MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elhoma Structured version   Visualization version   GIF version

Theorem elhoma 16996
Description: Value of the disjointified hom-set function. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
homarcl.h 𝐻 = (Homa𝐶)
homafval.b 𝐵 = (Base‘𝐶)
homafval.c (𝜑𝐶 ∈ Cat)
homaval.j 𝐽 = (Hom ‘𝐶)
homaval.x (𝜑𝑋𝐵)
homaval.y (𝜑𝑌𝐵)
Assertion
Ref Expression
elhoma (𝜑 → (𝑍(𝑋𝐻𝑌)𝐹 ↔ (𝑍 = ⟨𝑋, 𝑌⟩ ∧ 𝐹 ∈ (𝑋𝐽𝑌))))

Proof of Theorem elhoma
StepHypRef Expression
1 homarcl.h . . . 4 𝐻 = (Homa𝐶)
2 homafval.b . . . 4 𝐵 = (Base‘𝐶)
3 homafval.c . . . 4 (𝜑𝐶 ∈ Cat)
4 homaval.j . . . 4 𝐽 = (Hom ‘𝐶)
5 homaval.x . . . 4 (𝜑𝑋𝐵)
6 homaval.y . . . 4 (𝜑𝑌𝐵)
71, 2, 3, 4, 5, 6homaval 16995 . . 3 (𝜑 → (𝑋𝐻𝑌) = ({⟨𝑋, 𝑌⟩} × (𝑋𝐽𝑌)))
87breqd 4854 . 2 (𝜑 → (𝑍(𝑋𝐻𝑌)𝐹𝑍({⟨𝑋, 𝑌⟩} × (𝑋𝐽𝑌))𝐹))
9 brxp 5358 . . 3 (𝑍({⟨𝑋, 𝑌⟩} × (𝑋𝐽𝑌))𝐹 ↔ (𝑍 ∈ {⟨𝑋, 𝑌⟩} ∧ 𝐹 ∈ (𝑋𝐽𝑌)))
10 opex 5123 . . . . 5 𝑋, 𝑌⟩ ∈ V
1110elsn2 4403 . . . 4 (𝑍 ∈ {⟨𝑋, 𝑌⟩} ↔ 𝑍 = ⟨𝑋, 𝑌⟩)
1211anbi1i 618 . . 3 ((𝑍 ∈ {⟨𝑋, 𝑌⟩} ∧ 𝐹 ∈ (𝑋𝐽𝑌)) ↔ (𝑍 = ⟨𝑋, 𝑌⟩ ∧ 𝐹 ∈ (𝑋𝐽𝑌)))
139, 12bitri 267 . 2 (𝑍({⟨𝑋, 𝑌⟩} × (𝑋𝐽𝑌))𝐹 ↔ (𝑍 = ⟨𝑋, 𝑌⟩ ∧ 𝐹 ∈ (𝑋𝐽𝑌)))
148, 13syl6bb 279 1 (𝜑 → (𝑍(𝑋𝐻𝑌)𝐹 ↔ (𝑍 = ⟨𝑋, 𝑌⟩ ∧ 𝐹 ∈ (𝑋𝐽𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385   = wceq 1653  wcel 2157  {csn 4368  cop 4374   class class class wbr 4843   × cxp 5310  cfv 6101  (class class class)co 6878  Basecbs 16184  Hom chom 16278  Catccat 16639  Homachoma 16987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-id 5220  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-ov 6881  df-homa 16990
This theorem is referenced by:  elhomai  16997  homa1  17001  homahom2  17002
  Copyright terms: Public domain W3C validator