MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodss Structured version   Visualization version   GIF version

Theorem fprodss 15294
Description: Change the index set to a subset in a finite sum. (Contributed by Scott Fenton, 16-Dec-2017.)
Hypotheses
Ref Expression
fprodss.1 (𝜑𝐴𝐵)
fprodss.2 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
fprodss.3 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 = 1)
fprodss.4 (𝜑𝐵 ∈ Fin)
Assertion
Ref Expression
fprodss (𝜑 → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶)
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝜑,𝑘
Allowed substitution hint:   𝐶(𝑘)

Proof of Theorem fprodss
Dummy variables 𝑓 𝑚 𝑛 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fprodss.1 . . 3 (𝜑𝐴𝐵)
2 sseq2 3941 . . . . 5 (𝐵 = ∅ → (𝐴𝐵𝐴 ⊆ ∅))
3 ss0 4306 . . . . 5 (𝐴 ⊆ ∅ → 𝐴 = ∅)
42, 3syl6bi 256 . . . 4 (𝐵 = ∅ → (𝐴𝐵𝐴 = ∅))
5 prodeq1 15255 . . . . . 6 (𝐴 = ∅ → ∏𝑘𝐴 𝐶 = ∏𝑘 ∈ ∅ 𝐶)
6 prodeq1 15255 . . . . . . 7 (𝐵 = ∅ → ∏𝑘𝐵 𝐶 = ∏𝑘 ∈ ∅ 𝐶)
76eqcomd 2804 . . . . . 6 (𝐵 = ∅ → ∏𝑘 ∈ ∅ 𝐶 = ∏𝑘𝐵 𝐶)
85, 7sylan9eq 2853 . . . . 5 ((𝐴 = ∅ ∧ 𝐵 = ∅) → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶)
98expcom 417 . . . 4 (𝐵 = ∅ → (𝐴 = ∅ → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶))
104, 9syld 47 . . 3 (𝐵 = ∅ → (𝐴𝐵 → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶))
111, 10syl5com 31 . 2 (𝜑 → (𝐵 = ∅ → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶))
12 cnvimass 5916 . . . . . . . . 9 (𝑓𝐴) ⊆ dom 𝑓
13 simprr 772 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)
14 f1of 6590 . . . . . . . . . 10 (𝑓:(1...(♯‘𝐵))–1-1-onto𝐵𝑓:(1...(♯‘𝐵))⟶𝐵)
1513, 14syl 17 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → 𝑓:(1...(♯‘𝐵))⟶𝐵)
1612, 15fssdm 6504 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → (𝑓𝐴) ⊆ (1...(♯‘𝐵)))
17 f1ofn 6591 . . . . . . . . . . . 12 (𝑓:(1...(♯‘𝐵))–1-1-onto𝐵𝑓 Fn (1...(♯‘𝐵)))
18 elpreima 6805 . . . . . . . . . . . 12 (𝑓 Fn (1...(♯‘𝐵)) → (𝑛 ∈ (𝑓𝐴) ↔ (𝑛 ∈ (1...(♯‘𝐵)) ∧ (𝑓𝑛) ∈ 𝐴)))
1913, 17, 183syl 18 . . . . . . . . . . 11 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → (𝑛 ∈ (𝑓𝐴) ↔ (𝑛 ∈ (1...(♯‘𝐵)) ∧ (𝑓𝑛) ∈ 𝐴)))
2015ffvelrnda 6828 . . . . . . . . . . . . 13 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ (1...(♯‘𝐵))) → (𝑓𝑛) ∈ 𝐵)
2120ex 416 . . . . . . . . . . . 12 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → (𝑛 ∈ (1...(♯‘𝐵)) → (𝑓𝑛) ∈ 𝐵))
2221adantrd 495 . . . . . . . . . . 11 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → ((𝑛 ∈ (1...(♯‘𝐵)) ∧ (𝑓𝑛) ∈ 𝐴) → (𝑓𝑛) ∈ 𝐵))
2319, 22sylbid 243 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → (𝑛 ∈ (𝑓𝐴) → (𝑓𝑛) ∈ 𝐵))
2423imp 410 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ (𝑓𝐴)) → (𝑓𝑛) ∈ 𝐵)
25 fprodss.2 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
2625ex 416 . . . . . . . . . . . . . 14 (𝜑 → (𝑘𝐴𝐶 ∈ ℂ))
2726adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑘𝐵) → (𝑘𝐴𝐶 ∈ ℂ))
28 eldif 3891 . . . . . . . . . . . . . . 15 (𝑘 ∈ (𝐵𝐴) ↔ (𝑘𝐵 ∧ ¬ 𝑘𝐴))
29 fprodss.3 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 = 1)
30 ax-1cn 10584 . . . . . . . . . . . . . . . 16 1 ∈ ℂ
3129, 30eqeltrdi 2898 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 ∈ ℂ)
3228, 31sylan2br 597 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘𝐵 ∧ ¬ 𝑘𝐴)) → 𝐶 ∈ ℂ)
3332expr 460 . . . . . . . . . . . . 13 ((𝜑𝑘𝐵) → (¬ 𝑘𝐴𝐶 ∈ ℂ))
3427, 33pm2.61d 182 . . . . . . . . . . . 12 ((𝜑𝑘𝐵) → 𝐶 ∈ ℂ)
3534adantlr 714 . . . . . . . . . . 11 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑘𝐵) → 𝐶 ∈ ℂ)
3635fmpttd 6856 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → (𝑘𝐵𝐶):𝐵⟶ℂ)
3736ffvelrnda 6828 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ (𝑓𝑛) ∈ 𝐵) → ((𝑘𝐵𝐶)‘(𝑓𝑛)) ∈ ℂ)
3824, 37syldan 594 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ (𝑓𝐴)) → ((𝑘𝐵𝐶)‘(𝑓𝑛)) ∈ ℂ)
39 eqid 2798 . . . . . . . . 9 (ℤ‘1) = (ℤ‘1)
40 simprl 770 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → (♯‘𝐵) ∈ ℕ)
41 nnuz 12269 . . . . . . . . . 10 ℕ = (ℤ‘1)
4240, 41eleqtrdi 2900 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → (♯‘𝐵) ∈ (ℤ‘1))
43 ssidd 3938 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → (1...(♯‘𝐵)) ⊆ (1...(♯‘𝐵)))
4439, 42, 43fprodntriv 15288 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → ∃𝑚 ∈ (ℤ‘1)∃𝑦(𝑦 ≠ 0 ∧ seq𝑚( · , (𝑛 ∈ (ℤ‘1) ↦ if(𝑛 ∈ (1...(♯‘𝐵)), ((𝑘𝐵𝐶)‘(𝑓𝑛)), 1))) ⇝ 𝑦))
45 eldifi 4054 . . . . . . . . . . . 12 (𝑛 ∈ ((1...(♯‘𝐵)) ∖ (𝑓𝐴)) → 𝑛 ∈ (1...(♯‘𝐵)))
4645, 20sylan2 595 . . . . . . . . . . 11 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (𝑓𝐴))) → (𝑓𝑛) ∈ 𝐵)
47 eldifn 4055 . . . . . . . . . . . . 13 (𝑛 ∈ ((1...(♯‘𝐵)) ∖ (𝑓𝐴)) → ¬ 𝑛 ∈ (𝑓𝐴))
4847adantl 485 . . . . . . . . . . . 12 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (𝑓𝐴))) → ¬ 𝑛 ∈ (𝑓𝐴))
4945adantl 485 . . . . . . . . . . . . 13 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (𝑓𝐴))) → 𝑛 ∈ (1...(♯‘𝐵)))
5019adantr 484 . . . . . . . . . . . . 13 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (𝑓𝐴))) → (𝑛 ∈ (𝑓𝐴) ↔ (𝑛 ∈ (1...(♯‘𝐵)) ∧ (𝑓𝑛) ∈ 𝐴)))
5149, 50mpbirand 706 . . . . . . . . . . . 12 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (𝑓𝐴))) → (𝑛 ∈ (𝑓𝐴) ↔ (𝑓𝑛) ∈ 𝐴))
5248, 51mtbid 327 . . . . . . . . . . 11 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (𝑓𝐴))) → ¬ (𝑓𝑛) ∈ 𝐴)
5346, 52eldifd 3892 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (𝑓𝐴))) → (𝑓𝑛) ∈ (𝐵𝐴))
54 difss 4059 . . . . . . . . . . . . 13 (𝐵𝐴) ⊆ 𝐵
55 resmpt 5872 . . . . . . . . . . . . 13 ((𝐵𝐴) ⊆ 𝐵 → ((𝑘𝐵𝐶) ↾ (𝐵𝐴)) = (𝑘 ∈ (𝐵𝐴) ↦ 𝐶))
5654, 55ax-mp 5 . . . . . . . . . . . 12 ((𝑘𝐵𝐶) ↾ (𝐵𝐴)) = (𝑘 ∈ (𝐵𝐴) ↦ 𝐶)
5756fveq1i 6646 . . . . . . . . . . 11 (((𝑘𝐵𝐶) ↾ (𝐵𝐴))‘(𝑓𝑛)) = ((𝑘 ∈ (𝐵𝐴) ↦ 𝐶)‘(𝑓𝑛))
58 fvres 6664 . . . . . . . . . . 11 ((𝑓𝑛) ∈ (𝐵𝐴) → (((𝑘𝐵𝐶) ↾ (𝐵𝐴))‘(𝑓𝑛)) = ((𝑘𝐵𝐶)‘(𝑓𝑛)))
5957, 58syl5eqr 2847 . . . . . . . . . 10 ((𝑓𝑛) ∈ (𝐵𝐴) → ((𝑘 ∈ (𝐵𝐴) ↦ 𝐶)‘(𝑓𝑛)) = ((𝑘𝐵𝐶)‘(𝑓𝑛)))
6053, 59syl 17 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (𝑓𝐴))) → ((𝑘 ∈ (𝐵𝐴) ↦ 𝐶)‘(𝑓𝑛)) = ((𝑘𝐵𝐶)‘(𝑓𝑛)))
61 1ex 10626 . . . . . . . . . . . . . . 15 1 ∈ V
6261elsn2 4564 . . . . . . . . . . . . . 14 (𝐶 ∈ {1} ↔ 𝐶 = 1)
6329, 62sylibr 237 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 ∈ {1})
6463fmpttd 6856 . . . . . . . . . . . 12 (𝜑 → (𝑘 ∈ (𝐵𝐴) ↦ 𝐶):(𝐵𝐴)⟶{1})
6564ad2antrr 725 . . . . . . . . . . 11 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (𝑓𝐴))) → (𝑘 ∈ (𝐵𝐴) ↦ 𝐶):(𝐵𝐴)⟶{1})
6665, 53ffvelrnd 6829 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (𝑓𝐴))) → ((𝑘 ∈ (𝐵𝐴) ↦ 𝐶)‘(𝑓𝑛)) ∈ {1})
67 elsni 4542 . . . . . . . . . 10 (((𝑘 ∈ (𝐵𝐴) ↦ 𝐶)‘(𝑓𝑛)) ∈ {1} → ((𝑘 ∈ (𝐵𝐴) ↦ 𝐶)‘(𝑓𝑛)) = 1)
6866, 67syl 17 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (𝑓𝐴))) → ((𝑘 ∈ (𝐵𝐴) ↦ 𝐶)‘(𝑓𝑛)) = 1)
6960, 68eqtr3d 2835 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (𝑓𝐴))) → ((𝑘𝐵𝐶)‘(𝑓𝑛)) = 1)
70 fzssuz 12943 . . . . . . . . 9 (1...(♯‘𝐵)) ⊆ (ℤ‘1)
7170a1i 11 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → (1...(♯‘𝐵)) ⊆ (ℤ‘1))
7216, 38, 44, 69, 71prodss 15293 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → ∏𝑛 ∈ (𝑓𝐴)((𝑘𝐵𝐶)‘(𝑓𝑛)) = ∏𝑛 ∈ (1...(♯‘𝐵))((𝑘𝐵𝐶)‘(𝑓𝑛)))
731adantr 484 . . . . . . . . . . . 12 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → 𝐴𝐵)
7473resmptd 5875 . . . . . . . . . . 11 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → ((𝑘𝐵𝐶) ↾ 𝐴) = (𝑘𝐴𝐶))
7574fveq1d 6647 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → (((𝑘𝐵𝐶) ↾ 𝐴)‘𝑚) = ((𝑘𝐴𝐶)‘𝑚))
76 fvres 6664 . . . . . . . . . 10 (𝑚𝐴 → (((𝑘𝐵𝐶) ↾ 𝐴)‘𝑚) = ((𝑘𝐵𝐶)‘𝑚))
7775, 76sylan9req 2854 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑚𝐴) → ((𝑘𝐴𝐶)‘𝑚) = ((𝑘𝐵𝐶)‘𝑚))
7877prodeq2dv 15269 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → ∏𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = ∏𝑚𝐴 ((𝑘𝐵𝐶)‘𝑚))
79 fveq2 6645 . . . . . . . . 9 (𝑚 = (𝑓𝑛) → ((𝑘𝐵𝐶)‘𝑚) = ((𝑘𝐵𝐶)‘(𝑓𝑛)))
80 fzfid 13336 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → (1...(♯‘𝐵)) ∈ Fin)
8180, 15fisuppfi 8825 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → (𝑓𝐴) ∈ Fin)
82 f1of1 6589 . . . . . . . . . . . 12 (𝑓:(1...(♯‘𝐵))–1-1-onto𝐵𝑓:(1...(♯‘𝐵))–1-1𝐵)
8313, 82syl 17 . . . . . . . . . . 11 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → 𝑓:(1...(♯‘𝐵))–1-1𝐵)
84 f1ores 6604 . . . . . . . . . . 11 ((𝑓:(1...(♯‘𝐵))–1-1𝐵 ∧ (𝑓𝐴) ⊆ (1...(♯‘𝐵))) → (𝑓 ↾ (𝑓𝐴)):(𝑓𝐴)–1-1-onto→(𝑓 “ (𝑓𝐴)))
8583, 16, 84syl2anc 587 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → (𝑓 ↾ (𝑓𝐴)):(𝑓𝐴)–1-1-onto→(𝑓 “ (𝑓𝐴)))
86 f1ofo 6597 . . . . . . . . . . . . 13 (𝑓:(1...(♯‘𝐵))–1-1-onto𝐵𝑓:(1...(♯‘𝐵))–onto𝐵)
8713, 86syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → 𝑓:(1...(♯‘𝐵))–onto𝐵)
88 foimacnv 6607 . . . . . . . . . . . 12 ((𝑓:(1...(♯‘𝐵))–onto𝐵𝐴𝐵) → (𝑓 “ (𝑓𝐴)) = 𝐴)
8987, 73, 88syl2anc 587 . . . . . . . . . . 11 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → (𝑓 “ (𝑓𝐴)) = 𝐴)
9089f1oeq3d 6587 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → ((𝑓 ↾ (𝑓𝐴)):(𝑓𝐴)–1-1-onto→(𝑓 “ (𝑓𝐴)) ↔ (𝑓 ↾ (𝑓𝐴)):(𝑓𝐴)–1-1-onto𝐴))
9185, 90mpbid 235 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → (𝑓 ↾ (𝑓𝐴)):(𝑓𝐴)–1-1-onto𝐴)
92 fvres 6664 . . . . . . . . . 10 (𝑛 ∈ (𝑓𝐴) → ((𝑓 ↾ (𝑓𝐴))‘𝑛) = (𝑓𝑛))
9392adantl 485 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ (𝑓𝐴)) → ((𝑓 ↾ (𝑓𝐴))‘𝑛) = (𝑓𝑛))
9473sselda 3915 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑚𝐴) → 𝑚𝐵)
9536ffvelrnda 6828 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑚𝐵) → ((𝑘𝐵𝐶)‘𝑚) ∈ ℂ)
9694, 95syldan 594 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑚𝐴) → ((𝑘𝐵𝐶)‘𝑚) ∈ ℂ)
9779, 81, 91, 93, 96fprodf1o 15292 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → ∏𝑚𝐴 ((𝑘𝐵𝐶)‘𝑚) = ∏𝑛 ∈ (𝑓𝐴)((𝑘𝐵𝐶)‘(𝑓𝑛)))
9878, 97eqtrd 2833 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → ∏𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = ∏𝑛 ∈ (𝑓𝐴)((𝑘𝐵𝐶)‘(𝑓𝑛)))
99 eqidd 2799 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ (1...(♯‘𝐵))) → (𝑓𝑛) = (𝑓𝑛))
10079, 80, 13, 99, 95fprodf1o 15292 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → ∏𝑚𝐵 ((𝑘𝐵𝐶)‘𝑚) = ∏𝑛 ∈ (1...(♯‘𝐵))((𝑘𝐵𝐶)‘(𝑓𝑛)))
10172, 98, 1003eqtr4d 2843 . . . . . 6 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → ∏𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = ∏𝑚𝐵 ((𝑘𝐵𝐶)‘𝑚))
102 prodfc 15291 . . . . . 6 𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = ∏𝑘𝐴 𝐶
103 prodfc 15291 . . . . . 6 𝑚𝐵 ((𝑘𝐵𝐶)‘𝑚) = ∏𝑘𝐵 𝐶
104101, 102, 1033eqtr3g 2856 . . . . 5 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶)
105104expr 460 . . . 4 ((𝜑 ∧ (♯‘𝐵) ∈ ℕ) → (𝑓:(1...(♯‘𝐵))–1-1-onto𝐵 → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶))
106105exlimdv 1934 . . 3 ((𝜑 ∧ (♯‘𝐵) ∈ ℕ) → (∃𝑓 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵 → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶))
107106expimpd 457 . 2 (𝜑 → (((♯‘𝐵) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵) → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶))
108 fprodss.4 . . 3 (𝜑𝐵 ∈ Fin)
109 fz1f1o 15059 . . 3 (𝐵 ∈ Fin → (𝐵 = ∅ ∨ ((♯‘𝐵) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)))
110108, 109syl 17 . 2 (𝜑 → (𝐵 = ∅ ∨ ((♯‘𝐵) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)))
11111, 107, 110mpjaod 857 1 (𝜑 → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844   = wceq 1538  wex 1781  wcel 2111  cdif 3878  wss 3881  c0 4243  {csn 4525  cmpt 5110  ccnv 5518  cres 5521  cima 5522   Fn wfn 6319  wf 6320  1-1wf1 6321  ontowfo 6322  1-1-ontowf1o 6323  cfv 6324  (class class class)co 7135  Fincfn 8492  cc 10524  1c1 10527  cn 11625  cuz 12231  ...cfz 12885  chash 13686  cprod 15251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-prod 15252
This theorem is referenced by:  fprodsplit  15312
  Copyright terms: Public domain W3C validator