19033  df-cntz 19227  df-lsm 19546  df-cmn 19692  df-abl 19693  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-subrg 20483  df-lmod 20793  df-lss 20863  df-lsp 20903  df-sra 21105  df-rgmod 21106  df-lidl 21143  df-rsp 21144  df-lpidl 21257  df-top 22807  df-topon 22824  df-cld 22932  df-t0 23226  df-prmidl 33396  df-mxidl 33420  df-idlsrg 33461  df-rspec 33871
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator