MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islpidl Structured version   Visualization version   GIF version

Theorem islpidl 20883
Description: Property of being a principal ideal. (Contributed by Stefan O'Rear, 3-Jan-2015.)
Hypotheses
Ref Expression
lpival.p 𝑃 = (LPIdealβ€˜π‘…)
lpival.k 𝐾 = (RSpanβ€˜π‘…)
lpival.b 𝐡 = (Baseβ€˜π‘…)
Assertion
Ref Expression
islpidl (𝑅 ∈ Ring β†’ (𝐼 ∈ 𝑃 ↔ βˆƒπ‘” ∈ 𝐡 𝐼 = (πΎβ€˜{𝑔})))
Distinct variable groups:   𝑅,𝑔   𝑃,𝑔   𝐡,𝑔   𝑔,𝐾   𝑔,𝐼

Proof of Theorem islpidl
StepHypRef Expression
1 lpival.p . . . 4 𝑃 = (LPIdealβ€˜π‘…)
2 lpival.k . . . 4 𝐾 = (RSpanβ€˜π‘…)
3 lpival.b . . . 4 𝐡 = (Baseβ€˜π‘…)
41, 2, 3lpival 20882 . . 3 (𝑅 ∈ Ring β†’ 𝑃 = βˆͺ 𝑔 ∈ 𝐡 {(πΎβ€˜{𝑔})})
54eleq2d 2819 . 2 (𝑅 ∈ Ring β†’ (𝐼 ∈ 𝑃 ↔ 𝐼 ∈ βˆͺ 𝑔 ∈ 𝐡 {(πΎβ€˜{𝑔})}))
6 eliun 5001 . . 3 (𝐼 ∈ βˆͺ 𝑔 ∈ 𝐡 {(πΎβ€˜{𝑔})} ↔ βˆƒπ‘” ∈ 𝐡 𝐼 ∈ {(πΎβ€˜{𝑔})})
7 fvex 6904 . . . . 5 (πΎβ€˜{𝑔}) ∈ V
87elsn2 4667 . . . 4 (𝐼 ∈ {(πΎβ€˜{𝑔})} ↔ 𝐼 = (πΎβ€˜{𝑔}))
98rexbii 3094 . . 3 (βˆƒπ‘” ∈ 𝐡 𝐼 ∈ {(πΎβ€˜{𝑔})} ↔ βˆƒπ‘” ∈ 𝐡 𝐼 = (πΎβ€˜{𝑔}))
106, 9bitri 274 . 2 (𝐼 ∈ βˆͺ 𝑔 ∈ 𝐡 {(πΎβ€˜{𝑔})} ↔ βˆƒπ‘” ∈ 𝐡 𝐼 = (πΎβ€˜{𝑔}))
115, 10bitrdi 286 1 (𝑅 ∈ Ring β†’ (𝐼 ∈ 𝑃 ↔ βˆƒπ‘” ∈ 𝐡 𝐼 = (πΎβ€˜{𝑔})))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   = wceq 1541   ∈ wcel 2106  βˆƒwrex 3070  {csn 4628  βˆͺ ciun 4997  β€˜cfv 6543  Basecbs 17143  Ringcrg 20055  RSpancrsp 20783  LPIdealclpidl 20878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-iota 6495  df-fun 6545  df-fv 6551  df-lpidl 20880
This theorem is referenced by:  lpi0  20884  lpi1  20885  lpiss  20887  lpigen  20893  ply1lpir  25695  lsmsnidl  32504  mxidlirred  32583  lpirlnr  41849
  Copyright terms: Public domain W3C validator