MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islpidl Structured version   Visualization version   GIF version

Theorem islpidl 20517
Description: Property of being a principal ideal. (Contributed by Stefan O'Rear, 3-Jan-2015.)
Hypotheses
Ref Expression
lpival.p 𝑃 = (LPIdeal‘𝑅)
lpival.k 𝐾 = (RSpan‘𝑅)
lpival.b 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
islpidl (𝑅 ∈ Ring → (𝐼𝑃 ↔ ∃𝑔𝐵 𝐼 = (𝐾‘{𝑔})))
Distinct variable groups:   𝑅,𝑔   𝑃,𝑔   𝐵,𝑔   𝑔,𝐾   𝑔,𝐼

Proof of Theorem islpidl
StepHypRef Expression
1 lpival.p . . . 4 𝑃 = (LPIdeal‘𝑅)
2 lpival.k . . . 4 𝐾 = (RSpan‘𝑅)
3 lpival.b . . . 4 𝐵 = (Base‘𝑅)
41, 2, 3lpival 20516 . . 3 (𝑅 ∈ Ring → 𝑃 = 𝑔𝐵 {(𝐾‘{𝑔})})
54eleq2d 2824 . 2 (𝑅 ∈ Ring → (𝐼𝑃𝐼 𝑔𝐵 {(𝐾‘{𝑔})}))
6 eliun 4928 . . 3 (𝐼 𝑔𝐵 {(𝐾‘{𝑔})} ↔ ∃𝑔𝐵 𝐼 ∈ {(𝐾‘{𝑔})})
7 fvex 6787 . . . . 5 (𝐾‘{𝑔}) ∈ V
87elsn2 4600 . . . 4 (𝐼 ∈ {(𝐾‘{𝑔})} ↔ 𝐼 = (𝐾‘{𝑔}))
98rexbii 3181 . . 3 (∃𝑔𝐵 𝐼 ∈ {(𝐾‘{𝑔})} ↔ ∃𝑔𝐵 𝐼 = (𝐾‘{𝑔}))
106, 9bitri 274 . 2 (𝐼 𝑔𝐵 {(𝐾‘{𝑔})} ↔ ∃𝑔𝐵 𝐼 = (𝐾‘{𝑔}))
115, 10bitrdi 287 1 (𝑅 ∈ Ring → (𝐼𝑃 ↔ ∃𝑔𝐵 𝐼 = (𝐾‘{𝑔})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2106  wrex 3065  {csn 4561   ciun 4924  cfv 6433  Basecbs 16912  Ringcrg 19783  RSpancrsp 20433  LPIdealclpidl 20512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-iota 6391  df-fun 6435  df-fv 6441  df-lpidl 20514
This theorem is referenced by:  lpi0  20518  lpi1  20519  lpiss  20521  lpigen  20527  ply1lpir  25343  lsmsnidl  31587  lpirlnr  40942
  Copyright terms: Public domain W3C validator