| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > islpidl | Structured version Visualization version GIF version | ||
| Description: Property of being a principal ideal. (Contributed by Stefan O'Rear, 3-Jan-2015.) |
| Ref | Expression |
|---|---|
| lpival.p | ⊢ 𝑃 = (LPIdeal‘𝑅) |
| lpival.k | ⊢ 𝐾 = (RSpan‘𝑅) |
| lpival.b | ⊢ 𝐵 = (Base‘𝑅) |
| Ref | Expression |
|---|---|
| islpidl | ⊢ (𝑅 ∈ Ring → (𝐼 ∈ 𝑃 ↔ ∃𝑔 ∈ 𝐵 𝐼 = (𝐾‘{𝑔}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lpival.p | . . . 4 ⊢ 𝑃 = (LPIdeal‘𝑅) | |
| 2 | lpival.k | . . . 4 ⊢ 𝐾 = (RSpan‘𝑅) | |
| 3 | lpival.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 4 | 1, 2, 3 | lpival 21234 | . . 3 ⊢ (𝑅 ∈ Ring → 𝑃 = ∪ 𝑔 ∈ 𝐵 {(𝐾‘{𝑔})}) |
| 5 | 4 | eleq2d 2814 | . 2 ⊢ (𝑅 ∈ Ring → (𝐼 ∈ 𝑃 ↔ 𝐼 ∈ ∪ 𝑔 ∈ 𝐵 {(𝐾‘{𝑔})})) |
| 6 | eliun 4959 | . . 3 ⊢ (𝐼 ∈ ∪ 𝑔 ∈ 𝐵 {(𝐾‘{𝑔})} ↔ ∃𝑔 ∈ 𝐵 𝐼 ∈ {(𝐾‘{𝑔})}) | |
| 7 | fvex 6871 | . . . . 5 ⊢ (𝐾‘{𝑔}) ∈ V | |
| 8 | 7 | elsn2 4629 | . . . 4 ⊢ (𝐼 ∈ {(𝐾‘{𝑔})} ↔ 𝐼 = (𝐾‘{𝑔})) |
| 9 | 8 | rexbii 3076 | . . 3 ⊢ (∃𝑔 ∈ 𝐵 𝐼 ∈ {(𝐾‘{𝑔})} ↔ ∃𝑔 ∈ 𝐵 𝐼 = (𝐾‘{𝑔})) |
| 10 | 6, 9 | bitri 275 | . 2 ⊢ (𝐼 ∈ ∪ 𝑔 ∈ 𝐵 {(𝐾‘{𝑔})} ↔ ∃𝑔 ∈ 𝐵 𝐼 = (𝐾‘{𝑔})) |
| 11 | 5, 10 | bitrdi 287 | 1 ⊢ (𝑅 ∈ Ring → (𝐼 ∈ 𝑃 ↔ ∃𝑔 ∈ 𝐵 𝐼 = (𝐾‘{𝑔}))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 {csn 4589 ∪ ciun 4955 ‘cfv 6511 Basecbs 17179 Ringcrg 20142 RSpancrsp 21117 LPIdealclpidl 21230 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fv 6519 df-lpidl 21232 |
| This theorem is referenced by: lpi0 21236 lpi1 21237 lpiss 21239 lpigen 21245 ply1lpir 26087 lpirlidllpi 33345 lsmsnidl 33370 mxidlirred 33443 lpirlnr 43106 |
| Copyright terms: Public domain | W3C validator |