| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > islpidl | Structured version Visualization version GIF version | ||
| Description: Property of being a principal ideal. (Contributed by Stefan O'Rear, 3-Jan-2015.) |
| Ref | Expression |
|---|---|
| lpival.p | ⊢ 𝑃 = (LPIdeal‘𝑅) |
| lpival.k | ⊢ 𝐾 = (RSpan‘𝑅) |
| lpival.b | ⊢ 𝐵 = (Base‘𝑅) |
| Ref | Expression |
|---|---|
| islpidl | ⊢ (𝑅 ∈ Ring → (𝐼 ∈ 𝑃 ↔ ∃𝑔 ∈ 𝐵 𝐼 = (𝐾‘{𝑔}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lpival.p | . . . 4 ⊢ 𝑃 = (LPIdeal‘𝑅) | |
| 2 | lpival.k | . . . 4 ⊢ 𝐾 = (RSpan‘𝑅) | |
| 3 | lpival.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 4 | 1, 2, 3 | lpival 21297 | . . 3 ⊢ (𝑅 ∈ Ring → 𝑃 = ∪ 𝑔 ∈ 𝐵 {(𝐾‘{𝑔})}) |
| 5 | 4 | eleq2d 2819 | . 2 ⊢ (𝑅 ∈ Ring → (𝐼 ∈ 𝑃 ↔ 𝐼 ∈ ∪ 𝑔 ∈ 𝐵 {(𝐾‘{𝑔})})) |
| 6 | eliun 4975 | . . 3 ⊢ (𝐼 ∈ ∪ 𝑔 ∈ 𝐵 {(𝐾‘{𝑔})} ↔ ∃𝑔 ∈ 𝐵 𝐼 ∈ {(𝐾‘{𝑔})}) | |
| 7 | fvex 6899 | . . . . 5 ⊢ (𝐾‘{𝑔}) ∈ V | |
| 8 | 7 | elsn2 4645 | . . . 4 ⊢ (𝐼 ∈ {(𝐾‘{𝑔})} ↔ 𝐼 = (𝐾‘{𝑔})) |
| 9 | 8 | rexbii 3082 | . . 3 ⊢ (∃𝑔 ∈ 𝐵 𝐼 ∈ {(𝐾‘{𝑔})} ↔ ∃𝑔 ∈ 𝐵 𝐼 = (𝐾‘{𝑔})) |
| 10 | 6, 9 | bitri 275 | . 2 ⊢ (𝐼 ∈ ∪ 𝑔 ∈ 𝐵 {(𝐾‘{𝑔})} ↔ ∃𝑔 ∈ 𝐵 𝐼 = (𝐾‘{𝑔})) |
| 11 | 5, 10 | bitrdi 287 | 1 ⊢ (𝑅 ∈ Ring → (𝐼 ∈ 𝑃 ↔ ∃𝑔 ∈ 𝐵 𝐼 = (𝐾‘{𝑔}))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 ∈ wcel 2107 ∃wrex 3059 {csn 4606 ∪ ciun 4971 ‘cfv 6541 Basecbs 17230 Ringcrg 20199 RSpancrsp 21180 LPIdealclpidl 21293 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-iota 6494 df-fun 6543 df-fv 6549 df-lpidl 21295 |
| This theorem is referenced by: lpi0 21299 lpi1 21300 lpiss 21302 lpigen 21308 ply1lpir 26158 lpirlidllpi 33342 lsmsnidl 33367 mxidlirred 33440 lpirlnr 43107 |
| Copyright terms: Public domain | W3C validator |