![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elrnmptd | Structured version Visualization version GIF version |
Description: The range of a function in maps-to notation. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
elrnmptd.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
elrnmptd.x | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝐶 = 𝐵) |
elrnmptd.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
Ref | Expression |
---|---|
elrnmptd | ⊢ (𝜑 → 𝐶 ∈ ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrnmptd.x | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝐶 = 𝐵) | |
2 | elrnmptd.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
3 | elrnmptd.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
4 | 3 | elrnmpt 5955 | . . 3 ⊢ (𝐶 ∈ 𝑉 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵)) |
5 | 2, 4 | syl 17 | . 2 ⊢ (𝜑 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵)) |
6 | 1, 5 | mpbird 257 | 1 ⊢ (𝜑 → 𝐶 ∈ ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1540 ∈ wcel 2105 ∃wrex 3069 ↦ cmpt 5231 ran crn 5677 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-mpt 5232 df-cnv 5684 df-dm 5686 df-rn 5687 |
This theorem is referenced by: pwfilem 9183 nsgmgc 32963 nsgqusf1olem1 32964 evls1maprnss 33216 algextdeglem4 33231 zarclsun 33314 rnmptssrn 44340 infnsuprnmpt 44413 supminfrnmpt 44614 supminfxrrnmpt 44640 sge0sup 45566 sge0resplit 45581 sge0xaddlem2 45609 sge0pnfmpt 45620 sge0reuz 45622 sge0reuzb 45623 hoidmvlelem2 45771 |
Copyright terms: Public domain | W3C validator |