![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fparlem1 | Structured version Visualization version GIF version |
Description: Lemma for fpar 8140. (Contributed by NM, 22-Dec-2008.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
fparlem1 | ⊢ (◡(1st ↾ (V × V)) “ {𝑥}) = ({𝑥} × V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvres 6926 | . . . . . 6 ⊢ (𝑦 ∈ (V × V) → ((1st ↾ (V × V))‘𝑦) = (1st ‘𝑦)) | |
2 | 1 | eqeq1d 2737 | . . . . 5 ⊢ (𝑦 ∈ (V × V) → (((1st ↾ (V × V))‘𝑦) = 𝑥 ↔ (1st ‘𝑦) = 𝑥)) |
3 | vex 3482 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
4 | 3 | elsn2 4670 | . . . . . 6 ⊢ ((1st ‘𝑦) ∈ {𝑥} ↔ (1st ‘𝑦) = 𝑥) |
5 | fvex 6920 | . . . . . . 7 ⊢ (2nd ‘𝑦) ∈ V | |
6 | 5 | biantru 529 | . . . . . 6 ⊢ ((1st ‘𝑦) ∈ {𝑥} ↔ ((1st ‘𝑦) ∈ {𝑥} ∧ (2nd ‘𝑦) ∈ V)) |
7 | 4, 6 | bitr3i 277 | . . . . 5 ⊢ ((1st ‘𝑦) = 𝑥 ↔ ((1st ‘𝑦) ∈ {𝑥} ∧ (2nd ‘𝑦) ∈ V)) |
8 | 2, 7 | bitrdi 287 | . . . 4 ⊢ (𝑦 ∈ (V × V) → (((1st ↾ (V × V))‘𝑦) = 𝑥 ↔ ((1st ‘𝑦) ∈ {𝑥} ∧ (2nd ‘𝑦) ∈ V))) |
9 | 8 | pm5.32i 574 | . . 3 ⊢ ((𝑦 ∈ (V × V) ∧ ((1st ↾ (V × V))‘𝑦) = 𝑥) ↔ (𝑦 ∈ (V × V) ∧ ((1st ‘𝑦) ∈ {𝑥} ∧ (2nd ‘𝑦) ∈ V))) |
10 | f1stres 8037 | . . . 4 ⊢ (1st ↾ (V × V)):(V × V)⟶V | |
11 | ffn 6737 | . . . 4 ⊢ ((1st ↾ (V × V)):(V × V)⟶V → (1st ↾ (V × V)) Fn (V × V)) | |
12 | fniniseg 7080 | . . . 4 ⊢ ((1st ↾ (V × V)) Fn (V × V) → (𝑦 ∈ (◡(1st ↾ (V × V)) “ {𝑥}) ↔ (𝑦 ∈ (V × V) ∧ ((1st ↾ (V × V))‘𝑦) = 𝑥))) | |
13 | 10, 11, 12 | mp2b 10 | . . 3 ⊢ (𝑦 ∈ (◡(1st ↾ (V × V)) “ {𝑥}) ↔ (𝑦 ∈ (V × V) ∧ ((1st ↾ (V × V))‘𝑦) = 𝑥)) |
14 | elxp7 8048 | . . 3 ⊢ (𝑦 ∈ ({𝑥} × V) ↔ (𝑦 ∈ (V × V) ∧ ((1st ‘𝑦) ∈ {𝑥} ∧ (2nd ‘𝑦) ∈ V))) | |
15 | 9, 13, 14 | 3bitr4i 303 | . 2 ⊢ (𝑦 ∈ (◡(1st ↾ (V × V)) “ {𝑥}) ↔ 𝑦 ∈ ({𝑥} × V)) |
16 | 15 | eqriv 2732 | 1 ⊢ (◡(1st ↾ (V × V)) “ {𝑥}) = ({𝑥} × V) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 Vcvv 3478 {csn 4631 × cxp 5687 ◡ccnv 5688 ↾ cres 5691 “ cima 5692 Fn wfn 6558 ⟶wf 6559 ‘cfv 6563 1st c1st 8011 2nd c2nd 8012 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 df-1st 8013 df-2nd 8014 |
This theorem is referenced by: fparlem3 8138 |
Copyright terms: Public domain | W3C validator |