MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fparlem1 Structured version   Visualization version   GIF version

Theorem fparlem1 7880
Description: Lemma for fpar 7884. (Contributed by NM, 22-Dec-2008.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
fparlem1 ((1st ↾ (V × V)) “ {𝑥}) = ({𝑥} × V)

Proof of Theorem fparlem1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fvres 6736 . . . . . 6 (𝑦 ∈ (V × V) → ((1st ↾ (V × V))‘𝑦) = (1st𝑦))
21eqeq1d 2739 . . . . 5 (𝑦 ∈ (V × V) → (((1st ↾ (V × V))‘𝑦) = 𝑥 ↔ (1st𝑦) = 𝑥))
3 vex 3412 . . . . . . 7 𝑥 ∈ V
43elsn2 4580 . . . . . 6 ((1st𝑦) ∈ {𝑥} ↔ (1st𝑦) = 𝑥)
5 fvex 6730 . . . . . . 7 (2nd𝑦) ∈ V
65biantru 533 . . . . . 6 ((1st𝑦) ∈ {𝑥} ↔ ((1st𝑦) ∈ {𝑥} ∧ (2nd𝑦) ∈ V))
74, 6bitr3i 280 . . . . 5 ((1st𝑦) = 𝑥 ↔ ((1st𝑦) ∈ {𝑥} ∧ (2nd𝑦) ∈ V))
82, 7bitrdi 290 . . . 4 (𝑦 ∈ (V × V) → (((1st ↾ (V × V))‘𝑦) = 𝑥 ↔ ((1st𝑦) ∈ {𝑥} ∧ (2nd𝑦) ∈ V)))
98pm5.32i 578 . . 3 ((𝑦 ∈ (V × V) ∧ ((1st ↾ (V × V))‘𝑦) = 𝑥) ↔ (𝑦 ∈ (V × V) ∧ ((1st𝑦) ∈ {𝑥} ∧ (2nd𝑦) ∈ V)))
10 f1stres 7785 . . . 4 (1st ↾ (V × V)):(V × V)⟶V
11 ffn 6545 . . . 4 ((1st ↾ (V × V)):(V × V)⟶V → (1st ↾ (V × V)) Fn (V × V))
12 fniniseg 6880 . . . 4 ((1st ↾ (V × V)) Fn (V × V) → (𝑦 ∈ ((1st ↾ (V × V)) “ {𝑥}) ↔ (𝑦 ∈ (V × V) ∧ ((1st ↾ (V × V))‘𝑦) = 𝑥)))
1310, 11, 12mp2b 10 . . 3 (𝑦 ∈ ((1st ↾ (V × V)) “ {𝑥}) ↔ (𝑦 ∈ (V × V) ∧ ((1st ↾ (V × V))‘𝑦) = 𝑥))
14 elxp7 7796 . . 3 (𝑦 ∈ ({𝑥} × V) ↔ (𝑦 ∈ (V × V) ∧ ((1st𝑦) ∈ {𝑥} ∧ (2nd𝑦) ∈ V)))
159, 13, 143bitr4i 306 . 2 (𝑦 ∈ ((1st ↾ (V × V)) “ {𝑥}) ↔ 𝑦 ∈ ({𝑥} × V))
1615eqriv 2734 1 ((1st ↾ (V × V)) “ {𝑥}) = ({𝑥} × V)
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399   = wceq 1543  wcel 2110  Vcvv 3408  {csn 4541   × cxp 5549  ccnv 5550  cres 5553  cima 5554   Fn wfn 6375  wf 6376  cfv 6380  1st c1st 7759  2nd c2nd 7760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-fv 6388  df-1st 7761  df-2nd 7762
This theorem is referenced by:  fparlem3  7882
  Copyright terms: Public domain W3C validator