![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elrnmptd | Structured version Visualization version GIF version |
Description: The range of a function in maps-to notation. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
elrnmptd.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
elrnmptd.x | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝐶 = 𝐵) |
elrnmptd.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
Ref | Expression |
---|---|
elrnmptd | ⊢ (𝜑 → 𝐶 ∈ ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrnmptd.x | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝐶 = 𝐵) | |
2 | elrnmptd.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
3 | elrnmptd.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
4 | 3 | elrnmpt 5981 | . . 3 ⊢ (𝐶 ∈ 𝑉 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵)) |
5 | 2, 4 | syl 17 | . 2 ⊢ (𝜑 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵)) |
6 | 1, 5 | mpbird 257 | 1 ⊢ (𝜑 → 𝐶 ∈ ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 ↦ cmpt 5249 ran crn 5701 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-mpt 5250 df-cnv 5708 df-dm 5710 df-rn 5711 |
This theorem is referenced by: pwfilem 9384 evls1maprnss 22403 nsgmgc 33405 nsgqusf1olem1 33406 algextdeglem4 33711 zarclsun 33816 rnmptssrn 45089 infnsuprnmpt 45159 supminfrnmpt 45360 supminfxrrnmpt 45386 sge0sup 46312 sge0resplit 46327 sge0xaddlem2 46355 sge0pnfmpt 46366 sge0reuz 46368 sge0reuzb 46369 hoidmvlelem2 46517 |
Copyright terms: Public domain | W3C validator |