MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrnmptd Structured version   Visualization version   GIF version

Theorem elrnmptd 5986
Description: The range of a function in maps-to notation. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
elrnmptd.f 𝐹 = (𝑥𝐴𝐵)
elrnmptd.x (𝜑 → ∃𝑥𝐴 𝐶 = 𝐵)
elrnmptd.c (𝜑𝐶𝑉)
Assertion
Ref Expression
elrnmptd (𝜑𝐶 ∈ ran 𝐹)
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem elrnmptd
StepHypRef Expression
1 elrnmptd.x . 2 (𝜑 → ∃𝑥𝐴 𝐶 = 𝐵)
2 elrnmptd.c . . 3 (𝜑𝐶𝑉)
3 elrnmptd.f . . . 4 𝐹 = (𝑥𝐴𝐵)
43elrnmpt 5981 . . 3 (𝐶𝑉 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥𝐴 𝐶 = 𝐵))
52, 4syl 17 . 2 (𝜑 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥𝐴 𝐶 = 𝐵))
61, 5mpbird 257 1 (𝜑𝐶 ∈ ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2108  wrex 3076  cmpt 5249  ran crn 5701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-mpt 5250  df-cnv 5708  df-dm 5710  df-rn 5711
This theorem is referenced by:  pwfilem  9384  evls1maprnss  22403  nsgmgc  33405  nsgqusf1olem1  33406  algextdeglem4  33711  zarclsun  33816  rnmptssrn  45089  infnsuprnmpt  45159  supminfrnmpt  45360  supminfxrrnmpt  45386  sge0sup  46312  sge0resplit  46327  sge0xaddlem2  46355  sge0pnfmpt  46366  sge0reuz  46368  sge0reuzb  46369  hoidmvlelem2  46517
  Copyright terms: Public domain W3C validator