MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elhoma Structured version   Visualization version   GIF version

Theorem elhoma 17992
Description: Value of the disjointified hom-set function. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
homarcl.h 𝐻 = (Homa𝐶)
homafval.b 𝐵 = (Base‘𝐶)
homafval.c (𝜑𝐶 ∈ Cat)
homaval.j 𝐽 = (Hom ‘𝐶)
homaval.x (𝜑𝑋𝐵)
homaval.y (𝜑𝑌𝐵)
Assertion
Ref Expression
elhoma (𝜑 → (𝑍(𝑋𝐻𝑌)𝐹 ↔ (𝑍 = ⟨𝑋, 𝑌⟩ ∧ 𝐹 ∈ (𝑋𝐽𝑌))))

Proof of Theorem elhoma
StepHypRef Expression
1 homarcl.h . . . 4 𝐻 = (Homa𝐶)
2 homafval.b . . . 4 𝐵 = (Base‘𝐶)
3 homafval.c . . . 4 (𝜑𝐶 ∈ Cat)
4 homaval.j . . . 4 𝐽 = (Hom ‘𝐶)
5 homaval.x . . . 4 (𝜑𝑋𝐵)
6 homaval.y . . . 4 (𝜑𝑌𝐵)
71, 2, 3, 4, 5, 6homaval 17991 . . 3 (𝜑 → (𝑋𝐻𝑌) = ({⟨𝑋, 𝑌⟩} × (𝑋𝐽𝑌)))
87breqd 5159 . 2 (𝜑 → (𝑍(𝑋𝐻𝑌)𝐹𝑍({⟨𝑋, 𝑌⟩} × (𝑋𝐽𝑌))𝐹))
9 brxp 5725 . . 3 (𝑍({⟨𝑋, 𝑌⟩} × (𝑋𝐽𝑌))𝐹 ↔ (𝑍 ∈ {⟨𝑋, 𝑌⟩} ∧ 𝐹 ∈ (𝑋𝐽𝑌)))
10 opex 5464 . . . . 5 𝑋, 𝑌⟩ ∈ V
1110elsn2 4667 . . . 4 (𝑍 ∈ {⟨𝑋, 𝑌⟩} ↔ 𝑍 = ⟨𝑋, 𝑌⟩)
1211anbi1i 623 . . 3 ((𝑍 ∈ {⟨𝑋, 𝑌⟩} ∧ 𝐹 ∈ (𝑋𝐽𝑌)) ↔ (𝑍 = ⟨𝑋, 𝑌⟩ ∧ 𝐹 ∈ (𝑋𝐽𝑌)))
139, 12bitri 275 . 2 (𝑍({⟨𝑋, 𝑌⟩} × (𝑋𝐽𝑌))𝐹 ↔ (𝑍 = ⟨𝑋, 𝑌⟩ ∧ 𝐹 ∈ (𝑋𝐽𝑌)))
148, 13bitrdi 287 1 (𝜑 → (𝑍(𝑋𝐻𝑌)𝐹 ↔ (𝑍 = ⟨𝑋, 𝑌⟩ ∧ 𝐹 ∈ (𝑋𝐽𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1540  wcel 2105  {csn 4628  cop 4634   class class class wbr 5148   × cxp 5674  cfv 6543  (class class class)co 7412  Basecbs 17151  Hom chom 17215  Catccat 17615  Homachoma 17983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-homa 17986
This theorem is referenced by:  elhomai  17993  homa1  17997  homahom2  17998
  Copyright terms: Public domain W3C validator