| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fparlem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for fpar 8098. (Contributed by NM, 22-Dec-2008.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| fparlem2 | ⊢ (◡(2nd ↾ (V × V)) “ {𝑦}) = (V × {𝑦}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvres 6880 | . . . . . 6 ⊢ (𝑥 ∈ (V × V) → ((2nd ↾ (V × V))‘𝑥) = (2nd ‘𝑥)) | |
| 2 | 1 | eqeq1d 2732 | . . . . 5 ⊢ (𝑥 ∈ (V × V) → (((2nd ↾ (V × V))‘𝑥) = 𝑦 ↔ (2nd ‘𝑥) = 𝑦)) |
| 3 | vex 3454 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 4 | 3 | elsn2 4632 | . . . . . 6 ⊢ ((2nd ‘𝑥) ∈ {𝑦} ↔ (2nd ‘𝑥) = 𝑦) |
| 5 | fvex 6874 | . . . . . . 7 ⊢ (1st ‘𝑥) ∈ V | |
| 6 | 5 | biantrur 530 | . . . . . 6 ⊢ ((2nd ‘𝑥) ∈ {𝑦} ↔ ((1st ‘𝑥) ∈ V ∧ (2nd ‘𝑥) ∈ {𝑦})) |
| 7 | 4, 6 | bitr3i 277 | . . . . 5 ⊢ ((2nd ‘𝑥) = 𝑦 ↔ ((1st ‘𝑥) ∈ V ∧ (2nd ‘𝑥) ∈ {𝑦})) |
| 8 | 2, 7 | bitrdi 287 | . . . 4 ⊢ (𝑥 ∈ (V × V) → (((2nd ↾ (V × V))‘𝑥) = 𝑦 ↔ ((1st ‘𝑥) ∈ V ∧ (2nd ‘𝑥) ∈ {𝑦}))) |
| 9 | 8 | pm5.32i 574 | . . 3 ⊢ ((𝑥 ∈ (V × V) ∧ ((2nd ↾ (V × V))‘𝑥) = 𝑦) ↔ (𝑥 ∈ (V × V) ∧ ((1st ‘𝑥) ∈ V ∧ (2nd ‘𝑥) ∈ {𝑦}))) |
| 10 | f2ndres 7996 | . . . 4 ⊢ (2nd ↾ (V × V)):(V × V)⟶V | |
| 11 | ffn 6691 | . . . 4 ⊢ ((2nd ↾ (V × V)):(V × V)⟶V → (2nd ↾ (V × V)) Fn (V × V)) | |
| 12 | fniniseg 7035 | . . . 4 ⊢ ((2nd ↾ (V × V)) Fn (V × V) → (𝑥 ∈ (◡(2nd ↾ (V × V)) “ {𝑦}) ↔ (𝑥 ∈ (V × V) ∧ ((2nd ↾ (V × V))‘𝑥) = 𝑦))) | |
| 13 | 10, 11, 12 | mp2b 10 | . . 3 ⊢ (𝑥 ∈ (◡(2nd ↾ (V × V)) “ {𝑦}) ↔ (𝑥 ∈ (V × V) ∧ ((2nd ↾ (V × V))‘𝑥) = 𝑦)) |
| 14 | elxp7 8006 | . . 3 ⊢ (𝑥 ∈ (V × {𝑦}) ↔ (𝑥 ∈ (V × V) ∧ ((1st ‘𝑥) ∈ V ∧ (2nd ‘𝑥) ∈ {𝑦}))) | |
| 15 | 9, 13, 14 | 3bitr4i 303 | . 2 ⊢ (𝑥 ∈ (◡(2nd ↾ (V × V)) “ {𝑦}) ↔ 𝑥 ∈ (V × {𝑦})) |
| 16 | 15 | eqriv 2727 | 1 ⊢ (◡(2nd ↾ (V × V)) “ {𝑦}) = (V × {𝑦}) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 {csn 4592 × cxp 5639 ◡ccnv 5640 ↾ cres 5643 “ cima 5644 Fn wfn 6509 ⟶wf 6510 ‘cfv 6514 1st c1st 7969 2nd c2nd 7970 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-1st 7971 df-2nd 7972 |
| This theorem is referenced by: fparlem4 8097 |
| Copyright terms: Public domain | W3C validator |