| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elrnmptd | Structured version Visualization version GIF version | ||
| Description: The range of a function in maps-to notation. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| elrnmptd.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| elrnmptd.x | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝐶 = 𝐵) |
| elrnmptd.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| elrnmptd | ⊢ (𝜑 → 𝐶 ∈ ran 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrnmptd.x | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝐶 = 𝐵) | |
| 2 | elrnmptd.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
| 3 | elrnmptd.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 4 | 3 | elrnmpt 5943 | . . 3 ⊢ (𝐶 ∈ 𝑉 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵)) |
| 5 | 2, 4 | syl 17 | . 2 ⊢ (𝜑 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵)) |
| 6 | 1, 5 | mpbird 257 | 1 ⊢ (𝜑 → 𝐶 ∈ ran 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∃wrex 3061 ↦ cmpt 5206 ran crn 5660 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-mpt 5207 df-cnv 5667 df-dm 5669 df-rn 5670 |
| This theorem is referenced by: pwfilem 9333 evls1maprnss 22321 elrgspnlem1 33242 elrgspnlem2 33243 elrgspnlem3 33244 nsgmgc 33432 nsgqusf1olem1 33433 algextdeglem4 33759 zarclsun 33906 rnmptssrn 45186 infnsuprnmpt 45254 supminfrnmpt 45452 supminfxrrnmpt 45478 sge0sup 46400 sge0resplit 46415 sge0xaddlem2 46443 sge0pnfmpt 46454 sge0reuz 46456 sge0reuzb 46457 hoidmvlelem2 46605 |
| Copyright terms: Public domain | W3C validator |