MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islpidl Structured version   Visualization version   GIF version

Theorem islpidl 21358
Description: Property of being a principal ideal. (Contributed by Stefan O'Rear, 3-Jan-2015.)
Hypotheses
Ref Expression
lpival.p 𝑃 = (LPIdeal‘𝑅)
lpival.k 𝐾 = (RSpan‘𝑅)
lpival.b 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
islpidl (𝑅 ∈ Ring → (𝐼𝑃 ↔ ∃𝑔𝐵 𝐼 = (𝐾‘{𝑔})))
Distinct variable groups:   𝑅,𝑔   𝑃,𝑔   𝐵,𝑔   𝑔,𝐾   𝑔,𝐼

Proof of Theorem islpidl
StepHypRef Expression
1 lpival.p . . . 4 𝑃 = (LPIdeal‘𝑅)
2 lpival.k . . . 4 𝐾 = (RSpan‘𝑅)
3 lpival.b . . . 4 𝐵 = (Base‘𝑅)
41, 2, 3lpival 21357 . . 3 (𝑅 ∈ Ring → 𝑃 = 𝑔𝐵 {(𝐾‘{𝑔})})
54eleq2d 2830 . 2 (𝑅 ∈ Ring → (𝐼𝑃𝐼 𝑔𝐵 {(𝐾‘{𝑔})}))
6 eliun 5019 . . 3 (𝐼 𝑔𝐵 {(𝐾‘{𝑔})} ↔ ∃𝑔𝐵 𝐼 ∈ {(𝐾‘{𝑔})})
7 fvex 6933 . . . . 5 (𝐾‘{𝑔}) ∈ V
87elsn2 4687 . . . 4 (𝐼 ∈ {(𝐾‘{𝑔})} ↔ 𝐼 = (𝐾‘{𝑔}))
98rexbii 3100 . . 3 (∃𝑔𝐵 𝐼 ∈ {(𝐾‘{𝑔})} ↔ ∃𝑔𝐵 𝐼 = (𝐾‘{𝑔}))
106, 9bitri 275 . 2 (𝐼 𝑔𝐵 {(𝐾‘{𝑔})} ↔ ∃𝑔𝐵 𝐼 = (𝐾‘{𝑔}))
115, 10bitrdi 287 1 (𝑅 ∈ Ring → (𝐼𝑃 ↔ ∃𝑔𝐵 𝐼 = (𝐾‘{𝑔})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2108  wrex 3076  {csn 4648   ciun 5015  cfv 6573  Basecbs 17258  Ringcrg 20260  RSpancrsp 21240  LPIdealclpidl 21353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fv 6581  df-lpidl 21355
This theorem is referenced by:  lpi0  21359  lpi1  21360  lpiss  21362  lpigen  21368  ply1lpir  26241  lpirlidllpi  33367  lsmsnidl  33392  mxidlirred  33465  lpirlnr  43074
  Copyright terms: Public domain W3C validator