Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climrec Structured version   Visualization version   GIF version

Theorem climrec 41891
Description: Limit of the reciprocal of a converging sequence. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
climrec.1 𝑍 = (ℤ𝑀)
climrec.2 (𝜑𝑀 ∈ ℤ)
climrec.3 (𝜑𝐺𝐴)
climrec.4 (𝜑𝐴 ≠ 0)
climrec.5 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ (ℂ ∖ {0}))
climrec.6 ((𝜑𝑘𝑍) → (𝐻𝑘) = (1 / (𝐺𝑘)))
climrec.7 (𝜑𝐻𝑊)
Assertion
Ref Expression
climrec (𝜑𝐻 ⇝ (1 / 𝐴))
Distinct variable groups:   𝜑,𝑘   𝐴,𝑘   𝑘,𝐺   𝑘,𝐻   𝑘,𝑍
Allowed substitution hints:   𝑀(𝑘)   𝑊(𝑘)

Proof of Theorem climrec
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climrec.1 . . 3 𝑍 = (ℤ𝑀)
2 climrec.2 . . 3 (𝜑𝑀 ∈ ℤ)
3 climrec.3 . . . . 5 (𝜑𝐺𝐴)
4 climcl 14858 . . . . 5 (𝐺𝐴𝐴 ∈ ℂ)
53, 4syl 17 . . . 4 (𝜑𝐴 ∈ ℂ)
6 climrec.4 . . . . . 6 (𝜑𝐴 ≠ 0)
76neneqd 3023 . . . . 5 (𝜑 → ¬ 𝐴 = 0)
8 c0ex 10637 . . . . . 6 0 ∈ V
98elsn2 4606 . . . . 5 (𝐴 ∈ {0} ↔ 𝐴 = 0)
107, 9sylnibr 331 . . . 4 (𝜑 → ¬ 𝐴 ∈ {0})
115, 10eldifd 3949 . . 3 (𝜑𝐴 ∈ (ℂ ∖ {0}))
12 eqidd 2824 . . . . 5 ((𝜑𝑧 ∈ (ℂ ∖ {0})) → (𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤)) = (𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤)))
13 simpr 487 . . . . . 6 (((𝜑𝑧 ∈ (ℂ ∖ {0})) ∧ 𝑤 = 𝑧) → 𝑤 = 𝑧)
1413oveq2d 7174 . . . . 5 (((𝜑𝑧 ∈ (ℂ ∖ {0})) ∧ 𝑤 = 𝑧) → (1 / 𝑤) = (1 / 𝑧))
15 simpr 487 . . . . 5 ((𝜑𝑧 ∈ (ℂ ∖ {0})) → 𝑧 ∈ (ℂ ∖ {0}))
1615eldifad 3950 . . . . . 6 ((𝜑𝑧 ∈ (ℂ ∖ {0})) → 𝑧 ∈ ℂ)
17 eldifsni 4724 . . . . . . 7 (𝑧 ∈ (ℂ ∖ {0}) → 𝑧 ≠ 0)
1817adantl 484 . . . . . 6 ((𝜑𝑧 ∈ (ℂ ∖ {0})) → 𝑧 ≠ 0)
1916, 18reccld 11411 . . . . 5 ((𝜑𝑧 ∈ (ℂ ∖ {0})) → (1 / 𝑧) ∈ ℂ)
2012, 14, 15, 19fvmptd 6777 . . . 4 ((𝜑𝑧 ∈ (ℂ ∖ {0})) → ((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝑧) = (1 / 𝑧))
2120, 19eqeltrd 2915 . . 3 ((𝜑𝑧 ∈ (ℂ ∖ {0})) → ((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝑧) ∈ ℂ)
22 climrec.7 . . 3 (𝜑𝐻𝑊)
23 eqid 2823 . . . . . 6 (if(1 ≤ ((abs‘𝐴) · 𝑥), 1, ((abs‘𝐴) · 𝑥)) · ((abs‘𝐴) / 2)) = (if(1 ≤ ((abs‘𝐴) · 𝑥), 1, ((abs‘𝐴) · 𝑥)) · ((abs‘𝐴) / 2))
2423reccn2 14955 . . . . 5 ((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ (ℂ ∖ {0})((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝑥))
2511, 24sylan 582 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ (ℂ ∖ {0})((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝑥))
26 eqidd 2824 . . . . . . . . . . . 12 (𝑧 ∈ (ℂ ∖ {0}) → (𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤)) = (𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤)))
27 simpr 487 . . . . . . . . . . . . 13 ((𝑧 ∈ (ℂ ∖ {0}) ∧ 𝑤 = 𝑧) → 𝑤 = 𝑧)
2827oveq2d 7174 . . . . . . . . . . . 12 ((𝑧 ∈ (ℂ ∖ {0}) ∧ 𝑤 = 𝑧) → (1 / 𝑤) = (1 / 𝑧))
29 id 22 . . . . . . . . . . . 12 (𝑧 ∈ (ℂ ∖ {0}) → 𝑧 ∈ (ℂ ∖ {0}))
30 eldifi 4105 . . . . . . . . . . . . 13 (𝑧 ∈ (ℂ ∖ {0}) → 𝑧 ∈ ℂ)
3130, 17reccld 11411 . . . . . . . . . . . 12 (𝑧 ∈ (ℂ ∖ {0}) → (1 / 𝑧) ∈ ℂ)
3226, 28, 29, 31fvmptd 6777 . . . . . . . . . . 11 (𝑧 ∈ (ℂ ∖ {0}) → ((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝑧) = (1 / 𝑧))
3332ad2antlr 725 . . . . . . . . . 10 (((((𝜑𝑥 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) → ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝑥))) ∧ 𝑧 ∈ (ℂ ∖ {0})) ∧ (abs‘(𝑧𝐴)) < 𝑦) → ((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝑧) = (1 / 𝑧))
34 eqidd 2824 . . . . . . . . . . . 12 (𝜑 → (𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤)) = (𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤)))
35 simpr 487 . . . . . . . . . . . . 13 ((𝜑𝑤 = 𝐴) → 𝑤 = 𝐴)
3635oveq2d 7174 . . . . . . . . . . . 12 ((𝜑𝑤 = 𝐴) → (1 / 𝑤) = (1 / 𝐴))
375, 6reccld 11411 . . . . . . . . . . . 12 (𝜑 → (1 / 𝐴) ∈ ℂ)
3834, 36, 11, 37fvmptd 6777 . . . . . . . . . . 11 (𝜑 → ((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝐴) = (1 / 𝐴))
3938ad4antr 730 . . . . . . . . . 10 (((((𝜑𝑥 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) → ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝑥))) ∧ 𝑧 ∈ (ℂ ∖ {0})) ∧ (abs‘(𝑧𝐴)) < 𝑦) → ((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝐴) = (1 / 𝐴))
4033, 39oveq12d 7176 . . . . . . . . 9 (((((𝜑𝑥 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) → ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝑥))) ∧ 𝑧 ∈ (ℂ ∖ {0})) ∧ (abs‘(𝑧𝐴)) < 𝑦) → (((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝑧) − ((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝐴)) = ((1 / 𝑧) − (1 / 𝐴)))
4140fveq2d 6676 . . . . . . . 8 (((((𝜑𝑥 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) → ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝑥))) ∧ 𝑧 ∈ (ℂ ∖ {0})) ∧ (abs‘(𝑧𝐴)) < 𝑦) → (abs‘(((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝑧) − ((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝐴))) = (abs‘((1 / 𝑧) − (1 / 𝐴))))
4229ad2antlr 725 . . . . . . . . 9 (((((𝜑𝑥 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) → ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝑥))) ∧ 𝑧 ∈ (ℂ ∖ {0})) ∧ (abs‘(𝑧𝐴)) < 𝑦) → 𝑧 ∈ (ℂ ∖ {0}))
43 simpr 487 . . . . . . . . 9 (((((𝜑𝑥 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) → ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝑥))) ∧ 𝑧 ∈ (ℂ ∖ {0})) ∧ (abs‘(𝑧𝐴)) < 𝑦) → (abs‘(𝑧𝐴)) < 𝑦)
44 simpllr 774 . . . . . . . . 9 (((((𝜑𝑥 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) → ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝑥))) ∧ 𝑧 ∈ (ℂ ∖ {0})) ∧ (abs‘(𝑧𝐴)) < 𝑦) → (𝑧 ∈ (ℂ ∖ {0}) → ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝑥)))
4542, 43, 44mp2d 49 . . . . . . . 8 (((((𝜑𝑥 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) → ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝑥))) ∧ 𝑧 ∈ (ℂ ∖ {0})) ∧ (abs‘(𝑧𝐴)) < 𝑦) → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝑥)
4641, 45eqbrtrd 5090 . . . . . . 7 (((((𝜑𝑥 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) → ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝑥))) ∧ 𝑧 ∈ (ℂ ∖ {0})) ∧ (abs‘(𝑧𝐴)) < 𝑦) → (abs‘(((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝑧) − ((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝐴))) < 𝑥)
4746exp41 437 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → ((𝑧 ∈ (ℂ ∖ {0}) → ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝑥)) → (𝑧 ∈ (ℂ ∖ {0}) → ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘(((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝑧) − ((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝐴))) < 𝑥))))
4847ralimdv2 3178 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (∀𝑧 ∈ (ℂ ∖ {0})((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝑥) → ∀𝑧 ∈ (ℂ ∖ {0})((abs‘(𝑧𝐴)) < 𝑦 → (abs‘(((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝑧) − ((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝐴))) < 𝑥)))
4948reximdv 3275 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (∃𝑦 ∈ ℝ+𝑧 ∈ (ℂ ∖ {0})((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝑥) → ∃𝑦 ∈ ℝ+𝑧 ∈ (ℂ ∖ {0})((abs‘(𝑧𝐴)) < 𝑦 → (abs‘(((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝑧) − ((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝐴))) < 𝑥)))
5025, 49mpd 15 . . 3 ((𝜑𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ (ℂ ∖ {0})((abs‘(𝑧𝐴)) < 𝑦 → (abs‘(((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝑧) − ((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝐴))) < 𝑥))
51 climrec.5 . . 3 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ (ℂ ∖ {0}))
52 climrec.6 . . . 4 ((𝜑𝑘𝑍) → (𝐻𝑘) = (1 / (𝐺𝑘)))
53 eqidd 2824 . . . . 5 ((𝜑𝑘𝑍) → (𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤)) = (𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤)))
54 oveq2 7166 . . . . . 6 (𝑤 = (𝐺𝑘) → (1 / 𝑤) = (1 / (𝐺𝑘)))
5554adantl 484 . . . . 5 (((𝜑𝑘𝑍) ∧ 𝑤 = (𝐺𝑘)) → (1 / 𝑤) = (1 / (𝐺𝑘)))
5651eldifad 3950 . . . . . 6 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
57 eldifsni 4724 . . . . . . 7 ((𝐺𝑘) ∈ (ℂ ∖ {0}) → (𝐺𝑘) ≠ 0)
5851, 57syl 17 . . . . . 6 ((𝜑𝑘𝑍) → (𝐺𝑘) ≠ 0)
5956, 58reccld 11411 . . . . 5 ((𝜑𝑘𝑍) → (1 / (𝐺𝑘)) ∈ ℂ)
6053, 55, 51, 59fvmptd 6777 . . . 4 ((𝜑𝑘𝑍) → ((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘(𝐺𝑘)) = (1 / (𝐺𝑘)))
6152, 60eqtr4d 2861 . . 3 ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘(𝐺𝑘)))
621, 2, 11, 21, 3, 22, 50, 51, 61climcn1 14950 . 2 (𝜑𝐻 ⇝ ((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝐴))
6362, 38breqtrd 5094 1 (𝜑𝐻 ⇝ (1 / 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wne 3018  wral 3140  wrex 3141  cdif 3935  ifcif 4469  {csn 4569   class class class wbr 5068  cmpt 5148  cfv 6357  (class class class)co 7158  cc 10537  0cc0 10539  1c1 10540   · cmul 10544   < clt 10677  cle 10678  cmin 10872   / cdiv 11299  2c2 11695  cz 11984  cuz 12246  +crp 12392  abscabs 14595  cli 14843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-sup 8908  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-seq 13373  df-exp 13433  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847
This theorem is referenced by:  climrecf  41897  wallispi  42362
  Copyright terms: Public domain W3C validator