| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fparlem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for fpar 8115. (Contributed by NM, 22-Dec-2008.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| fparlem2 | ⊢ (◡(2nd ↾ (V × V)) “ {𝑦}) = (V × {𝑦}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvres 6895 | . . . . . 6 ⊢ (𝑥 ∈ (V × V) → ((2nd ↾ (V × V))‘𝑥) = (2nd ‘𝑥)) | |
| 2 | 1 | eqeq1d 2737 | . . . . 5 ⊢ (𝑥 ∈ (V × V) → (((2nd ↾ (V × V))‘𝑥) = 𝑦 ↔ (2nd ‘𝑥) = 𝑦)) |
| 3 | vex 3463 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 4 | 3 | elsn2 4641 | . . . . . 6 ⊢ ((2nd ‘𝑥) ∈ {𝑦} ↔ (2nd ‘𝑥) = 𝑦) |
| 5 | fvex 6889 | . . . . . . 7 ⊢ (1st ‘𝑥) ∈ V | |
| 6 | 5 | biantrur 530 | . . . . . 6 ⊢ ((2nd ‘𝑥) ∈ {𝑦} ↔ ((1st ‘𝑥) ∈ V ∧ (2nd ‘𝑥) ∈ {𝑦})) |
| 7 | 4, 6 | bitr3i 277 | . . . . 5 ⊢ ((2nd ‘𝑥) = 𝑦 ↔ ((1st ‘𝑥) ∈ V ∧ (2nd ‘𝑥) ∈ {𝑦})) |
| 8 | 2, 7 | bitrdi 287 | . . . 4 ⊢ (𝑥 ∈ (V × V) → (((2nd ↾ (V × V))‘𝑥) = 𝑦 ↔ ((1st ‘𝑥) ∈ V ∧ (2nd ‘𝑥) ∈ {𝑦}))) |
| 9 | 8 | pm5.32i 574 | . . 3 ⊢ ((𝑥 ∈ (V × V) ∧ ((2nd ↾ (V × V))‘𝑥) = 𝑦) ↔ (𝑥 ∈ (V × V) ∧ ((1st ‘𝑥) ∈ V ∧ (2nd ‘𝑥) ∈ {𝑦}))) |
| 10 | f2ndres 8013 | . . . 4 ⊢ (2nd ↾ (V × V)):(V × V)⟶V | |
| 11 | ffn 6706 | . . . 4 ⊢ ((2nd ↾ (V × V)):(V × V)⟶V → (2nd ↾ (V × V)) Fn (V × V)) | |
| 12 | fniniseg 7050 | . . . 4 ⊢ ((2nd ↾ (V × V)) Fn (V × V) → (𝑥 ∈ (◡(2nd ↾ (V × V)) “ {𝑦}) ↔ (𝑥 ∈ (V × V) ∧ ((2nd ↾ (V × V))‘𝑥) = 𝑦))) | |
| 13 | 10, 11, 12 | mp2b 10 | . . 3 ⊢ (𝑥 ∈ (◡(2nd ↾ (V × V)) “ {𝑦}) ↔ (𝑥 ∈ (V × V) ∧ ((2nd ↾ (V × V))‘𝑥) = 𝑦)) |
| 14 | elxp7 8023 | . . 3 ⊢ (𝑥 ∈ (V × {𝑦}) ↔ (𝑥 ∈ (V × V) ∧ ((1st ‘𝑥) ∈ V ∧ (2nd ‘𝑥) ∈ {𝑦}))) | |
| 15 | 9, 13, 14 | 3bitr4i 303 | . 2 ⊢ (𝑥 ∈ (◡(2nd ↾ (V × V)) “ {𝑦}) ↔ 𝑥 ∈ (V × {𝑦})) |
| 16 | 15 | eqriv 2732 | 1 ⊢ (◡(2nd ↾ (V × V)) “ {𝑦}) = (V × {𝑦}) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3459 {csn 4601 × cxp 5652 ◡ccnv 5653 ↾ cres 5656 “ cima 5657 Fn wfn 6526 ⟶wf 6527 ‘cfv 6531 1st c1st 7986 2nd c2nd 7987 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 df-1st 7988 df-2nd 7989 |
| This theorem is referenced by: fparlem4 8114 |
| Copyright terms: Public domain | W3C validator |