Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climrec Structured version   Visualization version   GIF version

Theorem climrec 45559
Description: Limit of the reciprocal of a converging sequence. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
climrec.1 𝑍 = (ℤ𝑀)
climrec.2 (𝜑𝑀 ∈ ℤ)
climrec.3 (𝜑𝐺𝐴)
climrec.4 (𝜑𝐴 ≠ 0)
climrec.5 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ (ℂ ∖ {0}))
climrec.6 ((𝜑𝑘𝑍) → (𝐻𝑘) = (1 / (𝐺𝑘)))
climrec.7 (𝜑𝐻𝑊)
Assertion
Ref Expression
climrec (𝜑𝐻 ⇝ (1 / 𝐴))
Distinct variable groups:   𝜑,𝑘   𝐴,𝑘   𝑘,𝐺   𝑘,𝐻   𝑘,𝑍
Allowed substitution hints:   𝑀(𝑘)   𝑊(𝑘)

Proof of Theorem climrec
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climrec.1 . . 3 𝑍 = (ℤ𝑀)
2 climrec.2 . . 3 (𝜑𝑀 ∈ ℤ)
3 climrec.3 . . . . 5 (𝜑𝐺𝐴)
4 climcl 15532 . . . . 5 (𝐺𝐴𝐴 ∈ ℂ)
53, 4syl 17 . . . 4 (𝜑𝐴 ∈ ℂ)
6 climrec.4 . . . . . 6 (𝜑𝐴 ≠ 0)
76neneqd 2943 . . . . 5 (𝜑 → ¬ 𝐴 = 0)
8 c0ex 11253 . . . . . 6 0 ∈ V
98elsn2 4670 . . . . 5 (𝐴 ∈ {0} ↔ 𝐴 = 0)
107, 9sylnibr 329 . . . 4 (𝜑 → ¬ 𝐴 ∈ {0})
115, 10eldifd 3974 . . 3 (𝜑𝐴 ∈ (ℂ ∖ {0}))
12 eqidd 2736 . . . . 5 ((𝜑𝑧 ∈ (ℂ ∖ {0})) → (𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤)) = (𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤)))
13 simpr 484 . . . . . 6 (((𝜑𝑧 ∈ (ℂ ∖ {0})) ∧ 𝑤 = 𝑧) → 𝑤 = 𝑧)
1413oveq2d 7447 . . . . 5 (((𝜑𝑧 ∈ (ℂ ∖ {0})) ∧ 𝑤 = 𝑧) → (1 / 𝑤) = (1 / 𝑧))
15 simpr 484 . . . . 5 ((𝜑𝑧 ∈ (ℂ ∖ {0})) → 𝑧 ∈ (ℂ ∖ {0}))
1615eldifad 3975 . . . . . 6 ((𝜑𝑧 ∈ (ℂ ∖ {0})) → 𝑧 ∈ ℂ)
17 eldifsni 4795 . . . . . . 7 (𝑧 ∈ (ℂ ∖ {0}) → 𝑧 ≠ 0)
1817adantl 481 . . . . . 6 ((𝜑𝑧 ∈ (ℂ ∖ {0})) → 𝑧 ≠ 0)
1916, 18reccld 12034 . . . . 5 ((𝜑𝑧 ∈ (ℂ ∖ {0})) → (1 / 𝑧) ∈ ℂ)
2012, 14, 15, 19fvmptd 7023 . . . 4 ((𝜑𝑧 ∈ (ℂ ∖ {0})) → ((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝑧) = (1 / 𝑧))
2120, 19eqeltrd 2839 . . 3 ((𝜑𝑧 ∈ (ℂ ∖ {0})) → ((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝑧) ∈ ℂ)
22 climrec.7 . . 3 (𝜑𝐻𝑊)
23 eqid 2735 . . . . . 6 (if(1 ≤ ((abs‘𝐴) · 𝑥), 1, ((abs‘𝐴) · 𝑥)) · ((abs‘𝐴) / 2)) = (if(1 ≤ ((abs‘𝐴) · 𝑥), 1, ((abs‘𝐴) · 𝑥)) · ((abs‘𝐴) / 2))
2423reccn2 15630 . . . . 5 ((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ (ℂ ∖ {0})((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝑥))
2511, 24sylan 580 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ (ℂ ∖ {0})((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝑥))
26 eqidd 2736 . . . . . . . . . . . 12 (𝑧 ∈ (ℂ ∖ {0}) → (𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤)) = (𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤)))
27 simpr 484 . . . . . . . . . . . . 13 ((𝑧 ∈ (ℂ ∖ {0}) ∧ 𝑤 = 𝑧) → 𝑤 = 𝑧)
2827oveq2d 7447 . . . . . . . . . . . 12 ((𝑧 ∈ (ℂ ∖ {0}) ∧ 𝑤 = 𝑧) → (1 / 𝑤) = (1 / 𝑧))
29 id 22 . . . . . . . . . . . 12 (𝑧 ∈ (ℂ ∖ {0}) → 𝑧 ∈ (ℂ ∖ {0}))
30 eldifi 4141 . . . . . . . . . . . . 13 (𝑧 ∈ (ℂ ∖ {0}) → 𝑧 ∈ ℂ)
3130, 17reccld 12034 . . . . . . . . . . . 12 (𝑧 ∈ (ℂ ∖ {0}) → (1 / 𝑧) ∈ ℂ)
3226, 28, 29, 31fvmptd 7023 . . . . . . . . . . 11 (𝑧 ∈ (ℂ ∖ {0}) → ((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝑧) = (1 / 𝑧))
3332ad2antlr 727 . . . . . . . . . 10 (((((𝜑𝑥 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) → ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝑥))) ∧ 𝑧 ∈ (ℂ ∖ {0})) ∧ (abs‘(𝑧𝐴)) < 𝑦) → ((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝑧) = (1 / 𝑧))
34 eqidd 2736 . . . . . . . . . . . 12 (𝜑 → (𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤)) = (𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤)))
35 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑤 = 𝐴) → 𝑤 = 𝐴)
3635oveq2d 7447 . . . . . . . . . . . 12 ((𝜑𝑤 = 𝐴) → (1 / 𝑤) = (1 / 𝐴))
375, 6reccld 12034 . . . . . . . . . . . 12 (𝜑 → (1 / 𝐴) ∈ ℂ)
3834, 36, 11, 37fvmptd 7023 . . . . . . . . . . 11 (𝜑 → ((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝐴) = (1 / 𝐴))
3938ad4antr 732 . . . . . . . . . 10 (((((𝜑𝑥 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) → ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝑥))) ∧ 𝑧 ∈ (ℂ ∖ {0})) ∧ (abs‘(𝑧𝐴)) < 𝑦) → ((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝐴) = (1 / 𝐴))
4033, 39oveq12d 7449 . . . . . . . . 9 (((((𝜑𝑥 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) → ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝑥))) ∧ 𝑧 ∈ (ℂ ∖ {0})) ∧ (abs‘(𝑧𝐴)) < 𝑦) → (((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝑧) − ((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝐴)) = ((1 / 𝑧) − (1 / 𝐴)))
4140fveq2d 6911 . . . . . . . 8 (((((𝜑𝑥 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) → ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝑥))) ∧ 𝑧 ∈ (ℂ ∖ {0})) ∧ (abs‘(𝑧𝐴)) < 𝑦) → (abs‘(((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝑧) − ((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝐴))) = (abs‘((1 / 𝑧) − (1 / 𝐴))))
4229ad2antlr 727 . . . . . . . . 9 (((((𝜑𝑥 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) → ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝑥))) ∧ 𝑧 ∈ (ℂ ∖ {0})) ∧ (abs‘(𝑧𝐴)) < 𝑦) → 𝑧 ∈ (ℂ ∖ {0}))
43 simpr 484 . . . . . . . . 9 (((((𝜑𝑥 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) → ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝑥))) ∧ 𝑧 ∈ (ℂ ∖ {0})) ∧ (abs‘(𝑧𝐴)) < 𝑦) → (abs‘(𝑧𝐴)) < 𝑦)
44 simpllr 776 . . . . . . . . 9 (((((𝜑𝑥 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) → ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝑥))) ∧ 𝑧 ∈ (ℂ ∖ {0})) ∧ (abs‘(𝑧𝐴)) < 𝑦) → (𝑧 ∈ (ℂ ∖ {0}) → ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝑥)))
4542, 43, 44mp2d 49 . . . . . . . 8 (((((𝜑𝑥 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) → ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝑥))) ∧ 𝑧 ∈ (ℂ ∖ {0})) ∧ (abs‘(𝑧𝐴)) < 𝑦) → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝑥)
4641, 45eqbrtrd 5170 . . . . . . 7 (((((𝜑𝑥 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) → ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝑥))) ∧ 𝑧 ∈ (ℂ ∖ {0})) ∧ (abs‘(𝑧𝐴)) < 𝑦) → (abs‘(((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝑧) − ((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝐴))) < 𝑥)
4746exp41 434 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → ((𝑧 ∈ (ℂ ∖ {0}) → ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝑥)) → (𝑧 ∈ (ℂ ∖ {0}) → ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘(((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝑧) − ((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝐴))) < 𝑥))))
4847ralimdv2 3161 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (∀𝑧 ∈ (ℂ ∖ {0})((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝑥) → ∀𝑧 ∈ (ℂ ∖ {0})((abs‘(𝑧𝐴)) < 𝑦 → (abs‘(((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝑧) − ((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝐴))) < 𝑥)))
4948reximdv 3168 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (∃𝑦 ∈ ℝ+𝑧 ∈ (ℂ ∖ {0})((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝑥) → ∃𝑦 ∈ ℝ+𝑧 ∈ (ℂ ∖ {0})((abs‘(𝑧𝐴)) < 𝑦 → (abs‘(((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝑧) − ((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝐴))) < 𝑥)))
5025, 49mpd 15 . . 3 ((𝜑𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ (ℂ ∖ {0})((abs‘(𝑧𝐴)) < 𝑦 → (abs‘(((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝑧) − ((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝐴))) < 𝑥))
51 climrec.5 . . 3 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ (ℂ ∖ {0}))
52 climrec.6 . . . 4 ((𝜑𝑘𝑍) → (𝐻𝑘) = (1 / (𝐺𝑘)))
53 eqidd 2736 . . . . 5 ((𝜑𝑘𝑍) → (𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤)) = (𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤)))
54 oveq2 7439 . . . . . 6 (𝑤 = (𝐺𝑘) → (1 / 𝑤) = (1 / (𝐺𝑘)))
5554adantl 481 . . . . 5 (((𝜑𝑘𝑍) ∧ 𝑤 = (𝐺𝑘)) → (1 / 𝑤) = (1 / (𝐺𝑘)))
5651eldifad 3975 . . . . . 6 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
57 eldifsni 4795 . . . . . . 7 ((𝐺𝑘) ∈ (ℂ ∖ {0}) → (𝐺𝑘) ≠ 0)
5851, 57syl 17 . . . . . 6 ((𝜑𝑘𝑍) → (𝐺𝑘) ≠ 0)
5956, 58reccld 12034 . . . . 5 ((𝜑𝑘𝑍) → (1 / (𝐺𝑘)) ∈ ℂ)
6053, 55, 51, 59fvmptd 7023 . . . 4 ((𝜑𝑘𝑍) → ((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘(𝐺𝑘)) = (1 / (𝐺𝑘)))
6152, 60eqtr4d 2778 . . 3 ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘(𝐺𝑘)))
621, 2, 11, 21, 3, 22, 50, 51, 61climcn1 15625 . 2 (𝜑𝐻 ⇝ ((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝐴))
6362, 38breqtrd 5174 1 (𝜑𝐻 ⇝ (1 / 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wne 2938  wral 3059  wrex 3068  cdif 3960  ifcif 4531  {csn 4631   class class class wbr 5148  cmpt 5231  cfv 6563  (class class class)co 7431  cc 11151  0cc0 11153  1c1 11154   · cmul 11158   < clt 11293  cle 11294  cmin 11490   / cdiv 11918  2c2 12319  cz 12611  cuz 12876  +crp 13032  abscabs 15270  cli 15517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521
This theorem is referenced by:  climrecf  45565  wallispi  46026
  Copyright terms: Public domain W3C validator