MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elhoma Structured version   Visualization version   GIF version

Theorem elhoma 18050
Description: Value of the disjointified hom-set function. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
homarcl.h 𝐻 = (Homa𝐶)
homafval.b 𝐵 = (Base‘𝐶)
homafval.c (𝜑𝐶 ∈ Cat)
homaval.j 𝐽 = (Hom ‘𝐶)
homaval.x (𝜑𝑋𝐵)
homaval.y (𝜑𝑌𝐵)
Assertion
Ref Expression
elhoma (𝜑 → (𝑍(𝑋𝐻𝑌)𝐹 ↔ (𝑍 = ⟨𝑋, 𝑌⟩ ∧ 𝐹 ∈ (𝑋𝐽𝑌))))

Proof of Theorem elhoma
StepHypRef Expression
1 homarcl.h . . . 4 𝐻 = (Homa𝐶)
2 homafval.b . . . 4 𝐵 = (Base‘𝐶)
3 homafval.c . . . 4 (𝜑𝐶 ∈ Cat)
4 homaval.j . . . 4 𝐽 = (Hom ‘𝐶)
5 homaval.x . . . 4 (𝜑𝑋𝐵)
6 homaval.y . . . 4 (𝜑𝑌𝐵)
71, 2, 3, 4, 5, 6homaval 18049 . . 3 (𝜑 → (𝑋𝐻𝑌) = ({⟨𝑋, 𝑌⟩} × (𝑋𝐽𝑌)))
87breqd 5135 . 2 (𝜑 → (𝑍(𝑋𝐻𝑌)𝐹𝑍({⟨𝑋, 𝑌⟩} × (𝑋𝐽𝑌))𝐹))
9 brxp 5708 . . 3 (𝑍({⟨𝑋, 𝑌⟩} × (𝑋𝐽𝑌))𝐹 ↔ (𝑍 ∈ {⟨𝑋, 𝑌⟩} ∧ 𝐹 ∈ (𝑋𝐽𝑌)))
10 opex 5444 . . . . 5 𝑋, 𝑌⟩ ∈ V
1110elsn2 4646 . . . 4 (𝑍 ∈ {⟨𝑋, 𝑌⟩} ↔ 𝑍 = ⟨𝑋, 𝑌⟩)
1211anbi1i 624 . . 3 ((𝑍 ∈ {⟨𝑋, 𝑌⟩} ∧ 𝐹 ∈ (𝑋𝐽𝑌)) ↔ (𝑍 = ⟨𝑋, 𝑌⟩ ∧ 𝐹 ∈ (𝑋𝐽𝑌)))
139, 12bitri 275 . 2 (𝑍({⟨𝑋, 𝑌⟩} × (𝑋𝐽𝑌))𝐹 ↔ (𝑍 = ⟨𝑋, 𝑌⟩ ∧ 𝐹 ∈ (𝑋𝐽𝑌)))
148, 13bitrdi 287 1 (𝜑 → (𝑍(𝑋𝐻𝑌)𝐹 ↔ (𝑍 = ⟨𝑋, 𝑌⟩ ∧ 𝐹 ∈ (𝑋𝐽𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {csn 4606  cop 4612   class class class wbr 5124   × cxp 5657  cfv 6536  (class class class)co 7410  Basecbs 17233  Hom chom 17287  Catccat 17681  Homachoma 18041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-homa 18044
This theorem is referenced by:  elhomai  18051  homa1  18055  homahom2  18056
  Copyright terms: Public domain W3C validator