| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elhoma | Structured version Visualization version GIF version | ||
| Description: Value of the disjointified hom-set function. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| Ref | Expression |
|---|---|
| homarcl.h | ⊢ 𝐻 = (Homa‘𝐶) |
| homafval.b | ⊢ 𝐵 = (Base‘𝐶) |
| homafval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| homaval.j | ⊢ 𝐽 = (Hom ‘𝐶) |
| homaval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| homaval.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| elhoma | ⊢ (𝜑 → (𝑍(𝑋𝐻𝑌)𝐹 ↔ (𝑍 = 〈𝑋, 𝑌〉 ∧ 𝐹 ∈ (𝑋𝐽𝑌)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | homarcl.h | . . . 4 ⊢ 𝐻 = (Homa‘𝐶) | |
| 2 | homafval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 3 | homafval.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 4 | homaval.j | . . . 4 ⊢ 𝐽 = (Hom ‘𝐶) | |
| 5 | homaval.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 6 | homaval.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 7 | 1, 2, 3, 4, 5, 6 | homaval 17969 | . . 3 ⊢ (𝜑 → (𝑋𝐻𝑌) = ({〈𝑋, 𝑌〉} × (𝑋𝐽𝑌))) |
| 8 | 7 | breqd 5113 | . 2 ⊢ (𝜑 → (𝑍(𝑋𝐻𝑌)𝐹 ↔ 𝑍({〈𝑋, 𝑌〉} × (𝑋𝐽𝑌))𝐹)) |
| 9 | brxp 5680 | . . 3 ⊢ (𝑍({〈𝑋, 𝑌〉} × (𝑋𝐽𝑌))𝐹 ↔ (𝑍 ∈ {〈𝑋, 𝑌〉} ∧ 𝐹 ∈ (𝑋𝐽𝑌))) | |
| 10 | opex 5419 | . . . . 5 ⊢ 〈𝑋, 𝑌〉 ∈ V | |
| 11 | 10 | elsn2 4625 | . . . 4 ⊢ (𝑍 ∈ {〈𝑋, 𝑌〉} ↔ 𝑍 = 〈𝑋, 𝑌〉) |
| 12 | 11 | anbi1i 624 | . . 3 ⊢ ((𝑍 ∈ {〈𝑋, 𝑌〉} ∧ 𝐹 ∈ (𝑋𝐽𝑌)) ↔ (𝑍 = 〈𝑋, 𝑌〉 ∧ 𝐹 ∈ (𝑋𝐽𝑌))) |
| 13 | 9, 12 | bitri 275 | . 2 ⊢ (𝑍({〈𝑋, 𝑌〉} × (𝑋𝐽𝑌))𝐹 ↔ (𝑍 = 〈𝑋, 𝑌〉 ∧ 𝐹 ∈ (𝑋𝐽𝑌))) |
| 14 | 8, 13 | bitrdi 287 | 1 ⊢ (𝜑 → (𝑍(𝑋𝐻𝑌)𝐹 ↔ (𝑍 = 〈𝑋, 𝑌〉 ∧ 𝐹 ∈ (𝑋𝐽𝑌)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {csn 4585 〈cop 4591 class class class wbr 5102 × cxp 5629 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 Hom chom 17207 Catccat 17601 Homachoma 17961 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-homa 17964 |
| This theorem is referenced by: elhomai 17971 homa1 17975 homahom2 17976 |
| Copyright terms: Public domain | W3C validator |