| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > atoml2i | Structured version Visualization version GIF version | ||
| Description: An assertion holding in atomic orthomodular lattices that is equivalent to the exchange axiom. Proposition P8(ii) of [BeltramettiCassinelli1] p. 400. (Contributed by NM, 12-Jun-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| atoml.1 | ⊢ 𝐴 ∈ Cℋ |
| Ref | Expression |
|---|---|
| atoml2i | ⊢ ((𝐵 ∈ HAtoms ∧ ¬ 𝐵 ⊆ 𝐴) → ((𝐴 ∨ℋ 𝐵) ∩ (⊥‘𝐴)) ∈ HAtoms) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atoml.1 | . . . . . . . 8 ⊢ 𝐴 ∈ Cℋ | |
| 2 | atelch 32331 | . . . . . . . 8 ⊢ (𝐵 ∈ HAtoms → 𝐵 ∈ Cℋ ) | |
| 3 | pjoml5 31600 | . . . . . . . 8 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ∨ℋ ((⊥‘𝐴) ∩ (𝐴 ∨ℋ 𝐵))) = (𝐴 ∨ℋ 𝐵)) | |
| 4 | 1, 2, 3 | sylancr 587 | . . . . . . 7 ⊢ (𝐵 ∈ HAtoms → (𝐴 ∨ℋ ((⊥‘𝐴) ∩ (𝐴 ∨ℋ 𝐵))) = (𝐴 ∨ℋ 𝐵)) |
| 5 | incom 4158 | . . . . . . . . . . 11 ⊢ ((𝐴 ∨ℋ 𝐵) ∩ (⊥‘𝐴)) = ((⊥‘𝐴) ∩ (𝐴 ∨ℋ 𝐵)) | |
| 6 | 5 | eqeq1i 2736 | . . . . . . . . . 10 ⊢ (((𝐴 ∨ℋ 𝐵) ∩ (⊥‘𝐴)) = 0ℋ ↔ ((⊥‘𝐴) ∩ (𝐴 ∨ℋ 𝐵)) = 0ℋ) |
| 7 | 6 | biimpi 216 | . . . . . . . . 9 ⊢ (((𝐴 ∨ℋ 𝐵) ∩ (⊥‘𝐴)) = 0ℋ → ((⊥‘𝐴) ∩ (𝐴 ∨ℋ 𝐵)) = 0ℋ) |
| 8 | 7 | oveq2d 7368 | . . . . . . . 8 ⊢ (((𝐴 ∨ℋ 𝐵) ∩ (⊥‘𝐴)) = 0ℋ → (𝐴 ∨ℋ ((⊥‘𝐴) ∩ (𝐴 ∨ℋ 𝐵))) = (𝐴 ∨ℋ 0ℋ)) |
| 9 | 1 | chj0i 31442 | . . . . . . . 8 ⊢ (𝐴 ∨ℋ 0ℋ) = 𝐴 |
| 10 | 8, 9 | eqtrdi 2782 | . . . . . . 7 ⊢ (((𝐴 ∨ℋ 𝐵) ∩ (⊥‘𝐴)) = 0ℋ → (𝐴 ∨ℋ ((⊥‘𝐴) ∩ (𝐴 ∨ℋ 𝐵))) = 𝐴) |
| 11 | 4, 10 | sylan9req 2787 | . . . . . 6 ⊢ ((𝐵 ∈ HAtoms ∧ ((𝐴 ∨ℋ 𝐵) ∩ (⊥‘𝐴)) = 0ℋ) → (𝐴 ∨ℋ 𝐵) = 𝐴) |
| 12 | 11 | ex 412 | . . . . 5 ⊢ (𝐵 ∈ HAtoms → (((𝐴 ∨ℋ 𝐵) ∩ (⊥‘𝐴)) = 0ℋ → (𝐴 ∨ℋ 𝐵) = 𝐴)) |
| 13 | chlejb2 31500 | . . . . . 6 ⊢ ((𝐵 ∈ Cℋ ∧ 𝐴 ∈ Cℋ ) → (𝐵 ⊆ 𝐴 ↔ (𝐴 ∨ℋ 𝐵) = 𝐴)) | |
| 14 | 2, 1, 13 | sylancl 586 | . . . . 5 ⊢ (𝐵 ∈ HAtoms → (𝐵 ⊆ 𝐴 ↔ (𝐴 ∨ℋ 𝐵) = 𝐴)) |
| 15 | 12, 14 | sylibrd 259 | . . . 4 ⊢ (𝐵 ∈ HAtoms → (((𝐴 ∨ℋ 𝐵) ∩ (⊥‘𝐴)) = 0ℋ → 𝐵 ⊆ 𝐴)) |
| 16 | 15 | con3d 152 | . . 3 ⊢ (𝐵 ∈ HAtoms → (¬ 𝐵 ⊆ 𝐴 → ¬ ((𝐴 ∨ℋ 𝐵) ∩ (⊥‘𝐴)) = 0ℋ)) |
| 17 | 1 | atomli 32369 | . . . . 5 ⊢ (𝐵 ∈ HAtoms → ((𝐴 ∨ℋ 𝐵) ∩ (⊥‘𝐴)) ∈ (HAtoms ∪ {0ℋ})) |
| 18 | elun 4102 | . . . . . 6 ⊢ (((𝐴 ∨ℋ 𝐵) ∩ (⊥‘𝐴)) ∈ (HAtoms ∪ {0ℋ}) ↔ (((𝐴 ∨ℋ 𝐵) ∩ (⊥‘𝐴)) ∈ HAtoms ∨ ((𝐴 ∨ℋ 𝐵) ∩ (⊥‘𝐴)) ∈ {0ℋ})) | |
| 19 | h0elch 31242 | . . . . . . . . 9 ⊢ 0ℋ ∈ Cℋ | |
| 20 | 19 | elexi 3459 | . . . . . . . 8 ⊢ 0ℋ ∈ V |
| 21 | 20 | elsn2 4617 | . . . . . . 7 ⊢ (((𝐴 ∨ℋ 𝐵) ∩ (⊥‘𝐴)) ∈ {0ℋ} ↔ ((𝐴 ∨ℋ 𝐵) ∩ (⊥‘𝐴)) = 0ℋ) |
| 22 | 21 | orbi2i 912 | . . . . . 6 ⊢ ((((𝐴 ∨ℋ 𝐵) ∩ (⊥‘𝐴)) ∈ HAtoms ∨ ((𝐴 ∨ℋ 𝐵) ∩ (⊥‘𝐴)) ∈ {0ℋ}) ↔ (((𝐴 ∨ℋ 𝐵) ∩ (⊥‘𝐴)) ∈ HAtoms ∨ ((𝐴 ∨ℋ 𝐵) ∩ (⊥‘𝐴)) = 0ℋ)) |
| 23 | orcom 870 | . . . . . 6 ⊢ ((((𝐴 ∨ℋ 𝐵) ∩ (⊥‘𝐴)) ∈ HAtoms ∨ ((𝐴 ∨ℋ 𝐵) ∩ (⊥‘𝐴)) = 0ℋ) ↔ (((𝐴 ∨ℋ 𝐵) ∩ (⊥‘𝐴)) = 0ℋ ∨ ((𝐴 ∨ℋ 𝐵) ∩ (⊥‘𝐴)) ∈ HAtoms)) | |
| 24 | 18, 22, 23 | 3bitri 297 | . . . . 5 ⊢ (((𝐴 ∨ℋ 𝐵) ∩ (⊥‘𝐴)) ∈ (HAtoms ∪ {0ℋ}) ↔ (((𝐴 ∨ℋ 𝐵) ∩ (⊥‘𝐴)) = 0ℋ ∨ ((𝐴 ∨ℋ 𝐵) ∩ (⊥‘𝐴)) ∈ HAtoms)) |
| 25 | 17, 24 | sylib 218 | . . . 4 ⊢ (𝐵 ∈ HAtoms → (((𝐴 ∨ℋ 𝐵) ∩ (⊥‘𝐴)) = 0ℋ ∨ ((𝐴 ∨ℋ 𝐵) ∩ (⊥‘𝐴)) ∈ HAtoms)) |
| 26 | 25 | ord 864 | . . 3 ⊢ (𝐵 ∈ HAtoms → (¬ ((𝐴 ∨ℋ 𝐵) ∩ (⊥‘𝐴)) = 0ℋ → ((𝐴 ∨ℋ 𝐵) ∩ (⊥‘𝐴)) ∈ HAtoms)) |
| 27 | 16, 26 | syld 47 | . 2 ⊢ (𝐵 ∈ HAtoms → (¬ 𝐵 ⊆ 𝐴 → ((𝐴 ∨ℋ 𝐵) ∩ (⊥‘𝐴)) ∈ HAtoms)) |
| 28 | 27 | imp 406 | 1 ⊢ ((𝐵 ∈ HAtoms ∧ ¬ 𝐵 ⊆ 𝐴) → ((𝐴 ∨ℋ 𝐵) ∩ (⊥‘𝐴)) ∈ HAtoms) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ∪ cun 3895 ∩ cin 3896 ⊆ wss 3897 {csn 4575 ‘cfv 6487 (class class class)co 7352 Cℋ cch 30916 ⊥cort 30917 ∨ℋ chj 30920 0ℋc0h 30922 HAtomscat 30952 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9537 ax-cc 10332 ax-cnex 11068 ax-resscn 11069 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-mulcom 11076 ax-addass 11077 ax-mulass 11078 ax-distr 11079 ax-i2m1 11080 ax-1ne0 11081 ax-1rid 11082 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 ax-pre-lttri 11086 ax-pre-lttrn 11087 ax-pre-ltadd 11088 ax-pre-mulgt0 11089 ax-pre-sup 11090 ax-addf 11091 ax-mulf 11092 ax-hilex 30986 ax-hfvadd 30987 ax-hvcom 30988 ax-hvass 30989 ax-hv0cl 30990 ax-hvaddid 30991 ax-hfvmul 30992 ax-hvmulid 30993 ax-hvmulass 30994 ax-hvdistr1 30995 ax-hvdistr2 30996 ax-hvmul0 30997 ax-hfi 31066 ax-his1 31069 ax-his2 31070 ax-his3 31071 ax-his4 31072 ax-hcompl 31189 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-isom 6496 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7616 df-om 7803 df-1st 7927 df-2nd 7928 df-supp 8097 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-oadd 8395 df-omul 8396 df-er 8628 df-map 8758 df-pm 8759 df-ixp 8828 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-fsupp 9252 df-fi 9301 df-sup 9332 df-inf 9333 df-oi 9402 df-card 9838 df-acn 9841 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-sub 11352 df-neg 11353 df-div 11781 df-nn 12132 df-2 12194 df-3 12195 df-4 12196 df-5 12197 df-6 12198 df-7 12199 df-8 12200 df-9 12201 df-n0 12388 df-z 12475 df-dec 12595 df-uz 12739 df-q 12853 df-rp 12897 df-xneg 13017 df-xadd 13018 df-xmul 13019 df-ioo 13255 df-ico 13257 df-icc 13258 df-fz 13414 df-fzo 13561 df-fl 13702 df-seq 13915 df-exp 13975 df-hash 14244 df-cj 15012 df-re 15013 df-im 15014 df-sqrt 15148 df-abs 15149 df-clim 15401 df-rlim 15402 df-sum 15600 df-struct 17064 df-sets 17081 df-slot 17099 df-ndx 17111 df-base 17127 df-ress 17148 df-plusg 17180 df-mulr 17181 df-starv 17182 df-sca 17183 df-vsca 17184 df-ip 17185 df-tset 17186 df-ple 17187 df-ds 17189 df-unif 17190 df-hom 17191 df-cco 17192 df-rest 17332 df-topn 17333 df-0g 17351 df-gsum 17352 df-topgen 17353 df-pt 17354 df-prds 17357 df-xrs 17412 df-qtop 17417 df-imas 17418 df-xps 17420 df-mre 17494 df-mrc 17495 df-acs 17497 df-mgm 18554 df-sgrp 18633 df-mnd 18649 df-submnd 18698 df-mulg 18987 df-cntz 19235 df-cmn 19700 df-psmet 21289 df-xmet 21290 df-met 21291 df-bl 21292 df-mopn 21293 df-fbas 21294 df-fg 21295 df-cnfld 21298 df-top 22815 df-topon 22832 df-topsp 22854 df-bases 22867 df-cld 22940 df-ntr 22941 df-cls 22942 df-nei 23019 df-cn 23148 df-cnp 23149 df-lm 23150 df-haus 23236 df-tx 23483 df-hmeo 23676 df-fil 23767 df-fm 23859 df-flim 23860 df-flf 23861 df-xms 24241 df-ms 24242 df-tms 24243 df-cfil 25188 df-cau 25189 df-cmet 25190 df-grpo 30480 df-gid 30481 df-ginv 30482 df-gdiv 30483 df-ablo 30532 df-vc 30546 df-nv 30579 df-va 30582 df-ba 30583 df-sm 30584 df-0v 30585 df-vs 30586 df-nmcv 30587 df-ims 30588 df-dip 30688 df-ssp 30709 df-ph 30800 df-cbn 30850 df-hnorm 30955 df-hba 30956 df-hvsub 30958 df-hlim 30959 df-hcau 30960 df-sh 31194 df-ch 31208 df-oc 31239 df-ch0 31240 df-shs 31295 df-span 31296 df-chj 31297 df-chsup 31298 df-pjh 31382 df-cv 32266 df-at 32325 |
| This theorem is referenced by: atordi 32371 |
| Copyright terms: Public domain | W3C validator |