MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fparlem2 Structured version   Visualization version   GIF version

Theorem fparlem2 8112
Description: Lemma for fpar 8115. (Contributed by NM, 22-Dec-2008.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
fparlem2 ((2nd ↾ (V × V)) “ {𝑦}) = (V × {𝑦})

Proof of Theorem fparlem2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fvres 6895 . . . . . 6 (𝑥 ∈ (V × V) → ((2nd ↾ (V × V))‘𝑥) = (2nd𝑥))
21eqeq1d 2737 . . . . 5 (𝑥 ∈ (V × V) → (((2nd ↾ (V × V))‘𝑥) = 𝑦 ↔ (2nd𝑥) = 𝑦))
3 vex 3463 . . . . . . 7 𝑦 ∈ V
43elsn2 4641 . . . . . 6 ((2nd𝑥) ∈ {𝑦} ↔ (2nd𝑥) = 𝑦)
5 fvex 6889 . . . . . . 7 (1st𝑥) ∈ V
65biantrur 530 . . . . . 6 ((2nd𝑥) ∈ {𝑦} ↔ ((1st𝑥) ∈ V ∧ (2nd𝑥) ∈ {𝑦}))
74, 6bitr3i 277 . . . . 5 ((2nd𝑥) = 𝑦 ↔ ((1st𝑥) ∈ V ∧ (2nd𝑥) ∈ {𝑦}))
82, 7bitrdi 287 . . . 4 (𝑥 ∈ (V × V) → (((2nd ↾ (V × V))‘𝑥) = 𝑦 ↔ ((1st𝑥) ∈ V ∧ (2nd𝑥) ∈ {𝑦})))
98pm5.32i 574 . . 3 ((𝑥 ∈ (V × V) ∧ ((2nd ↾ (V × V))‘𝑥) = 𝑦) ↔ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ V ∧ (2nd𝑥) ∈ {𝑦})))
10 f2ndres 8013 . . . 4 (2nd ↾ (V × V)):(V × V)⟶V
11 ffn 6706 . . . 4 ((2nd ↾ (V × V)):(V × V)⟶V → (2nd ↾ (V × V)) Fn (V × V))
12 fniniseg 7050 . . . 4 ((2nd ↾ (V × V)) Fn (V × V) → (𝑥 ∈ ((2nd ↾ (V × V)) “ {𝑦}) ↔ (𝑥 ∈ (V × V) ∧ ((2nd ↾ (V × V))‘𝑥) = 𝑦)))
1310, 11, 12mp2b 10 . . 3 (𝑥 ∈ ((2nd ↾ (V × V)) “ {𝑦}) ↔ (𝑥 ∈ (V × V) ∧ ((2nd ↾ (V × V))‘𝑥) = 𝑦))
14 elxp7 8023 . . 3 (𝑥 ∈ (V × {𝑦}) ↔ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ V ∧ (2nd𝑥) ∈ {𝑦})))
159, 13, 143bitr4i 303 . 2 (𝑥 ∈ ((2nd ↾ (V × V)) “ {𝑦}) ↔ 𝑥 ∈ (V × {𝑦}))
1615eqriv 2732 1 ((2nd ↾ (V × V)) “ {𝑦}) = (V × {𝑦})
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2108  Vcvv 3459  {csn 4601   × cxp 5652  ccnv 5653  cres 5656  cima 5657   Fn wfn 6526  wf 6527  cfv 6531  1st c1st 7986  2nd c2nd 7987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-fv 6539  df-1st 7988  df-2nd 7989
This theorem is referenced by:  fparlem4  8114
  Copyright terms: Public domain W3C validator