Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climrec Structured version   Visualization version   GIF version

Theorem climrec 42245
Description: Limit of the reciprocal of a converging sequence. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
climrec.1 𝑍 = (ℤ𝑀)
climrec.2 (𝜑𝑀 ∈ ℤ)
climrec.3 (𝜑𝐺𝐴)
climrec.4 (𝜑𝐴 ≠ 0)
climrec.5 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ (ℂ ∖ {0}))
climrec.6 ((𝜑𝑘𝑍) → (𝐻𝑘) = (1 / (𝐺𝑘)))
climrec.7 (𝜑𝐻𝑊)
Assertion
Ref Expression
climrec (𝜑𝐻 ⇝ (1 / 𝐴))
Distinct variable groups:   𝜑,𝑘   𝐴,𝑘   𝑘,𝐺   𝑘,𝐻   𝑘,𝑍
Allowed substitution hints:   𝑀(𝑘)   𝑊(𝑘)

Proof of Theorem climrec
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climrec.1 . . 3 𝑍 = (ℤ𝑀)
2 climrec.2 . . 3 (𝜑𝑀 ∈ ℤ)
3 climrec.3 . . . . 5 (𝜑𝐺𝐴)
4 climcl 14848 . . . . 5 (𝐺𝐴𝐴 ∈ ℂ)
53, 4syl 17 . . . 4 (𝜑𝐴 ∈ ℂ)
6 climrec.4 . . . . . 6 (𝜑𝐴 ≠ 0)
76neneqd 2992 . . . . 5 (𝜑 → ¬ 𝐴 = 0)
8 c0ex 10624 . . . . . 6 0 ∈ V
98elsn2 4564 . . . . 5 (𝐴 ∈ {0} ↔ 𝐴 = 0)
107, 9sylnibr 332 . . . 4 (𝜑 → ¬ 𝐴 ∈ {0})
115, 10eldifd 3892 . . 3 (𝜑𝐴 ∈ (ℂ ∖ {0}))
12 eqidd 2799 . . . . 5 ((𝜑𝑧 ∈ (ℂ ∖ {0})) → (𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤)) = (𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤)))
13 simpr 488 . . . . . 6 (((𝜑𝑧 ∈ (ℂ ∖ {0})) ∧ 𝑤 = 𝑧) → 𝑤 = 𝑧)
1413oveq2d 7151 . . . . 5 (((𝜑𝑧 ∈ (ℂ ∖ {0})) ∧ 𝑤 = 𝑧) → (1 / 𝑤) = (1 / 𝑧))
15 simpr 488 . . . . 5 ((𝜑𝑧 ∈ (ℂ ∖ {0})) → 𝑧 ∈ (ℂ ∖ {0}))
1615eldifad 3893 . . . . . 6 ((𝜑𝑧 ∈ (ℂ ∖ {0})) → 𝑧 ∈ ℂ)
17 eldifsni 4683 . . . . . . 7 (𝑧 ∈ (ℂ ∖ {0}) → 𝑧 ≠ 0)
1817adantl 485 . . . . . 6 ((𝜑𝑧 ∈ (ℂ ∖ {0})) → 𝑧 ≠ 0)
1916, 18reccld 11398 . . . . 5 ((𝜑𝑧 ∈ (ℂ ∖ {0})) → (1 / 𝑧) ∈ ℂ)
2012, 14, 15, 19fvmptd 6752 . . . 4 ((𝜑𝑧 ∈ (ℂ ∖ {0})) → ((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝑧) = (1 / 𝑧))
2120, 19eqeltrd 2890 . . 3 ((𝜑𝑧 ∈ (ℂ ∖ {0})) → ((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝑧) ∈ ℂ)
22 climrec.7 . . 3 (𝜑𝐻𝑊)
23 eqid 2798 . . . . . 6 (if(1 ≤ ((abs‘𝐴) · 𝑥), 1, ((abs‘𝐴) · 𝑥)) · ((abs‘𝐴) / 2)) = (if(1 ≤ ((abs‘𝐴) · 𝑥), 1, ((abs‘𝐴) · 𝑥)) · ((abs‘𝐴) / 2))
2423reccn2 14945 . . . . 5 ((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ (ℂ ∖ {0})((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝑥))
2511, 24sylan 583 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ (ℂ ∖ {0})((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝑥))
26 eqidd 2799 . . . . . . . . . . . 12 (𝑧 ∈ (ℂ ∖ {0}) → (𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤)) = (𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤)))
27 simpr 488 . . . . . . . . . . . . 13 ((𝑧 ∈ (ℂ ∖ {0}) ∧ 𝑤 = 𝑧) → 𝑤 = 𝑧)
2827oveq2d 7151 . . . . . . . . . . . 12 ((𝑧 ∈ (ℂ ∖ {0}) ∧ 𝑤 = 𝑧) → (1 / 𝑤) = (1 / 𝑧))
29 id 22 . . . . . . . . . . . 12 (𝑧 ∈ (ℂ ∖ {0}) → 𝑧 ∈ (ℂ ∖ {0}))
30 eldifi 4054 . . . . . . . . . . . . 13 (𝑧 ∈ (ℂ ∖ {0}) → 𝑧 ∈ ℂ)
3130, 17reccld 11398 . . . . . . . . . . . 12 (𝑧 ∈ (ℂ ∖ {0}) → (1 / 𝑧) ∈ ℂ)
3226, 28, 29, 31fvmptd 6752 . . . . . . . . . . 11 (𝑧 ∈ (ℂ ∖ {0}) → ((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝑧) = (1 / 𝑧))
3332ad2antlr 726 . . . . . . . . . 10 (((((𝜑𝑥 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) → ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝑥))) ∧ 𝑧 ∈ (ℂ ∖ {0})) ∧ (abs‘(𝑧𝐴)) < 𝑦) → ((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝑧) = (1 / 𝑧))
34 eqidd 2799 . . . . . . . . . . . 12 (𝜑 → (𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤)) = (𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤)))
35 simpr 488 . . . . . . . . . . . . 13 ((𝜑𝑤 = 𝐴) → 𝑤 = 𝐴)
3635oveq2d 7151 . . . . . . . . . . . 12 ((𝜑𝑤 = 𝐴) → (1 / 𝑤) = (1 / 𝐴))
375, 6reccld 11398 . . . . . . . . . . . 12 (𝜑 → (1 / 𝐴) ∈ ℂ)
3834, 36, 11, 37fvmptd 6752 . . . . . . . . . . 11 (𝜑 → ((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝐴) = (1 / 𝐴))
3938ad4antr 731 . . . . . . . . . 10 (((((𝜑𝑥 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) → ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝑥))) ∧ 𝑧 ∈ (ℂ ∖ {0})) ∧ (abs‘(𝑧𝐴)) < 𝑦) → ((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝐴) = (1 / 𝐴))
4033, 39oveq12d 7153 . . . . . . . . 9 (((((𝜑𝑥 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) → ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝑥))) ∧ 𝑧 ∈ (ℂ ∖ {0})) ∧ (abs‘(𝑧𝐴)) < 𝑦) → (((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝑧) − ((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝐴)) = ((1 / 𝑧) − (1 / 𝐴)))
4140fveq2d 6649 . . . . . . . 8 (((((𝜑𝑥 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) → ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝑥))) ∧ 𝑧 ∈ (ℂ ∖ {0})) ∧ (abs‘(𝑧𝐴)) < 𝑦) → (abs‘(((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝑧) − ((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝐴))) = (abs‘((1 / 𝑧) − (1 / 𝐴))))
4229ad2antlr 726 . . . . . . . . 9 (((((𝜑𝑥 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) → ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝑥))) ∧ 𝑧 ∈ (ℂ ∖ {0})) ∧ (abs‘(𝑧𝐴)) < 𝑦) → 𝑧 ∈ (ℂ ∖ {0}))
43 simpr 488 . . . . . . . . 9 (((((𝜑𝑥 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) → ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝑥))) ∧ 𝑧 ∈ (ℂ ∖ {0})) ∧ (abs‘(𝑧𝐴)) < 𝑦) → (abs‘(𝑧𝐴)) < 𝑦)
44 simpllr 775 . . . . . . . . 9 (((((𝜑𝑥 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) → ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝑥))) ∧ 𝑧 ∈ (ℂ ∖ {0})) ∧ (abs‘(𝑧𝐴)) < 𝑦) → (𝑧 ∈ (ℂ ∖ {0}) → ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝑥)))
4542, 43, 44mp2d 49 . . . . . . . 8 (((((𝜑𝑥 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) → ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝑥))) ∧ 𝑧 ∈ (ℂ ∖ {0})) ∧ (abs‘(𝑧𝐴)) < 𝑦) → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝑥)
4641, 45eqbrtrd 5052 . . . . . . 7 (((((𝜑𝑥 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) → ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝑥))) ∧ 𝑧 ∈ (ℂ ∖ {0})) ∧ (abs‘(𝑧𝐴)) < 𝑦) → (abs‘(((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝑧) − ((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝐴))) < 𝑥)
4746exp41 438 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → ((𝑧 ∈ (ℂ ∖ {0}) → ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝑥)) → (𝑧 ∈ (ℂ ∖ {0}) → ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘(((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝑧) − ((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝐴))) < 𝑥))))
4847ralimdv2 3143 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (∀𝑧 ∈ (ℂ ∖ {0})((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝑥) → ∀𝑧 ∈ (ℂ ∖ {0})((abs‘(𝑧𝐴)) < 𝑦 → (abs‘(((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝑧) − ((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝐴))) < 𝑥)))
4948reximdv 3232 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (∃𝑦 ∈ ℝ+𝑧 ∈ (ℂ ∖ {0})((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝑥) → ∃𝑦 ∈ ℝ+𝑧 ∈ (ℂ ∖ {0})((abs‘(𝑧𝐴)) < 𝑦 → (abs‘(((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝑧) − ((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝐴))) < 𝑥)))
5025, 49mpd 15 . . 3 ((𝜑𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ (ℂ ∖ {0})((abs‘(𝑧𝐴)) < 𝑦 → (abs‘(((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝑧) − ((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝐴))) < 𝑥))
51 climrec.5 . . 3 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ (ℂ ∖ {0}))
52 climrec.6 . . . 4 ((𝜑𝑘𝑍) → (𝐻𝑘) = (1 / (𝐺𝑘)))
53 eqidd 2799 . . . . 5 ((𝜑𝑘𝑍) → (𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤)) = (𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤)))
54 oveq2 7143 . . . . . 6 (𝑤 = (𝐺𝑘) → (1 / 𝑤) = (1 / (𝐺𝑘)))
5554adantl 485 . . . . 5 (((𝜑𝑘𝑍) ∧ 𝑤 = (𝐺𝑘)) → (1 / 𝑤) = (1 / (𝐺𝑘)))
5651eldifad 3893 . . . . . 6 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
57 eldifsni 4683 . . . . . . 7 ((𝐺𝑘) ∈ (ℂ ∖ {0}) → (𝐺𝑘) ≠ 0)
5851, 57syl 17 . . . . . 6 ((𝜑𝑘𝑍) → (𝐺𝑘) ≠ 0)
5956, 58reccld 11398 . . . . 5 ((𝜑𝑘𝑍) → (1 / (𝐺𝑘)) ∈ ℂ)
6053, 55, 51, 59fvmptd 6752 . . . 4 ((𝜑𝑘𝑍) → ((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘(𝐺𝑘)) = (1 / (𝐺𝑘)))
6152, 60eqtr4d 2836 . . 3 ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘(𝐺𝑘)))
621, 2, 11, 21, 3, 22, 50, 51, 61climcn1 14940 . 2 (𝜑𝐻 ⇝ ((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝐴))
6362, 38breqtrd 5056 1 (𝜑𝐻 ⇝ (1 / 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wne 2987  wral 3106  wrex 3107  cdif 3878  ifcif 4425  {csn 4525   class class class wbr 5030  cmpt 5110  cfv 6324  (class class class)co 7135  cc 10524  0cc0 10526  1c1 10527   · cmul 10531   < clt 10664  cle 10665  cmin 10859   / cdiv 11286  2c2 11680  cz 11969  cuz 12231  +crp 12377  abscabs 14585  cli 14833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837
This theorem is referenced by:  climrecf  42251  wallispi  42712
  Copyright terms: Public domain W3C validator