Step | Hyp | Ref
| Expression |
1 | | zartop.1 |
. . . 4
⊢ 𝑆 = (Spec‘𝑅) |
2 | | zartop.2 |
. . . 4
⊢ 𝐽 = (TopOpen‘𝑆) |
3 | 1, 2 | zartop 31834 |
. . 3
⊢ (𝑅 ∈ CRing → 𝐽 ∈ Top) |
4 | | sseq2 3946 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝑥 → (𝑥 ⊆ 𝑗 ↔ 𝑥 ⊆ 𝑥)) |
5 | | simpr 485 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) → 𝑥 ∈ (PrmIdeal‘𝑅)) |
6 | | ssidd 3943 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) → 𝑥 ⊆ 𝑥) |
7 | 4, 5, 6 | elrabd 3625 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) → 𝑥 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑥 ⊆ 𝑗}) |
8 | 7 | ad2antrr 723 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑑 ∈ ran (𝑘 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘 ⊆ 𝑗})(𝑥 ∈ 𝑑 ↔ 𝑦 ∈ 𝑑)) → 𝑥 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑥 ⊆ 𝑗}) |
9 | | sseq1 3945 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑖 → (𝑘 ⊆ 𝑗 ↔ 𝑖 ⊆ 𝑗)) |
10 | 9 | rabbidv 3411 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑖 → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘 ⊆ 𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗}) |
11 | 10 | cbvmptv 5186 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘 ⊆ 𝑗}) = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗}) |
12 | | crngring 19805 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
13 | 12 | ad2antrr 723 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) → 𝑅 ∈ Ring) |
14 | | simplr 766 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) → 𝑥 ∈ (PrmIdeal‘𝑅)) |
15 | | prmidlidl 31627 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) → 𝑥 ∈ (LIdeal‘𝑅)) |
16 | 13, 14, 15 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) → 𝑥 ∈ (LIdeal‘𝑅)) |
17 | | fvex 6779 |
. . . . . . . . . . . . . 14
⊢
(PrmIdeal‘𝑅)
∈ V |
18 | 17 | rabex 5254 |
. . . . . . . . . . . . 13
⊢ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑥 ⊆ 𝑗} ∈ V |
19 | 18 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑥 ⊆ 𝑗} ∈ V) |
20 | | sseq1 3945 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 = 𝑥 → (𝑖 ⊆ 𝑗 ↔ 𝑥 ⊆ 𝑗)) |
21 | 20 | rabbidv 3411 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 𝑥 → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑥 ⊆ 𝑗}) |
22 | 21 | eqcomd 2744 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝑥 → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑥 ⊆ 𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗}) |
23 | 22 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) ∧ 𝑖 = 𝑥) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑥 ⊆ 𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗}) |
24 | 11, 16, 19, 23 | elrnmptdv 5864 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑥 ⊆ 𝑗} ∈ ran (𝑘 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘 ⊆ 𝑗})) |
25 | | simpr 485 |
. . . . . . . . . . . . 13
⊢ ((((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) ∧ 𝑑 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑥 ⊆ 𝑗}) → 𝑑 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑥 ⊆ 𝑗}) |
26 | 25 | eleq2d 2824 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) ∧ 𝑑 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑥 ⊆ 𝑗}) → (𝑥 ∈ 𝑑 ↔ 𝑥 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑥 ⊆ 𝑗})) |
27 | 25 | eleq2d 2824 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) ∧ 𝑑 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑥 ⊆ 𝑗}) → (𝑦 ∈ 𝑑 ↔ 𝑦 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑥 ⊆ 𝑗})) |
28 | 26, 27 | bibi12d 346 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) ∧ 𝑑 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑥 ⊆ 𝑗}) → ((𝑥 ∈ 𝑑 ↔ 𝑦 ∈ 𝑑) ↔ (𝑥 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑥 ⊆ 𝑗} ↔ 𝑦 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑥 ⊆ 𝑗}))) |
29 | 24, 28 | rspcdv 3550 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) → (∀𝑑 ∈ ran (𝑘 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘 ⊆ 𝑗})(𝑥 ∈ 𝑑 ↔ 𝑦 ∈ 𝑑) → (𝑥 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑥 ⊆ 𝑗} ↔ 𝑦 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑥 ⊆ 𝑗}))) |
30 | 29 | imp 407 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑑 ∈ ran (𝑘 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘 ⊆ 𝑗})(𝑥 ∈ 𝑑 ↔ 𝑦 ∈ 𝑑)) → (𝑥 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑥 ⊆ 𝑗} ↔ 𝑦 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑥 ⊆ 𝑗})) |
31 | 8, 30 | mpbid 231 |
. . . . . . . 8
⊢ ((((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑑 ∈ ran (𝑘 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘 ⊆ 𝑗})(𝑥 ∈ 𝑑 ↔ 𝑦 ∈ 𝑑)) → 𝑦 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑥 ⊆ 𝑗}) |
32 | | sseq2 3946 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑦 → (𝑥 ⊆ 𝑗 ↔ 𝑥 ⊆ 𝑦)) |
33 | 32 | elrab 3623 |
. . . . . . . . 9
⊢ (𝑦 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑥 ⊆ 𝑗} ↔ (𝑦 ∈ (PrmIdeal‘𝑅) ∧ 𝑥 ⊆ 𝑦)) |
34 | 33 | simprbi 497 |
. . . . . . . 8
⊢ (𝑦 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑥 ⊆ 𝑗} → 𝑥 ⊆ 𝑦) |
35 | 31, 34 | syl 17 |
. . . . . . 7
⊢ ((((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑑 ∈ ran (𝑘 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘 ⊆ 𝑗})(𝑥 ∈ 𝑑 ↔ 𝑦 ∈ 𝑑)) → 𝑥 ⊆ 𝑦) |
36 | | sseq2 3946 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝑦 → (𝑦 ⊆ 𝑗 ↔ 𝑦 ⊆ 𝑦)) |
37 | | simpr 485 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ CRing ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) → 𝑦 ∈ (PrmIdeal‘𝑅)) |
38 | | ssidd 3943 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ CRing ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) → 𝑦 ⊆ 𝑦) |
39 | 36, 37, 38 | elrabd 3625 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ CRing ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) → 𝑦 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑦 ⊆ 𝑗}) |
40 | 39 | ad4ant13 748 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑑 ∈ ran (𝑘 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘 ⊆ 𝑗})(𝑥 ∈ 𝑑 ↔ 𝑦 ∈ 𝑑)) → 𝑦 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑦 ⊆ 𝑗}) |
41 | | simpr 485 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) → 𝑦 ∈ (PrmIdeal‘𝑅)) |
42 | | prmidlidl 31627 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ Ring ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) → 𝑦 ∈ (LIdeal‘𝑅)) |
43 | 13, 41, 42 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) → 𝑦 ∈ (LIdeal‘𝑅)) |
44 | 17 | rabex 5254 |
. . . . . . . . . . . . 13
⊢ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑦 ⊆ 𝑗} ∈ V |
45 | 44 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑦 ⊆ 𝑗} ∈ V) |
46 | | sseq1 3945 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 = 𝑦 → (𝑖 ⊆ 𝑗 ↔ 𝑦 ⊆ 𝑗)) |
47 | 46 | rabbidv 3411 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 𝑦 → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑦 ⊆ 𝑗}) |
48 | 47 | eqcomd 2744 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝑦 → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑦 ⊆ 𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗}) |
49 | 48 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) ∧ 𝑖 = 𝑦) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑦 ⊆ 𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗}) |
50 | 11, 43, 45, 49 | elrnmptdv 5864 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑦 ⊆ 𝑗} ∈ ran (𝑘 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘 ⊆ 𝑗})) |
51 | | simpr 485 |
. . . . . . . . . . . . 13
⊢ ((((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) ∧ 𝑑 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑦 ⊆ 𝑗}) → 𝑑 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑦 ⊆ 𝑗}) |
52 | 51 | eleq2d 2824 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) ∧ 𝑑 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑦 ⊆ 𝑗}) → (𝑥 ∈ 𝑑 ↔ 𝑥 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑦 ⊆ 𝑗})) |
53 | 51 | eleq2d 2824 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) ∧ 𝑑 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑦 ⊆ 𝑗}) → (𝑦 ∈ 𝑑 ↔ 𝑦 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑦 ⊆ 𝑗})) |
54 | 52, 53 | bibi12d 346 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) ∧ 𝑑 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑦 ⊆ 𝑗}) → ((𝑥 ∈ 𝑑 ↔ 𝑦 ∈ 𝑑) ↔ (𝑥 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑦 ⊆ 𝑗} ↔ 𝑦 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑦 ⊆ 𝑗}))) |
55 | 50, 54 | rspcdv 3550 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) → (∀𝑑 ∈ ran (𝑘 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘 ⊆ 𝑗})(𝑥 ∈ 𝑑 ↔ 𝑦 ∈ 𝑑) → (𝑥 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑦 ⊆ 𝑗} ↔ 𝑦 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑦 ⊆ 𝑗}))) |
56 | 55 | imp 407 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑑 ∈ ran (𝑘 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘 ⊆ 𝑗})(𝑥 ∈ 𝑑 ↔ 𝑦 ∈ 𝑑)) → (𝑥 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑦 ⊆ 𝑗} ↔ 𝑦 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑦 ⊆ 𝑗})) |
57 | 40, 56 | mpbird 256 |
. . . . . . . 8
⊢ ((((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑑 ∈ ran (𝑘 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘 ⊆ 𝑗})(𝑥 ∈ 𝑑 ↔ 𝑦 ∈ 𝑑)) → 𝑥 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑦 ⊆ 𝑗}) |
58 | | sseq2 3946 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑥 → (𝑦 ⊆ 𝑗 ↔ 𝑦 ⊆ 𝑥)) |
59 | 58 | elrab 3623 |
. . . . . . . . 9
⊢ (𝑥 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑦 ⊆ 𝑗} ↔ (𝑥 ∈ (PrmIdeal‘𝑅) ∧ 𝑦 ⊆ 𝑥)) |
60 | 59 | simprbi 497 |
. . . . . . . 8
⊢ (𝑥 ∈ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑦 ⊆ 𝑗} → 𝑦 ⊆ 𝑥) |
61 | 57, 60 | syl 17 |
. . . . . . 7
⊢ ((((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑑 ∈ ran (𝑘 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘 ⊆ 𝑗})(𝑥 ∈ 𝑑 ↔ 𝑦 ∈ 𝑑)) → 𝑦 ⊆ 𝑥) |
62 | 35, 61 | eqssd 3937 |
. . . . . 6
⊢ ((((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑑 ∈ ran (𝑘 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘 ⊆ 𝑗})(𝑥 ∈ 𝑑 ↔ 𝑦 ∈ 𝑑)) → 𝑥 = 𝑦) |
63 | 62 | ex 413 |
. . . . 5
⊢ (((𝑅 ∈ CRing ∧ 𝑥 ∈ (PrmIdeal‘𝑅)) ∧ 𝑦 ∈ (PrmIdeal‘𝑅)) → (∀𝑑 ∈ ran (𝑘 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘 ⊆ 𝑗})(𝑥 ∈ 𝑑 ↔ 𝑦 ∈ 𝑑) → 𝑥 = 𝑦)) |
64 | 63 | anasss 467 |
. . . 4
⊢ ((𝑅 ∈ CRing ∧ (𝑥 ∈ (PrmIdeal‘𝑅) ∧ 𝑦 ∈ (PrmIdeal‘𝑅))) → (∀𝑑 ∈ ran (𝑘 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘 ⊆ 𝑗})(𝑥 ∈ 𝑑 ↔ 𝑦 ∈ 𝑑) → 𝑥 = 𝑦)) |
65 | 64 | ralrimivva 3115 |
. . 3
⊢ (𝑅 ∈ CRing →
∀𝑥 ∈
(PrmIdeal‘𝑅)∀𝑦 ∈ (PrmIdeal‘𝑅)(∀𝑑 ∈ ran (𝑘 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘 ⊆ 𝑗})(𝑥 ∈ 𝑑 ↔ 𝑦 ∈ 𝑑) → 𝑥 = 𝑦)) |
66 | 3, 65 | jca 512 |
. 2
⊢ (𝑅 ∈ CRing → (𝐽 ∈ Top ∧ ∀𝑥 ∈ (PrmIdeal‘𝑅)∀𝑦 ∈ (PrmIdeal‘𝑅)(∀𝑑 ∈ ran (𝑘 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘 ⊆ 𝑗})(𝑥 ∈ 𝑑 ↔ 𝑦 ∈ 𝑑) → 𝑥 = 𝑦))) |
67 | | eqid 2738 |
. . . . 5
⊢
(PrmIdeal‘𝑅) =
(PrmIdeal‘𝑅) |
68 | 1, 2, 67 | zartopon 31835 |
. . . 4
⊢ (𝑅 ∈ CRing → 𝐽 ∈
(TopOn‘(PrmIdeal‘𝑅))) |
69 | | toponuni 22073 |
. . . 4
⊢ (𝐽 ∈
(TopOn‘(PrmIdeal‘𝑅)) → (PrmIdeal‘𝑅) = ∪ 𝐽) |
70 | 68, 69 | syl 17 |
. . 3
⊢ (𝑅 ∈ CRing →
(PrmIdeal‘𝑅) = ∪ 𝐽) |
71 | 1, 2, 67, 11 | zartopn 31833 |
. . . 4
⊢ (𝑅 ∈ CRing → (𝐽 ∈
(TopOn‘(PrmIdeal‘𝑅)) ∧ ran (𝑘 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘 ⊆ 𝑗}) = (Clsd‘𝐽))) |
72 | 71 | simprd 496 |
. . 3
⊢ (𝑅 ∈ CRing → ran (𝑘 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘 ⊆ 𝑗}) = (Clsd‘𝐽)) |
73 | 70, 72 | ist0cld 31791 |
. 2
⊢ (𝑅 ∈ CRing → (𝐽 ∈ Kol2 ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ (PrmIdeal‘𝑅)∀𝑦 ∈ (PrmIdeal‘𝑅)(∀𝑑 ∈ ran (𝑘 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘 ⊆ 𝑗})(𝑥 ∈ 𝑑 ↔ 𝑦 ∈ 𝑑) → 𝑥 = 𝑦)))) |
74 | 66, 73 | mpbird 256 |
1
⊢ (𝑅 ∈ CRing → 𝐽 ∈ Kol2) |