| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elrnmptd | Structured version Visualization version GIF version | ||
| Description: The range of a function in maps-to notation. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| elrnmptd.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| elrnmptd.x | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝐶 = 𝐵) |
| elrnmptd.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| elrnmptd | ⊢ (𝜑 → 𝐶 ∈ ran 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrnmptd.x | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝐶 = 𝐵) | |
| 2 | elrnmptd.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
| 3 | elrnmptd.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 4 | 3 | elrnmpt 5949 | . . 3 ⊢ (𝐶 ∈ 𝑉 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵)) |
| 5 | 2, 4 | syl 17 | . 2 ⊢ (𝜑 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵)) |
| 6 | 1, 5 | mpbird 257 | 1 ⊢ (𝜑 → 𝐶 ∈ ran 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 ∈ wcel 2107 ∃wrex 3059 ↦ cmpt 5205 ran crn 5666 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5124 df-opab 5186 df-mpt 5206 df-cnv 5673 df-dm 5675 df-rn 5676 |
| This theorem is referenced by: pwfilem 9338 evls1maprnss 22331 elrgspnlem1 33190 elrgspnlem2 33191 elrgspnlem3 33192 nsgmgc 33380 nsgqusf1olem1 33381 algextdeglem4 33705 zarclsun 33844 rnmptssrn 45159 infnsuprnmpt 45229 supminfrnmpt 45428 supminfxrrnmpt 45454 sge0sup 46378 sge0resplit 46393 sge0xaddlem2 46421 sge0pnfmpt 46432 sge0reuz 46434 sge0reuzb 46435 hoidmvlelem2 46583 |
| Copyright terms: Public domain | W3C validator |