MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elhoma Structured version   Visualization version   GIF version

Theorem elhoma 18086
Description: Value of the disjointified hom-set function. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
homarcl.h 𝐻 = (Homa𝐶)
homafval.b 𝐵 = (Base‘𝐶)
homafval.c (𝜑𝐶 ∈ Cat)
homaval.j 𝐽 = (Hom ‘𝐶)
homaval.x (𝜑𝑋𝐵)
homaval.y (𝜑𝑌𝐵)
Assertion
Ref Expression
elhoma (𝜑 → (𝑍(𝑋𝐻𝑌)𝐹 ↔ (𝑍 = ⟨𝑋, 𝑌⟩ ∧ 𝐹 ∈ (𝑋𝐽𝑌))))

Proof of Theorem elhoma
StepHypRef Expression
1 homarcl.h . . . 4 𝐻 = (Homa𝐶)
2 homafval.b . . . 4 𝐵 = (Base‘𝐶)
3 homafval.c . . . 4 (𝜑𝐶 ∈ Cat)
4 homaval.j . . . 4 𝐽 = (Hom ‘𝐶)
5 homaval.x . . . 4 (𝜑𝑋𝐵)
6 homaval.y . . . 4 (𝜑𝑌𝐵)
71, 2, 3, 4, 5, 6homaval 18085 . . 3 (𝜑 → (𝑋𝐻𝑌) = ({⟨𝑋, 𝑌⟩} × (𝑋𝐽𝑌)))
87breqd 5159 . 2 (𝜑 → (𝑍(𝑋𝐻𝑌)𝐹𝑍({⟨𝑋, 𝑌⟩} × (𝑋𝐽𝑌))𝐹))
9 brxp 5738 . . 3 (𝑍({⟨𝑋, 𝑌⟩} × (𝑋𝐽𝑌))𝐹 ↔ (𝑍 ∈ {⟨𝑋, 𝑌⟩} ∧ 𝐹 ∈ (𝑋𝐽𝑌)))
10 opex 5475 . . . . 5 𝑋, 𝑌⟩ ∈ V
1110elsn2 4670 . . . 4 (𝑍 ∈ {⟨𝑋, 𝑌⟩} ↔ 𝑍 = ⟨𝑋, 𝑌⟩)
1211anbi1i 624 . . 3 ((𝑍 ∈ {⟨𝑋, 𝑌⟩} ∧ 𝐹 ∈ (𝑋𝐽𝑌)) ↔ (𝑍 = ⟨𝑋, 𝑌⟩ ∧ 𝐹 ∈ (𝑋𝐽𝑌)))
139, 12bitri 275 . 2 (𝑍({⟨𝑋, 𝑌⟩} × (𝑋𝐽𝑌))𝐹 ↔ (𝑍 = ⟨𝑋, 𝑌⟩ ∧ 𝐹 ∈ (𝑋𝐽𝑌)))
148, 13bitrdi 287 1 (𝜑 → (𝑍(𝑋𝐻𝑌)𝐹 ↔ (𝑍 = ⟨𝑋, 𝑌⟩ ∧ 𝐹 ∈ (𝑋𝐽𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  {csn 4631  cop 4637   class class class wbr 5148   × cxp 5687  cfv 6563  (class class class)co 7431  Basecbs 17245  Hom chom 17309  Catccat 17709  Homachoma 18077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-homa 18080
This theorem is referenced by:  elhomai  18087  homa1  18091  homahom2  18092
  Copyright terms: Public domain W3C validator