MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fparlem2 Structured version   Visualization version   GIF version

Theorem fparlem2 8092
Description: Lemma for fpar 8095. (Contributed by NM, 22-Dec-2008.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
fparlem2 ((2nd ↾ (V × V)) “ {𝑦}) = (V × {𝑦})

Proof of Theorem fparlem2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fvres 6877 . . . . . 6 (𝑥 ∈ (V × V) → ((2nd ↾ (V × V))‘𝑥) = (2nd𝑥))
21eqeq1d 2731 . . . . 5 (𝑥 ∈ (V × V) → (((2nd ↾ (V × V))‘𝑥) = 𝑦 ↔ (2nd𝑥) = 𝑦))
3 vex 3451 . . . . . . 7 𝑦 ∈ V
43elsn2 4629 . . . . . 6 ((2nd𝑥) ∈ {𝑦} ↔ (2nd𝑥) = 𝑦)
5 fvex 6871 . . . . . . 7 (1st𝑥) ∈ V
65biantrur 530 . . . . . 6 ((2nd𝑥) ∈ {𝑦} ↔ ((1st𝑥) ∈ V ∧ (2nd𝑥) ∈ {𝑦}))
74, 6bitr3i 277 . . . . 5 ((2nd𝑥) = 𝑦 ↔ ((1st𝑥) ∈ V ∧ (2nd𝑥) ∈ {𝑦}))
82, 7bitrdi 287 . . . 4 (𝑥 ∈ (V × V) → (((2nd ↾ (V × V))‘𝑥) = 𝑦 ↔ ((1st𝑥) ∈ V ∧ (2nd𝑥) ∈ {𝑦})))
98pm5.32i 574 . . 3 ((𝑥 ∈ (V × V) ∧ ((2nd ↾ (V × V))‘𝑥) = 𝑦) ↔ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ V ∧ (2nd𝑥) ∈ {𝑦})))
10 f2ndres 7993 . . . 4 (2nd ↾ (V × V)):(V × V)⟶V
11 ffn 6688 . . . 4 ((2nd ↾ (V × V)):(V × V)⟶V → (2nd ↾ (V × V)) Fn (V × V))
12 fniniseg 7032 . . . 4 ((2nd ↾ (V × V)) Fn (V × V) → (𝑥 ∈ ((2nd ↾ (V × V)) “ {𝑦}) ↔ (𝑥 ∈ (V × V) ∧ ((2nd ↾ (V × V))‘𝑥) = 𝑦)))
1310, 11, 12mp2b 10 . . 3 (𝑥 ∈ ((2nd ↾ (V × V)) “ {𝑦}) ↔ (𝑥 ∈ (V × V) ∧ ((2nd ↾ (V × V))‘𝑥) = 𝑦))
14 elxp7 8003 . . 3 (𝑥 ∈ (V × {𝑦}) ↔ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ V ∧ (2nd𝑥) ∈ {𝑦})))
159, 13, 143bitr4i 303 . 2 (𝑥 ∈ ((2nd ↾ (V × V)) “ {𝑦}) ↔ 𝑥 ∈ (V × {𝑦}))
1615eqriv 2726 1 ((2nd ↾ (V × V)) “ {𝑦}) = (V × {𝑦})
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  {csn 4589   × cxp 5636  ccnv 5637  cres 5640  cima 5641   Fn wfn 6506  wf 6507  cfv 6511  1st c1st 7966  2nd c2nd 7967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-1st 7968  df-2nd 7969
This theorem is referenced by:  fparlem4  8094
  Copyright terms: Public domain W3C validator