MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elhoma Structured version   Visualization version   GIF version

Theorem elhoma 17939
Description: Value of the disjointified hom-set function. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
homarcl.h 𝐻 = (Homa𝐶)
homafval.b 𝐵 = (Base‘𝐶)
homafval.c (𝜑𝐶 ∈ Cat)
homaval.j 𝐽 = (Hom ‘𝐶)
homaval.x (𝜑𝑋𝐵)
homaval.y (𝜑𝑌𝐵)
Assertion
Ref Expression
elhoma (𝜑 → (𝑍(𝑋𝐻𝑌)𝐹 ↔ (𝑍 = ⟨𝑋, 𝑌⟩ ∧ 𝐹 ∈ (𝑋𝐽𝑌))))

Proof of Theorem elhoma
StepHypRef Expression
1 homarcl.h . . . 4 𝐻 = (Homa𝐶)
2 homafval.b . . . 4 𝐵 = (Base‘𝐶)
3 homafval.c . . . 4 (𝜑𝐶 ∈ Cat)
4 homaval.j . . . 4 𝐽 = (Hom ‘𝐶)
5 homaval.x . . . 4 (𝜑𝑋𝐵)
6 homaval.y . . . 4 (𝜑𝑌𝐵)
71, 2, 3, 4, 5, 6homaval 17938 . . 3 (𝜑 → (𝑋𝐻𝑌) = ({⟨𝑋, 𝑌⟩} × (𝑋𝐽𝑌)))
87breqd 5100 . 2 (𝜑 → (𝑍(𝑋𝐻𝑌)𝐹𝑍({⟨𝑋, 𝑌⟩} × (𝑋𝐽𝑌))𝐹))
9 brxp 5663 . . 3 (𝑍({⟨𝑋, 𝑌⟩} × (𝑋𝐽𝑌))𝐹 ↔ (𝑍 ∈ {⟨𝑋, 𝑌⟩} ∧ 𝐹 ∈ (𝑋𝐽𝑌)))
10 opex 5402 . . . . 5 𝑋, 𝑌⟩ ∈ V
1110elsn2 4615 . . . 4 (𝑍 ∈ {⟨𝑋, 𝑌⟩} ↔ 𝑍 = ⟨𝑋, 𝑌⟩)
1211anbi1i 624 . . 3 ((𝑍 ∈ {⟨𝑋, 𝑌⟩} ∧ 𝐹 ∈ (𝑋𝐽𝑌)) ↔ (𝑍 = ⟨𝑋, 𝑌⟩ ∧ 𝐹 ∈ (𝑋𝐽𝑌)))
139, 12bitri 275 . 2 (𝑍({⟨𝑋, 𝑌⟩} × (𝑋𝐽𝑌))𝐹 ↔ (𝑍 = ⟨𝑋, 𝑌⟩ ∧ 𝐹 ∈ (𝑋𝐽𝑌)))
148, 13bitrdi 287 1 (𝜑 → (𝑍(𝑋𝐻𝑌)𝐹 ↔ (𝑍 = ⟨𝑋, 𝑌⟩ ∧ 𝐹 ∈ (𝑋𝐽𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  {csn 4573  cop 4579   class class class wbr 5089   × cxp 5612  cfv 6481  (class class class)co 7346  Basecbs 17120  Hom chom 17172  Catccat 17570  Homachoma 17930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-homa 17933
This theorem is referenced by:  elhomai  17940  homa1  17944  homahom2  17945
  Copyright terms: Public domain W3C validator