| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > islpidl | Structured version Visualization version GIF version | ||
| Description: Property of being a principal ideal. (Contributed by Stefan O'Rear, 3-Jan-2015.) |
| Ref | Expression |
|---|---|
| lpival.p | ⊢ 𝑃 = (LPIdeal‘𝑅) |
| lpival.k | ⊢ 𝐾 = (RSpan‘𝑅) |
| lpival.b | ⊢ 𝐵 = (Base‘𝑅) |
| Ref | Expression |
|---|---|
| islpidl | ⊢ (𝑅 ∈ Ring → (𝐼 ∈ 𝑃 ↔ ∃𝑔 ∈ 𝐵 𝐼 = (𝐾‘{𝑔}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lpival.p | . . . 4 ⊢ 𝑃 = (LPIdeal‘𝑅) | |
| 2 | lpival.k | . . . 4 ⊢ 𝐾 = (RSpan‘𝑅) | |
| 3 | lpival.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 4 | 1, 2, 3 | lpival 21259 | . . 3 ⊢ (𝑅 ∈ Ring → 𝑃 = ∪ 𝑔 ∈ 𝐵 {(𝐾‘{𝑔})}) |
| 5 | 4 | eleq2d 2817 | . 2 ⊢ (𝑅 ∈ Ring → (𝐼 ∈ 𝑃 ↔ 𝐼 ∈ ∪ 𝑔 ∈ 𝐵 {(𝐾‘{𝑔})})) |
| 6 | eliun 4945 | . . 3 ⊢ (𝐼 ∈ ∪ 𝑔 ∈ 𝐵 {(𝐾‘{𝑔})} ↔ ∃𝑔 ∈ 𝐵 𝐼 ∈ {(𝐾‘{𝑔})}) | |
| 7 | fvex 6835 | . . . . 5 ⊢ (𝐾‘{𝑔}) ∈ V | |
| 8 | 7 | elsn2 4618 | . . . 4 ⊢ (𝐼 ∈ {(𝐾‘{𝑔})} ↔ 𝐼 = (𝐾‘{𝑔})) |
| 9 | 8 | rexbii 3079 | . . 3 ⊢ (∃𝑔 ∈ 𝐵 𝐼 ∈ {(𝐾‘{𝑔})} ↔ ∃𝑔 ∈ 𝐵 𝐼 = (𝐾‘{𝑔})) |
| 10 | 6, 9 | bitri 275 | . 2 ⊢ (𝐼 ∈ ∪ 𝑔 ∈ 𝐵 {(𝐾‘{𝑔})} ↔ ∃𝑔 ∈ 𝐵 𝐼 = (𝐾‘{𝑔})) |
| 11 | 5, 10 | bitrdi 287 | 1 ⊢ (𝑅 ∈ Ring → (𝐼 ∈ 𝑃 ↔ ∃𝑔 ∈ 𝐵 𝐼 = (𝐾‘{𝑔}))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 {csn 4576 ∪ ciun 4941 ‘cfv 6481 Basecbs 17117 Ringcrg 20149 RSpancrsp 21142 LPIdealclpidl 21255 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-iota 6437 df-fun 6483 df-fv 6489 df-lpidl 21257 |
| This theorem is referenced by: lpi0 21261 lpi1 21262 lpiss 21264 lpigen 21270 ply1lpir 26112 lpirlidllpi 33334 lsmsnidl 33359 mxidlirred 33432 lpirlnr 43149 |
| Copyright terms: Public domain | W3C validator |