Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fparlem2 | Structured version Visualization version GIF version |
Description: Lemma for fpar 7927. (Contributed by NM, 22-Dec-2008.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
fparlem2 | ⊢ (◡(2nd ↾ (V × V)) “ {𝑦}) = (V × {𝑦}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvres 6775 | . . . . . 6 ⊢ (𝑥 ∈ (V × V) → ((2nd ↾ (V × V))‘𝑥) = (2nd ‘𝑥)) | |
2 | 1 | eqeq1d 2740 | . . . . 5 ⊢ (𝑥 ∈ (V × V) → (((2nd ↾ (V × V))‘𝑥) = 𝑦 ↔ (2nd ‘𝑥) = 𝑦)) |
3 | vex 3426 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
4 | 3 | elsn2 4597 | . . . . . 6 ⊢ ((2nd ‘𝑥) ∈ {𝑦} ↔ (2nd ‘𝑥) = 𝑦) |
5 | fvex 6769 | . . . . . . 7 ⊢ (1st ‘𝑥) ∈ V | |
6 | 5 | biantrur 530 | . . . . . 6 ⊢ ((2nd ‘𝑥) ∈ {𝑦} ↔ ((1st ‘𝑥) ∈ V ∧ (2nd ‘𝑥) ∈ {𝑦})) |
7 | 4, 6 | bitr3i 276 | . . . . 5 ⊢ ((2nd ‘𝑥) = 𝑦 ↔ ((1st ‘𝑥) ∈ V ∧ (2nd ‘𝑥) ∈ {𝑦})) |
8 | 2, 7 | bitrdi 286 | . . . 4 ⊢ (𝑥 ∈ (V × V) → (((2nd ↾ (V × V))‘𝑥) = 𝑦 ↔ ((1st ‘𝑥) ∈ V ∧ (2nd ‘𝑥) ∈ {𝑦}))) |
9 | 8 | pm5.32i 574 | . . 3 ⊢ ((𝑥 ∈ (V × V) ∧ ((2nd ↾ (V × V))‘𝑥) = 𝑦) ↔ (𝑥 ∈ (V × V) ∧ ((1st ‘𝑥) ∈ V ∧ (2nd ‘𝑥) ∈ {𝑦}))) |
10 | f2ndres 7829 | . . . 4 ⊢ (2nd ↾ (V × V)):(V × V)⟶V | |
11 | ffn 6584 | . . . 4 ⊢ ((2nd ↾ (V × V)):(V × V)⟶V → (2nd ↾ (V × V)) Fn (V × V)) | |
12 | fniniseg 6919 | . . . 4 ⊢ ((2nd ↾ (V × V)) Fn (V × V) → (𝑥 ∈ (◡(2nd ↾ (V × V)) “ {𝑦}) ↔ (𝑥 ∈ (V × V) ∧ ((2nd ↾ (V × V))‘𝑥) = 𝑦))) | |
13 | 10, 11, 12 | mp2b 10 | . . 3 ⊢ (𝑥 ∈ (◡(2nd ↾ (V × V)) “ {𝑦}) ↔ (𝑥 ∈ (V × V) ∧ ((2nd ↾ (V × V))‘𝑥) = 𝑦)) |
14 | elxp7 7839 | . . 3 ⊢ (𝑥 ∈ (V × {𝑦}) ↔ (𝑥 ∈ (V × V) ∧ ((1st ‘𝑥) ∈ V ∧ (2nd ‘𝑥) ∈ {𝑦}))) | |
15 | 9, 13, 14 | 3bitr4i 302 | . 2 ⊢ (𝑥 ∈ (◡(2nd ↾ (V × V)) “ {𝑦}) ↔ 𝑥 ∈ (V × {𝑦})) |
16 | 15 | eqriv 2735 | 1 ⊢ (◡(2nd ↾ (V × V)) “ {𝑦}) = (V × {𝑦}) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 {csn 4558 × cxp 5578 ◡ccnv 5579 ↾ cres 5582 “ cima 5583 Fn wfn 6413 ⟶wf 6414 ‘cfv 6418 1st c1st 7802 2nd c2nd 7803 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-1st 7804 df-2nd 7805 |
This theorem is referenced by: fparlem4 7926 |
Copyright terms: Public domain | W3C validator |