MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fparlem1 Structured version   Visualization version   GIF version

Theorem fparlem1 8037
Description: Lemma for fpar 8041. (Contributed by NM, 22-Dec-2008.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
fparlem1 ((1st ↾ (V × V)) “ {𝑥}) = ({𝑥} × V)

Proof of Theorem fparlem1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fvres 6836 . . . . . 6 (𝑦 ∈ (V × V) → ((1st ↾ (V × V))‘𝑦) = (1st𝑦))
21eqeq1d 2733 . . . . 5 (𝑦 ∈ (V × V) → (((1st ↾ (V × V))‘𝑦) = 𝑥 ↔ (1st𝑦) = 𝑥))
3 vex 3440 . . . . . . 7 𝑥 ∈ V
43elsn2 4613 . . . . . 6 ((1st𝑦) ∈ {𝑥} ↔ (1st𝑦) = 𝑥)
5 fvex 6830 . . . . . . 7 (2nd𝑦) ∈ V
65biantru 529 . . . . . 6 ((1st𝑦) ∈ {𝑥} ↔ ((1st𝑦) ∈ {𝑥} ∧ (2nd𝑦) ∈ V))
74, 6bitr3i 277 . . . . 5 ((1st𝑦) = 𝑥 ↔ ((1st𝑦) ∈ {𝑥} ∧ (2nd𝑦) ∈ V))
82, 7bitrdi 287 . . . 4 (𝑦 ∈ (V × V) → (((1st ↾ (V × V))‘𝑦) = 𝑥 ↔ ((1st𝑦) ∈ {𝑥} ∧ (2nd𝑦) ∈ V)))
98pm5.32i 574 . . 3 ((𝑦 ∈ (V × V) ∧ ((1st ↾ (V × V))‘𝑦) = 𝑥) ↔ (𝑦 ∈ (V × V) ∧ ((1st𝑦) ∈ {𝑥} ∧ (2nd𝑦) ∈ V)))
10 f1stres 7940 . . . 4 (1st ↾ (V × V)):(V × V)⟶V
11 ffn 6646 . . . 4 ((1st ↾ (V × V)):(V × V)⟶V → (1st ↾ (V × V)) Fn (V × V))
12 fniniseg 6988 . . . 4 ((1st ↾ (V × V)) Fn (V × V) → (𝑦 ∈ ((1st ↾ (V × V)) “ {𝑥}) ↔ (𝑦 ∈ (V × V) ∧ ((1st ↾ (V × V))‘𝑦) = 𝑥)))
1310, 11, 12mp2b 10 . . 3 (𝑦 ∈ ((1st ↾ (V × V)) “ {𝑥}) ↔ (𝑦 ∈ (V × V) ∧ ((1st ↾ (V × V))‘𝑦) = 𝑥))
14 elxp7 7951 . . 3 (𝑦 ∈ ({𝑥} × V) ↔ (𝑦 ∈ (V × V) ∧ ((1st𝑦) ∈ {𝑥} ∧ (2nd𝑦) ∈ V)))
159, 13, 143bitr4i 303 . 2 (𝑦 ∈ ((1st ↾ (V × V)) “ {𝑥}) ↔ 𝑦 ∈ ({𝑥} × V))
1615eqriv 2728 1 ((1st ↾ (V × V)) “ {𝑥}) = ({𝑥} × V)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  {csn 4571   × cxp 5609  ccnv 5610  cres 5613  cima 5614   Fn wfn 6471  wf 6472  cfv 6476  1st c1st 7914  2nd c2nd 7915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-fv 6484  df-1st 7916  df-2nd 7917
This theorem is referenced by:  fparlem3  8039
  Copyright terms: Public domain W3C validator