![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > islpidl | Structured version Visualization version GIF version |
Description: Property of being a principal ideal. (Contributed by Stefan O'Rear, 3-Jan-2015.) |
Ref | Expression |
---|---|
lpival.p | β’ π = (LPIdealβπ ) |
lpival.k | β’ πΎ = (RSpanβπ ) |
lpival.b | β’ π΅ = (Baseβπ ) |
Ref | Expression |
---|---|
islpidl | β’ (π β Ring β (πΌ β π β βπ β π΅ πΌ = (πΎβ{π}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lpival.p | . . . 4 β’ π = (LPIdealβπ ) | |
2 | lpival.k | . . . 4 β’ πΎ = (RSpanβπ ) | |
3 | lpival.b | . . . 4 β’ π΅ = (Baseβπ ) | |
4 | 1, 2, 3 | lpival 20882 | . . 3 β’ (π β Ring β π = βͺ π β π΅ {(πΎβ{π})}) |
5 | 4 | eleq2d 2819 | . 2 β’ (π β Ring β (πΌ β π β πΌ β βͺ π β π΅ {(πΎβ{π})})) |
6 | eliun 5001 | . . 3 β’ (πΌ β βͺ π β π΅ {(πΎβ{π})} β βπ β π΅ πΌ β {(πΎβ{π})}) | |
7 | fvex 6904 | . . . . 5 β’ (πΎβ{π}) β V | |
8 | 7 | elsn2 4667 | . . . 4 β’ (πΌ β {(πΎβ{π})} β πΌ = (πΎβ{π})) |
9 | 8 | rexbii 3094 | . . 3 β’ (βπ β π΅ πΌ β {(πΎβ{π})} β βπ β π΅ πΌ = (πΎβ{π})) |
10 | 6, 9 | bitri 274 | . 2 β’ (πΌ β βͺ π β π΅ {(πΎβ{π})} β βπ β π΅ πΌ = (πΎβ{π})) |
11 | 5, 10 | bitrdi 286 | 1 β’ (π β Ring β (πΌ β π β βπ β π΅ πΌ = (πΎβ{π}))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 = wceq 1541 β wcel 2106 βwrex 3070 {csn 4628 βͺ ciun 4997 βcfv 6543 Basecbs 17143 Ringcrg 20055 RSpancrsp 20783 LPIdealclpidl 20878 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-iota 6495 df-fun 6545 df-fv 6551 df-lpidl 20880 |
This theorem is referenced by: lpi0 20884 lpi1 20885 lpiss 20887 lpigen 20893 ply1lpir 25695 lsmsnidl 32504 mxidlirred 32583 lpirlnr 41849 |
Copyright terms: Public domain | W3C validator |