MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fparlem1 Structured version   Visualization version   GIF version

Theorem fparlem1 8153
Description: Lemma for fpar 8157. (Contributed by NM, 22-Dec-2008.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
fparlem1 ((1st ↾ (V × V)) “ {𝑥}) = ({𝑥} × V)

Proof of Theorem fparlem1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fvres 6939 . . . . . 6 (𝑦 ∈ (V × V) → ((1st ↾ (V × V))‘𝑦) = (1st𝑦))
21eqeq1d 2742 . . . . 5 (𝑦 ∈ (V × V) → (((1st ↾ (V × V))‘𝑦) = 𝑥 ↔ (1st𝑦) = 𝑥))
3 vex 3492 . . . . . . 7 𝑥 ∈ V
43elsn2 4687 . . . . . 6 ((1st𝑦) ∈ {𝑥} ↔ (1st𝑦) = 𝑥)
5 fvex 6933 . . . . . . 7 (2nd𝑦) ∈ V
65biantru 529 . . . . . 6 ((1st𝑦) ∈ {𝑥} ↔ ((1st𝑦) ∈ {𝑥} ∧ (2nd𝑦) ∈ V))
74, 6bitr3i 277 . . . . 5 ((1st𝑦) = 𝑥 ↔ ((1st𝑦) ∈ {𝑥} ∧ (2nd𝑦) ∈ V))
82, 7bitrdi 287 . . . 4 (𝑦 ∈ (V × V) → (((1st ↾ (V × V))‘𝑦) = 𝑥 ↔ ((1st𝑦) ∈ {𝑥} ∧ (2nd𝑦) ∈ V)))
98pm5.32i 574 . . 3 ((𝑦 ∈ (V × V) ∧ ((1st ↾ (V × V))‘𝑦) = 𝑥) ↔ (𝑦 ∈ (V × V) ∧ ((1st𝑦) ∈ {𝑥} ∧ (2nd𝑦) ∈ V)))
10 f1stres 8054 . . . 4 (1st ↾ (V × V)):(V × V)⟶V
11 ffn 6747 . . . 4 ((1st ↾ (V × V)):(V × V)⟶V → (1st ↾ (V × V)) Fn (V × V))
12 fniniseg 7093 . . . 4 ((1st ↾ (V × V)) Fn (V × V) → (𝑦 ∈ ((1st ↾ (V × V)) “ {𝑥}) ↔ (𝑦 ∈ (V × V) ∧ ((1st ↾ (V × V))‘𝑦) = 𝑥)))
1310, 11, 12mp2b 10 . . 3 (𝑦 ∈ ((1st ↾ (V × V)) “ {𝑥}) ↔ (𝑦 ∈ (V × V) ∧ ((1st ↾ (V × V))‘𝑦) = 𝑥))
14 elxp7 8065 . . 3 (𝑦 ∈ ({𝑥} × V) ↔ (𝑦 ∈ (V × V) ∧ ((1st𝑦) ∈ {𝑥} ∧ (2nd𝑦) ∈ V)))
159, 13, 143bitr4i 303 . 2 (𝑦 ∈ ((1st ↾ (V × V)) “ {𝑥}) ↔ 𝑦 ∈ ({𝑥} × V))
1615eqriv 2737 1 ((1st ↾ (V × V)) “ {𝑥}) = ({𝑥} × V)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  {csn 4648   × cxp 5698  ccnv 5699  cres 5702  cima 5703   Fn wfn 6568  wf 6569  cfv 6573  1st c1st 8028  2nd c2nd 8029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-1st 8030  df-2nd 8031
This theorem is referenced by:  fparlem3  8155
  Copyright terms: Public domain W3C validator