MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fparlem2 Structured version   Visualization version   GIF version

Theorem fparlem2 7953
Description: Lemma for fpar 7956. (Contributed by NM, 22-Dec-2008.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
fparlem2 ((2nd ↾ (V × V)) “ {𝑦}) = (V × {𝑦})

Proof of Theorem fparlem2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fvres 6793 . . . . . 6 (𝑥 ∈ (V × V) → ((2nd ↾ (V × V))‘𝑥) = (2nd𝑥))
21eqeq1d 2740 . . . . 5 (𝑥 ∈ (V × V) → (((2nd ↾ (V × V))‘𝑥) = 𝑦 ↔ (2nd𝑥) = 𝑦))
3 vex 3436 . . . . . . 7 𝑦 ∈ V
43elsn2 4600 . . . . . 6 ((2nd𝑥) ∈ {𝑦} ↔ (2nd𝑥) = 𝑦)
5 fvex 6787 . . . . . . 7 (1st𝑥) ∈ V
65biantrur 531 . . . . . 6 ((2nd𝑥) ∈ {𝑦} ↔ ((1st𝑥) ∈ V ∧ (2nd𝑥) ∈ {𝑦}))
74, 6bitr3i 276 . . . . 5 ((2nd𝑥) = 𝑦 ↔ ((1st𝑥) ∈ V ∧ (2nd𝑥) ∈ {𝑦}))
82, 7bitrdi 287 . . . 4 (𝑥 ∈ (V × V) → (((2nd ↾ (V × V))‘𝑥) = 𝑦 ↔ ((1st𝑥) ∈ V ∧ (2nd𝑥) ∈ {𝑦})))
98pm5.32i 575 . . 3 ((𝑥 ∈ (V × V) ∧ ((2nd ↾ (V × V))‘𝑥) = 𝑦) ↔ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ V ∧ (2nd𝑥) ∈ {𝑦})))
10 f2ndres 7856 . . . 4 (2nd ↾ (V × V)):(V × V)⟶V
11 ffn 6600 . . . 4 ((2nd ↾ (V × V)):(V × V)⟶V → (2nd ↾ (V × V)) Fn (V × V))
12 fniniseg 6937 . . . 4 ((2nd ↾ (V × V)) Fn (V × V) → (𝑥 ∈ ((2nd ↾ (V × V)) “ {𝑦}) ↔ (𝑥 ∈ (V × V) ∧ ((2nd ↾ (V × V))‘𝑥) = 𝑦)))
1310, 11, 12mp2b 10 . . 3 (𝑥 ∈ ((2nd ↾ (V × V)) “ {𝑦}) ↔ (𝑥 ∈ (V × V) ∧ ((2nd ↾ (V × V))‘𝑥) = 𝑦))
14 elxp7 7866 . . 3 (𝑥 ∈ (V × {𝑦}) ↔ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ V ∧ (2nd𝑥) ∈ {𝑦})))
159, 13, 143bitr4i 303 . 2 (𝑥 ∈ ((2nd ↾ (V × V)) “ {𝑦}) ↔ 𝑥 ∈ (V × {𝑦}))
1615eqriv 2735 1 ((2nd ↾ (V × V)) “ {𝑦}) = (V × {𝑦})
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  {csn 4561   × cxp 5587  ccnv 5588  cres 5591  cima 5592   Fn wfn 6428  wf 6429  cfv 6433  1st c1st 7829  2nd c2nd 7830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-1st 7831  df-2nd 7832
This theorem is referenced by:  fparlem4  7955
  Copyright terms: Public domain W3C validator