| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elhoma | Structured version Visualization version GIF version | ||
| Description: Value of the disjointified hom-set function. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| Ref | Expression |
|---|---|
| homarcl.h | ⊢ 𝐻 = (Homa‘𝐶) |
| homafval.b | ⊢ 𝐵 = (Base‘𝐶) |
| homafval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| homaval.j | ⊢ 𝐽 = (Hom ‘𝐶) |
| homaval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| homaval.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| elhoma | ⊢ (𝜑 → (𝑍(𝑋𝐻𝑌)𝐹 ↔ (𝑍 = 〈𝑋, 𝑌〉 ∧ 𝐹 ∈ (𝑋𝐽𝑌)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | homarcl.h | . . . 4 ⊢ 𝐻 = (Homa‘𝐶) | |
| 2 | homafval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 3 | homafval.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 4 | homaval.j | . . . 4 ⊢ 𝐽 = (Hom ‘𝐶) | |
| 5 | homaval.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 6 | homaval.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 7 | 1, 2, 3, 4, 5, 6 | homaval 18077 | . . 3 ⊢ (𝜑 → (𝑋𝐻𝑌) = ({〈𝑋, 𝑌〉} × (𝑋𝐽𝑌))) |
| 8 | 7 | breqd 5153 | . 2 ⊢ (𝜑 → (𝑍(𝑋𝐻𝑌)𝐹 ↔ 𝑍({〈𝑋, 𝑌〉} × (𝑋𝐽𝑌))𝐹)) |
| 9 | brxp 5733 | . . 3 ⊢ (𝑍({〈𝑋, 𝑌〉} × (𝑋𝐽𝑌))𝐹 ↔ (𝑍 ∈ {〈𝑋, 𝑌〉} ∧ 𝐹 ∈ (𝑋𝐽𝑌))) | |
| 10 | opex 5468 | . . . . 5 ⊢ 〈𝑋, 𝑌〉 ∈ V | |
| 11 | 10 | elsn2 4664 | . . . 4 ⊢ (𝑍 ∈ {〈𝑋, 𝑌〉} ↔ 𝑍 = 〈𝑋, 𝑌〉) |
| 12 | 11 | anbi1i 624 | . . 3 ⊢ ((𝑍 ∈ {〈𝑋, 𝑌〉} ∧ 𝐹 ∈ (𝑋𝐽𝑌)) ↔ (𝑍 = 〈𝑋, 𝑌〉 ∧ 𝐹 ∈ (𝑋𝐽𝑌))) |
| 13 | 9, 12 | bitri 275 | . 2 ⊢ (𝑍({〈𝑋, 𝑌〉} × (𝑋𝐽𝑌))𝐹 ↔ (𝑍 = 〈𝑋, 𝑌〉 ∧ 𝐹 ∈ (𝑋𝐽𝑌))) |
| 14 | 8, 13 | bitrdi 287 | 1 ⊢ (𝜑 → (𝑍(𝑋𝐻𝑌)𝐹 ↔ (𝑍 = 〈𝑋, 𝑌〉 ∧ 𝐹 ∈ (𝑋𝐽𝑌)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 {csn 4625 〈cop 4631 class class class wbr 5142 × cxp 5682 ‘cfv 6560 (class class class)co 7432 Basecbs 17248 Hom chom 17309 Catccat 17708 Homachoma 18069 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-ov 7435 df-homa 18072 |
| This theorem is referenced by: elhomai 18079 homa1 18083 homahom2 18084 |
| Copyright terms: Public domain | W3C validator |