Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > islpidl | Structured version Visualization version GIF version |
Description: Property of being a principal ideal. (Contributed by Stefan O'Rear, 3-Jan-2015.) |
Ref | Expression |
---|---|
lpival.p | ⊢ 𝑃 = (LPIdeal‘𝑅) |
lpival.k | ⊢ 𝐾 = (RSpan‘𝑅) |
lpival.b | ⊢ 𝐵 = (Base‘𝑅) |
Ref | Expression |
---|---|
islpidl | ⊢ (𝑅 ∈ Ring → (𝐼 ∈ 𝑃 ↔ ∃𝑔 ∈ 𝐵 𝐼 = (𝐾‘{𝑔}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lpival.p | . . . 4 ⊢ 𝑃 = (LPIdeal‘𝑅) | |
2 | lpival.k | . . . 4 ⊢ 𝐾 = (RSpan‘𝑅) | |
3 | lpival.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
4 | 1, 2, 3 | lpival 20514 | . . 3 ⊢ (𝑅 ∈ Ring → 𝑃 = ∪ 𝑔 ∈ 𝐵 {(𝐾‘{𝑔})}) |
5 | 4 | eleq2d 2824 | . 2 ⊢ (𝑅 ∈ Ring → (𝐼 ∈ 𝑃 ↔ 𝐼 ∈ ∪ 𝑔 ∈ 𝐵 {(𝐾‘{𝑔})})) |
6 | eliun 4930 | . . 3 ⊢ (𝐼 ∈ ∪ 𝑔 ∈ 𝐵 {(𝐾‘{𝑔})} ↔ ∃𝑔 ∈ 𝐵 𝐼 ∈ {(𝐾‘{𝑔})}) | |
7 | fvex 6789 | . . . . 5 ⊢ (𝐾‘{𝑔}) ∈ V | |
8 | 7 | elsn2 4602 | . . . 4 ⊢ (𝐼 ∈ {(𝐾‘{𝑔})} ↔ 𝐼 = (𝐾‘{𝑔})) |
9 | 8 | rexbii 3180 | . . 3 ⊢ (∃𝑔 ∈ 𝐵 𝐼 ∈ {(𝐾‘{𝑔})} ↔ ∃𝑔 ∈ 𝐵 𝐼 = (𝐾‘{𝑔})) |
10 | 6, 9 | bitri 274 | . 2 ⊢ (𝐼 ∈ ∪ 𝑔 ∈ 𝐵 {(𝐾‘{𝑔})} ↔ ∃𝑔 ∈ 𝐵 𝐼 = (𝐾‘{𝑔})) |
11 | 5, 10 | bitrdi 287 | 1 ⊢ (𝑅 ∈ Ring → (𝐼 ∈ 𝑃 ↔ ∃𝑔 ∈ 𝐵 𝐼 = (𝐾‘{𝑔}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2106 ∃wrex 3065 {csn 4563 ∪ ciun 4926 ‘cfv 6435 Basecbs 16910 Ringcrg 19781 RSpancrsp 20431 LPIdealclpidl 20510 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5225 ax-nul 5232 ax-pow 5290 ax-pr 5354 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3433 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4259 df-if 4462 df-pw 4537 df-sn 4564 df-pr 4566 df-op 4570 df-uni 4842 df-iun 4928 df-br 5077 df-opab 5139 df-mpt 5160 df-id 5491 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-iota 6393 df-fun 6437 df-fv 6443 df-lpidl 20512 |
This theorem is referenced by: lpi0 20516 lpi1 20517 lpiss 20519 lpigen 20525 ply1lpir 25341 lsmsnidl 31584 lpirlnr 40939 |
Copyright terms: Public domain | W3C validator |