MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islpidl Structured version   Visualization version   GIF version

Theorem islpidl 20013
Description: Property of being a principal ideal. (Contributed by Stefan O'Rear, 3-Jan-2015.)
Hypotheses
Ref Expression
lpival.p 𝑃 = (LPIdeal‘𝑅)
lpival.k 𝐾 = (RSpan‘𝑅)
lpival.b 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
islpidl (𝑅 ∈ Ring → (𝐼𝑃 ↔ ∃𝑔𝐵 𝐼 = (𝐾‘{𝑔})))
Distinct variable groups:   𝑅,𝑔   𝑃,𝑔   𝐵,𝑔   𝑔,𝐾   𝑔,𝐼

Proof of Theorem islpidl
StepHypRef Expression
1 lpival.p . . . 4 𝑃 = (LPIdeal‘𝑅)
2 lpival.k . . . 4 𝐾 = (RSpan‘𝑅)
3 lpival.b . . . 4 𝐵 = (Base‘𝑅)
41, 2, 3lpival 20012 . . 3 (𝑅 ∈ Ring → 𝑃 = 𝑔𝐵 {(𝐾‘{𝑔})})
54eleq2d 2898 . 2 (𝑅 ∈ Ring → (𝐼𝑃𝐼 𝑔𝐵 {(𝐾‘{𝑔})}))
6 eliun 4915 . . 3 (𝐼 𝑔𝐵 {(𝐾‘{𝑔})} ↔ ∃𝑔𝐵 𝐼 ∈ {(𝐾‘{𝑔})})
7 fvex 6677 . . . . 5 (𝐾‘{𝑔}) ∈ V
87elsn2 4597 . . . 4 (𝐼 ∈ {(𝐾‘{𝑔})} ↔ 𝐼 = (𝐾‘{𝑔}))
98rexbii 3247 . . 3 (∃𝑔𝐵 𝐼 ∈ {(𝐾‘{𝑔})} ↔ ∃𝑔𝐵 𝐼 = (𝐾‘{𝑔}))
106, 9bitri 277 . 2 (𝐼 𝑔𝐵 {(𝐾‘{𝑔})} ↔ ∃𝑔𝐵 𝐼 = (𝐾‘{𝑔}))
115, 10syl6bb 289 1 (𝑅 ∈ Ring → (𝐼𝑃 ↔ ∃𝑔𝐵 𝐼 = (𝐾‘{𝑔})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208   = wceq 1533  wcel 2110  wrex 3139  {csn 4560   ciun 4911  cfv 6349  Basecbs 16477  Ringcrg 19291  RSpancrsp 19937  LPIdealclpidl 20008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-iota 6308  df-fun 6351  df-fv 6357  df-lpidl 20010
This theorem is referenced by:  lpi0  20014  lpi1  20015  lpiss  20017  lpigen  20023  ply1lpir  24766  lsmsnidl  30944  lpirlnr  39710
  Copyright terms: Public domain W3C validator