MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrnmptd Structured version   Visualization version   GIF version

Theorem elrnmptd 5977
Description: The range of a function in maps-to notation. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
elrnmptd.f 𝐹 = (𝑥𝐴𝐵)
elrnmptd.x (𝜑 → ∃𝑥𝐴 𝐶 = 𝐵)
elrnmptd.c (𝜑𝐶𝑉)
Assertion
Ref Expression
elrnmptd (𝜑𝐶 ∈ ran 𝐹)
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem elrnmptd
StepHypRef Expression
1 elrnmptd.x . 2 (𝜑 → ∃𝑥𝐴 𝐶 = 𝐵)
2 elrnmptd.c . . 3 (𝜑𝐶𝑉)
3 elrnmptd.f . . . 4 𝐹 = (𝑥𝐴𝐵)
43elrnmpt 5972 . . 3 (𝐶𝑉 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥𝐴 𝐶 = 𝐵))
52, 4syl 17 . 2 (𝜑 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥𝐴 𝐶 = 𝐵))
61, 5mpbird 257 1 (𝜑𝐶 ∈ ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2106  wrex 3068  cmpt 5231  ran crn 5690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-mpt 5232  df-cnv 5697  df-dm 5699  df-rn 5700
This theorem is referenced by:  pwfilem  9354  evls1maprnss  22398  elrgspnlem1  33232  elrgspnlem2  33233  elrgspnlem3  33234  nsgmgc  33420  nsgqusf1olem1  33421  algextdeglem4  33726  zarclsun  33831  rnmptssrn  45125  infnsuprnmpt  45195  supminfrnmpt  45395  supminfxrrnmpt  45421  sge0sup  46347  sge0resplit  46362  sge0xaddlem2  46390  sge0pnfmpt  46401  sge0reuz  46403  sge0reuzb  46404  hoidmvlelem2  46552
  Copyright terms: Public domain W3C validator