MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fparlem2 Structured version   Visualization version   GIF version

Theorem fparlem2 8053
Description: Lemma for fpar 8056. (Contributed by NM, 22-Dec-2008.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
fparlem2 ((2nd ↾ (V × V)) “ {𝑦}) = (V × {𝑦})

Proof of Theorem fparlem2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fvres 6845 . . . . . 6 (𝑥 ∈ (V × V) → ((2nd ↾ (V × V))‘𝑥) = (2nd𝑥))
21eqeq1d 2731 . . . . 5 (𝑥 ∈ (V × V) → (((2nd ↾ (V × V))‘𝑥) = 𝑦 ↔ (2nd𝑥) = 𝑦))
3 vex 3442 . . . . . . 7 𝑦 ∈ V
43elsn2 4619 . . . . . 6 ((2nd𝑥) ∈ {𝑦} ↔ (2nd𝑥) = 𝑦)
5 fvex 6839 . . . . . . 7 (1st𝑥) ∈ V
65biantrur 530 . . . . . 6 ((2nd𝑥) ∈ {𝑦} ↔ ((1st𝑥) ∈ V ∧ (2nd𝑥) ∈ {𝑦}))
74, 6bitr3i 277 . . . . 5 ((2nd𝑥) = 𝑦 ↔ ((1st𝑥) ∈ V ∧ (2nd𝑥) ∈ {𝑦}))
82, 7bitrdi 287 . . . 4 (𝑥 ∈ (V × V) → (((2nd ↾ (V × V))‘𝑥) = 𝑦 ↔ ((1st𝑥) ∈ V ∧ (2nd𝑥) ∈ {𝑦})))
98pm5.32i 574 . . 3 ((𝑥 ∈ (V × V) ∧ ((2nd ↾ (V × V))‘𝑥) = 𝑦) ↔ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ V ∧ (2nd𝑥) ∈ {𝑦})))
10 f2ndres 7956 . . . 4 (2nd ↾ (V × V)):(V × V)⟶V
11 ffn 6656 . . . 4 ((2nd ↾ (V × V)):(V × V)⟶V → (2nd ↾ (V × V)) Fn (V × V))
12 fniniseg 6998 . . . 4 ((2nd ↾ (V × V)) Fn (V × V) → (𝑥 ∈ ((2nd ↾ (V × V)) “ {𝑦}) ↔ (𝑥 ∈ (V × V) ∧ ((2nd ↾ (V × V))‘𝑥) = 𝑦)))
1310, 11, 12mp2b 10 . . 3 (𝑥 ∈ ((2nd ↾ (V × V)) “ {𝑦}) ↔ (𝑥 ∈ (V × V) ∧ ((2nd ↾ (V × V))‘𝑥) = 𝑦))
14 elxp7 7966 . . 3 (𝑥 ∈ (V × {𝑦}) ↔ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ V ∧ (2nd𝑥) ∈ {𝑦})))
159, 13, 143bitr4i 303 . 2 (𝑥 ∈ ((2nd ↾ (V × V)) “ {𝑦}) ↔ 𝑥 ∈ (V × {𝑦}))
1615eqriv 2726 1 ((2nd ↾ (V × V)) “ {𝑦}) = (V × {𝑦})
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3438  {csn 4579   × cxp 5621  ccnv 5622  cres 5625  cima 5626   Fn wfn 6481  wf 6482  cfv 6486  1st c1st 7929  2nd c2nd 7930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-1st 7931  df-2nd 7932
This theorem is referenced by:  fparlem4  8055
  Copyright terms: Public domain W3C validator