MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodss Structured version   Visualization version   GIF version

Theorem fprodss 15857
Description: Change the index set to a subset in a finite product. (Contributed by Scott Fenton, 16-Dec-2017.)
Hypotheses
Ref Expression
fprodss.1 (𝜑𝐴𝐵)
fprodss.2 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
fprodss.3 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 = 1)
fprodss.4 (𝜑𝐵 ∈ Fin)
Assertion
Ref Expression
fprodss (𝜑 → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶)
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝜑,𝑘
Allowed substitution hint:   𝐶(𝑘)

Proof of Theorem fprodss
Dummy variables 𝑓 𝑚 𝑛 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fprodss.1 . . 3 (𝜑𝐴𝐵)
2 sseq2 3957 . . . . 5 (𝐵 = ∅ → (𝐴𝐵𝐴 ⊆ ∅))
3 ss0 4351 . . . . 5 (𝐴 ⊆ ∅ → 𝐴 = ∅)
42, 3biimtrdi 253 . . . 4 (𝐵 = ∅ → (𝐴𝐵𝐴 = ∅))
5 prodeq1 15816 . . . . . 6 (𝐴 = ∅ → ∏𝑘𝐴 𝐶 = ∏𝑘 ∈ ∅ 𝐶)
6 prodeq1 15816 . . . . . . 7 (𝐵 = ∅ → ∏𝑘𝐵 𝐶 = ∏𝑘 ∈ ∅ 𝐶)
76eqcomd 2739 . . . . . 6 (𝐵 = ∅ → ∏𝑘 ∈ ∅ 𝐶 = ∏𝑘𝐵 𝐶)
85, 7sylan9eq 2788 . . . . 5 ((𝐴 = ∅ ∧ 𝐵 = ∅) → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶)
98expcom 413 . . . 4 (𝐵 = ∅ → (𝐴 = ∅ → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶))
104, 9syld 47 . . 3 (𝐵 = ∅ → (𝐴𝐵 → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶))
111, 10syl5com 31 . 2 (𝜑 → (𝐵 = ∅ → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶))
12 cnvimass 6035 . . . . . . . . 9 (𝑓𝐴) ⊆ dom 𝑓
13 simprr 772 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)
14 f1of 6768 . . . . . . . . . 10 (𝑓:(1...(♯‘𝐵))–1-1-onto𝐵𝑓:(1...(♯‘𝐵))⟶𝐵)
1513, 14syl 17 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → 𝑓:(1...(♯‘𝐵))⟶𝐵)
1612, 15fssdm 6675 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → (𝑓𝐴) ⊆ (1...(♯‘𝐵)))
17 f1ofn 6769 . . . . . . . . . . . 12 (𝑓:(1...(♯‘𝐵))–1-1-onto𝐵𝑓 Fn (1...(♯‘𝐵)))
18 elpreima 6997 . . . . . . . . . . . 12 (𝑓 Fn (1...(♯‘𝐵)) → (𝑛 ∈ (𝑓𝐴) ↔ (𝑛 ∈ (1...(♯‘𝐵)) ∧ (𝑓𝑛) ∈ 𝐴)))
1913, 17, 183syl 18 . . . . . . . . . . 11 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → (𝑛 ∈ (𝑓𝐴) ↔ (𝑛 ∈ (1...(♯‘𝐵)) ∧ (𝑓𝑛) ∈ 𝐴)))
2015ffvelcdmda 7023 . . . . . . . . . . . . 13 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ (1...(♯‘𝐵))) → (𝑓𝑛) ∈ 𝐵)
2120ex 412 . . . . . . . . . . . 12 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → (𝑛 ∈ (1...(♯‘𝐵)) → (𝑓𝑛) ∈ 𝐵))
2221adantrd 491 . . . . . . . . . . 11 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → ((𝑛 ∈ (1...(♯‘𝐵)) ∧ (𝑓𝑛) ∈ 𝐴) → (𝑓𝑛) ∈ 𝐵))
2319, 22sylbid 240 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → (𝑛 ∈ (𝑓𝐴) → (𝑓𝑛) ∈ 𝐵))
2423imp 406 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ (𝑓𝐴)) → (𝑓𝑛) ∈ 𝐵)
25 fprodss.2 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
2625ex 412 . . . . . . . . . . . . . 14 (𝜑 → (𝑘𝐴𝐶 ∈ ℂ))
2726adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑘𝐵) → (𝑘𝐴𝐶 ∈ ℂ))
28 eldif 3908 . . . . . . . . . . . . . . 15 (𝑘 ∈ (𝐵𝐴) ↔ (𝑘𝐵 ∧ ¬ 𝑘𝐴))
29 fprodss.3 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 = 1)
30 ax-1cn 11071 . . . . . . . . . . . . . . . 16 1 ∈ ℂ
3129, 30eqeltrdi 2841 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 ∈ ℂ)
3228, 31sylan2br 595 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘𝐵 ∧ ¬ 𝑘𝐴)) → 𝐶 ∈ ℂ)
3332expr 456 . . . . . . . . . . . . 13 ((𝜑𝑘𝐵) → (¬ 𝑘𝐴𝐶 ∈ ℂ))
3427, 33pm2.61d 179 . . . . . . . . . . . 12 ((𝜑𝑘𝐵) → 𝐶 ∈ ℂ)
3534adantlr 715 . . . . . . . . . . 11 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑘𝐵) → 𝐶 ∈ ℂ)
3635fmpttd 7054 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → (𝑘𝐵𝐶):𝐵⟶ℂ)
3736ffvelcdmda 7023 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ (𝑓𝑛) ∈ 𝐵) → ((𝑘𝐵𝐶)‘(𝑓𝑛)) ∈ ℂ)
3824, 37syldan 591 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ (𝑓𝐴)) → ((𝑘𝐵𝐶)‘(𝑓𝑛)) ∈ ℂ)
39 eqid 2733 . . . . . . . . 9 (ℤ‘1) = (ℤ‘1)
40 simprl 770 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → (♯‘𝐵) ∈ ℕ)
41 nnuz 12777 . . . . . . . . . 10 ℕ = (ℤ‘1)
4240, 41eleqtrdi 2843 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → (♯‘𝐵) ∈ (ℤ‘1))
43 ssidd 3954 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → (1...(♯‘𝐵)) ⊆ (1...(♯‘𝐵)))
4439, 42, 43fprodntriv 15851 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → ∃𝑚 ∈ (ℤ‘1)∃𝑦(𝑦 ≠ 0 ∧ seq𝑚( · , (𝑛 ∈ (ℤ‘1) ↦ if(𝑛 ∈ (1...(♯‘𝐵)), ((𝑘𝐵𝐶)‘(𝑓𝑛)), 1))) ⇝ 𝑦))
45 eldifi 4080 . . . . . . . . . . . 12 (𝑛 ∈ ((1...(♯‘𝐵)) ∖ (𝑓𝐴)) → 𝑛 ∈ (1...(♯‘𝐵)))
4645, 20sylan2 593 . . . . . . . . . . 11 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (𝑓𝐴))) → (𝑓𝑛) ∈ 𝐵)
47 eldifn 4081 . . . . . . . . . . . . 13 (𝑛 ∈ ((1...(♯‘𝐵)) ∖ (𝑓𝐴)) → ¬ 𝑛 ∈ (𝑓𝐴))
4847adantl 481 . . . . . . . . . . . 12 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (𝑓𝐴))) → ¬ 𝑛 ∈ (𝑓𝐴))
4945adantl 481 . . . . . . . . . . . . 13 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (𝑓𝐴))) → 𝑛 ∈ (1...(♯‘𝐵)))
5019adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (𝑓𝐴))) → (𝑛 ∈ (𝑓𝐴) ↔ (𝑛 ∈ (1...(♯‘𝐵)) ∧ (𝑓𝑛) ∈ 𝐴)))
5149, 50mpbirand 707 . . . . . . . . . . . 12 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (𝑓𝐴))) → (𝑛 ∈ (𝑓𝐴) ↔ (𝑓𝑛) ∈ 𝐴))
5248, 51mtbid 324 . . . . . . . . . . 11 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (𝑓𝐴))) → ¬ (𝑓𝑛) ∈ 𝐴)
5346, 52eldifd 3909 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (𝑓𝐴))) → (𝑓𝑛) ∈ (𝐵𝐴))
54 difss 4085 . . . . . . . . . . . . 13 (𝐵𝐴) ⊆ 𝐵
55 resmpt 5990 . . . . . . . . . . . . 13 ((𝐵𝐴) ⊆ 𝐵 → ((𝑘𝐵𝐶) ↾ (𝐵𝐴)) = (𝑘 ∈ (𝐵𝐴) ↦ 𝐶))
5654, 55ax-mp 5 . . . . . . . . . . . 12 ((𝑘𝐵𝐶) ↾ (𝐵𝐴)) = (𝑘 ∈ (𝐵𝐴) ↦ 𝐶)
5756fveq1i 6829 . . . . . . . . . . 11 (((𝑘𝐵𝐶) ↾ (𝐵𝐴))‘(𝑓𝑛)) = ((𝑘 ∈ (𝐵𝐴) ↦ 𝐶)‘(𝑓𝑛))
58 fvres 6847 . . . . . . . . . . 11 ((𝑓𝑛) ∈ (𝐵𝐴) → (((𝑘𝐵𝐶) ↾ (𝐵𝐴))‘(𝑓𝑛)) = ((𝑘𝐵𝐶)‘(𝑓𝑛)))
5957, 58eqtr3id 2782 . . . . . . . . . 10 ((𝑓𝑛) ∈ (𝐵𝐴) → ((𝑘 ∈ (𝐵𝐴) ↦ 𝐶)‘(𝑓𝑛)) = ((𝑘𝐵𝐶)‘(𝑓𝑛)))
6053, 59syl 17 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (𝑓𝐴))) → ((𝑘 ∈ (𝐵𝐴) ↦ 𝐶)‘(𝑓𝑛)) = ((𝑘𝐵𝐶)‘(𝑓𝑛)))
61 1ex 11115 . . . . . . . . . . . . . . 15 1 ∈ V
6261elsn2 4617 . . . . . . . . . . . . . 14 (𝐶 ∈ {1} ↔ 𝐶 = 1)
6329, 62sylibr 234 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 ∈ {1})
6463fmpttd 7054 . . . . . . . . . . . 12 (𝜑 → (𝑘 ∈ (𝐵𝐴) ↦ 𝐶):(𝐵𝐴)⟶{1})
6564ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (𝑓𝐴))) → (𝑘 ∈ (𝐵𝐴) ↦ 𝐶):(𝐵𝐴)⟶{1})
6665, 53ffvelcdmd 7024 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (𝑓𝐴))) → ((𝑘 ∈ (𝐵𝐴) ↦ 𝐶)‘(𝑓𝑛)) ∈ {1})
67 elsni 4592 . . . . . . . . . 10 (((𝑘 ∈ (𝐵𝐴) ↦ 𝐶)‘(𝑓𝑛)) ∈ {1} → ((𝑘 ∈ (𝐵𝐴) ↦ 𝐶)‘(𝑓𝑛)) = 1)
6866, 67syl 17 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (𝑓𝐴))) → ((𝑘 ∈ (𝐵𝐴) ↦ 𝐶)‘(𝑓𝑛)) = 1)
6960, 68eqtr3d 2770 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (𝑓𝐴))) → ((𝑘𝐵𝐶)‘(𝑓𝑛)) = 1)
70 fzssuz 13467 . . . . . . . . 9 (1...(♯‘𝐵)) ⊆ (ℤ‘1)
7170a1i 11 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → (1...(♯‘𝐵)) ⊆ (ℤ‘1))
7216, 38, 44, 69, 71prodss 15856 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → ∏𝑛 ∈ (𝑓𝐴)((𝑘𝐵𝐶)‘(𝑓𝑛)) = ∏𝑛 ∈ (1...(♯‘𝐵))((𝑘𝐵𝐶)‘(𝑓𝑛)))
731adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → 𝐴𝐵)
7473resmptd 5993 . . . . . . . . . . 11 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → ((𝑘𝐵𝐶) ↾ 𝐴) = (𝑘𝐴𝐶))
7574fveq1d 6830 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → (((𝑘𝐵𝐶) ↾ 𝐴)‘𝑚) = ((𝑘𝐴𝐶)‘𝑚))
76 fvres 6847 . . . . . . . . . 10 (𝑚𝐴 → (((𝑘𝐵𝐶) ↾ 𝐴)‘𝑚) = ((𝑘𝐵𝐶)‘𝑚))
7775, 76sylan9req 2789 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑚𝐴) → ((𝑘𝐴𝐶)‘𝑚) = ((𝑘𝐵𝐶)‘𝑚))
7877prodeq2dv 15831 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → ∏𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = ∏𝑚𝐴 ((𝑘𝐵𝐶)‘𝑚))
79 fveq2 6828 . . . . . . . . 9 (𝑚 = (𝑓𝑛) → ((𝑘𝐵𝐶)‘𝑚) = ((𝑘𝐵𝐶)‘(𝑓𝑛)))
80 fzfid 13882 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → (1...(♯‘𝐵)) ∈ Fin)
8180, 15fisuppfi 9262 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → (𝑓𝐴) ∈ Fin)
82 f1of1 6767 . . . . . . . . . . . 12 (𝑓:(1...(♯‘𝐵))–1-1-onto𝐵𝑓:(1...(♯‘𝐵))–1-1𝐵)
8313, 82syl 17 . . . . . . . . . . 11 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → 𝑓:(1...(♯‘𝐵))–1-1𝐵)
84 f1ores 6782 . . . . . . . . . . 11 ((𝑓:(1...(♯‘𝐵))–1-1𝐵 ∧ (𝑓𝐴) ⊆ (1...(♯‘𝐵))) → (𝑓 ↾ (𝑓𝐴)):(𝑓𝐴)–1-1-onto→(𝑓 “ (𝑓𝐴)))
8583, 16, 84syl2anc 584 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → (𝑓 ↾ (𝑓𝐴)):(𝑓𝐴)–1-1-onto→(𝑓 “ (𝑓𝐴)))
86 f1ofo 6775 . . . . . . . . . . . . 13 (𝑓:(1...(♯‘𝐵))–1-1-onto𝐵𝑓:(1...(♯‘𝐵))–onto𝐵)
8713, 86syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → 𝑓:(1...(♯‘𝐵))–onto𝐵)
88 foimacnv 6785 . . . . . . . . . . . 12 ((𝑓:(1...(♯‘𝐵))–onto𝐵𝐴𝐵) → (𝑓 “ (𝑓𝐴)) = 𝐴)
8987, 73, 88syl2anc 584 . . . . . . . . . . 11 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → (𝑓 “ (𝑓𝐴)) = 𝐴)
9089f1oeq3d 6765 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → ((𝑓 ↾ (𝑓𝐴)):(𝑓𝐴)–1-1-onto→(𝑓 “ (𝑓𝐴)) ↔ (𝑓 ↾ (𝑓𝐴)):(𝑓𝐴)–1-1-onto𝐴))
9185, 90mpbid 232 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → (𝑓 ↾ (𝑓𝐴)):(𝑓𝐴)–1-1-onto𝐴)
92 fvres 6847 . . . . . . . . . 10 (𝑛 ∈ (𝑓𝐴) → ((𝑓 ↾ (𝑓𝐴))‘𝑛) = (𝑓𝑛))
9392adantl 481 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ (𝑓𝐴)) → ((𝑓 ↾ (𝑓𝐴))‘𝑛) = (𝑓𝑛))
9473sselda 3930 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑚𝐴) → 𝑚𝐵)
9536ffvelcdmda 7023 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑚𝐵) → ((𝑘𝐵𝐶)‘𝑚) ∈ ℂ)
9694, 95syldan 591 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑚𝐴) → ((𝑘𝐵𝐶)‘𝑚) ∈ ℂ)
9779, 81, 91, 93, 96fprodf1o 15855 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → ∏𝑚𝐴 ((𝑘𝐵𝐶)‘𝑚) = ∏𝑛 ∈ (𝑓𝐴)((𝑘𝐵𝐶)‘(𝑓𝑛)))
9878, 97eqtrd 2768 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → ∏𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = ∏𝑛 ∈ (𝑓𝐴)((𝑘𝐵𝐶)‘(𝑓𝑛)))
99 eqidd 2734 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ (1...(♯‘𝐵))) → (𝑓𝑛) = (𝑓𝑛))
10079, 80, 13, 99, 95fprodf1o 15855 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → ∏𝑚𝐵 ((𝑘𝐵𝐶)‘𝑚) = ∏𝑛 ∈ (1...(♯‘𝐵))((𝑘𝐵𝐶)‘(𝑓𝑛)))
10172, 98, 1003eqtr4d 2778 . . . . . 6 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → ∏𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = ∏𝑚𝐵 ((𝑘𝐵𝐶)‘𝑚))
102 prodfc 15854 . . . . . 6 𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = ∏𝑘𝐴 𝐶
103 prodfc 15854 . . . . . 6 𝑚𝐵 ((𝑘𝐵𝐶)‘𝑚) = ∏𝑘𝐵 𝐶
104101, 102, 1033eqtr3g 2791 . . . . 5 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶)
105104expr 456 . . . 4 ((𝜑 ∧ (♯‘𝐵) ∈ ℕ) → (𝑓:(1...(♯‘𝐵))–1-1-onto𝐵 → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶))
106105exlimdv 1934 . . 3 ((𝜑 ∧ (♯‘𝐵) ∈ ℕ) → (∃𝑓 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵 → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶))
107106expimpd 453 . 2 (𝜑 → (((♯‘𝐵) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵) → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶))
108 fprodss.4 . . 3 (𝜑𝐵 ∈ Fin)
109 fz1f1o 15619 . . 3 (𝐵 ∈ Fin → (𝐵 = ∅ ∨ ((♯‘𝐵) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)))
110108, 109syl 17 . 2 (𝜑 → (𝐵 = ∅ ∨ ((♯‘𝐵) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)))
11111, 107, 110mpjaod 860 1 (𝜑 → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wex 1780  wcel 2113  cdif 3895  wss 3898  c0 4282  {csn 4575  cmpt 5174  ccnv 5618  cres 5621  cima 5622   Fn wfn 6481  wf 6482  1-1wf1 6483  ontowfo 6484  1-1-ontowf1o 6485  cfv 6486  (class class class)co 7352  Fincfn 8875  cc 11011  1c1 11014  cn 12132  cuz 12738  ...cfz 13409  chash 14239  cprod 15812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-sup 9333  df-oi 9403  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-n0 12389  df-z 12476  df-uz 12739  df-rp 12893  df-fz 13410  df-fzo 13557  df-seq 13911  df-exp 13971  df-hash 14240  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-clim 15397  df-prod 15813
This theorem is referenced by:  fprodsplit  15875
  Copyright terms: Public domain W3C validator