MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrnmptd Structured version   Visualization version   GIF version

Theorem elrnmptd 5859
Description: The range of a function in maps-to notation. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
elrnmptd.f 𝐹 = (𝑥𝐴𝐵)
elrnmptd.x (𝜑 → ∃𝑥𝐴 𝐶 = 𝐵)
elrnmptd.c (𝜑𝐶𝑉)
Assertion
Ref Expression
elrnmptd (𝜑𝐶 ∈ ran 𝐹)
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem elrnmptd
StepHypRef Expression
1 elrnmptd.x . 2 (𝜑 → ∃𝑥𝐴 𝐶 = 𝐵)
2 elrnmptd.c . . 3 (𝜑𝐶𝑉)
3 elrnmptd.f . . . 4 𝐹 = (𝑥𝐴𝐵)
43elrnmpt 5854 . . 3 (𝐶𝑉 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥𝐴 𝐶 = 𝐵))
52, 4syl 17 . 2 (𝜑 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥𝐴 𝐶 = 𝐵))
61, 5mpbird 256 1 (𝜑𝐶 ∈ ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2108  wrex 3064  cmpt 5153  ran crn 5581
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-mpt 5154  df-cnv 5588  df-dm 5590  df-rn 5591
This theorem is referenced by:  pwfilem  8922  nsgmgc  31499  nsgqusf1olem1  31500  zarclsun  31722  rnmptssrn  42608  infnsuprnmpt  42685  supminfrnmpt  42875  supminfxrrnmpt  42901  sge0sup  43819  sge0resplit  43834  sge0xaddlem2  43862  sge0pnfmpt  43873  sge0reuz  43875  sge0reuzb  43876  hoidmvlelem2  44024
  Copyright terms: Public domain W3C validator