MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fparlem1 Structured version   Visualization version   GIF version

Theorem fparlem1 8097
Description: Lemma for fpar 8101. (Contributed by NM, 22-Dec-2008.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
fparlem1 ((1st ↾ (V × V)) “ {𝑥}) = ({𝑥} × V)

Proof of Theorem fparlem1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fvres 6910 . . . . . 6 (𝑦 ∈ (V × V) → ((1st ↾ (V × V))‘𝑦) = (1st𝑦))
21eqeq1d 2734 . . . . 5 (𝑦 ∈ (V × V) → (((1st ↾ (V × V))‘𝑦) = 𝑥 ↔ (1st𝑦) = 𝑥))
3 vex 3478 . . . . . . 7 𝑥 ∈ V
43elsn2 4667 . . . . . 6 ((1st𝑦) ∈ {𝑥} ↔ (1st𝑦) = 𝑥)
5 fvex 6904 . . . . . . 7 (2nd𝑦) ∈ V
65biantru 530 . . . . . 6 ((1st𝑦) ∈ {𝑥} ↔ ((1st𝑦) ∈ {𝑥} ∧ (2nd𝑦) ∈ V))
74, 6bitr3i 276 . . . . 5 ((1st𝑦) = 𝑥 ↔ ((1st𝑦) ∈ {𝑥} ∧ (2nd𝑦) ∈ V))
82, 7bitrdi 286 . . . 4 (𝑦 ∈ (V × V) → (((1st ↾ (V × V))‘𝑦) = 𝑥 ↔ ((1st𝑦) ∈ {𝑥} ∧ (2nd𝑦) ∈ V)))
98pm5.32i 575 . . 3 ((𝑦 ∈ (V × V) ∧ ((1st ↾ (V × V))‘𝑦) = 𝑥) ↔ (𝑦 ∈ (V × V) ∧ ((1st𝑦) ∈ {𝑥} ∧ (2nd𝑦) ∈ V)))
10 f1stres 7998 . . . 4 (1st ↾ (V × V)):(V × V)⟶V
11 ffn 6717 . . . 4 ((1st ↾ (V × V)):(V × V)⟶V → (1st ↾ (V × V)) Fn (V × V))
12 fniniseg 7061 . . . 4 ((1st ↾ (V × V)) Fn (V × V) → (𝑦 ∈ ((1st ↾ (V × V)) “ {𝑥}) ↔ (𝑦 ∈ (V × V) ∧ ((1st ↾ (V × V))‘𝑦) = 𝑥)))
1310, 11, 12mp2b 10 . . 3 (𝑦 ∈ ((1st ↾ (V × V)) “ {𝑥}) ↔ (𝑦 ∈ (V × V) ∧ ((1st ↾ (V × V))‘𝑦) = 𝑥))
14 elxp7 8009 . . 3 (𝑦 ∈ ({𝑥} × V) ↔ (𝑦 ∈ (V × V) ∧ ((1st𝑦) ∈ {𝑥} ∧ (2nd𝑦) ∈ V)))
159, 13, 143bitr4i 302 . 2 (𝑦 ∈ ((1st ↾ (V × V)) “ {𝑥}) ↔ 𝑦 ∈ ({𝑥} × V))
1615eqriv 2729 1 ((1st ↾ (V × V)) “ {𝑥}) = ({𝑥} × V)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1541  wcel 2106  Vcvv 3474  {csn 4628   × cxp 5674  ccnv 5675  cres 5678  cima 5679   Fn wfn 6538  wf 6539  cfv 6543  1st c1st 7972  2nd c2nd 7973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-1st 7974  df-2nd 7975
This theorem is referenced by:  fparlem3  8099
  Copyright terms: Public domain W3C validator