Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elhoma | Structured version Visualization version GIF version |
Description: Value of the disjointified hom-set function. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
homarcl.h | ⊢ 𝐻 = (Homa‘𝐶) |
homafval.b | ⊢ 𝐵 = (Base‘𝐶) |
homafval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
homaval.j | ⊢ 𝐽 = (Hom ‘𝐶) |
homaval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
homaval.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
elhoma | ⊢ (𝜑 → (𝑍(𝑋𝐻𝑌)𝐹 ↔ (𝑍 = 〈𝑋, 𝑌〉 ∧ 𝐹 ∈ (𝑋𝐽𝑌)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | homarcl.h | . . . 4 ⊢ 𝐻 = (Homa‘𝐶) | |
2 | homafval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
3 | homafval.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
4 | homaval.j | . . . 4 ⊢ 𝐽 = (Hom ‘𝐶) | |
5 | homaval.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
6 | homaval.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
7 | 1, 2, 3, 4, 5, 6 | homaval 17662 | . . 3 ⊢ (𝜑 → (𝑋𝐻𝑌) = ({〈𝑋, 𝑌〉} × (𝑋𝐽𝑌))) |
8 | 7 | breqd 5081 | . 2 ⊢ (𝜑 → (𝑍(𝑋𝐻𝑌)𝐹 ↔ 𝑍({〈𝑋, 𝑌〉} × (𝑋𝐽𝑌))𝐹)) |
9 | brxp 5627 | . . 3 ⊢ (𝑍({〈𝑋, 𝑌〉} × (𝑋𝐽𝑌))𝐹 ↔ (𝑍 ∈ {〈𝑋, 𝑌〉} ∧ 𝐹 ∈ (𝑋𝐽𝑌))) | |
10 | opex 5373 | . . . . 5 ⊢ 〈𝑋, 𝑌〉 ∈ V | |
11 | 10 | elsn2 4597 | . . . 4 ⊢ (𝑍 ∈ {〈𝑋, 𝑌〉} ↔ 𝑍 = 〈𝑋, 𝑌〉) |
12 | 11 | anbi1i 623 | . . 3 ⊢ ((𝑍 ∈ {〈𝑋, 𝑌〉} ∧ 𝐹 ∈ (𝑋𝐽𝑌)) ↔ (𝑍 = 〈𝑋, 𝑌〉 ∧ 𝐹 ∈ (𝑋𝐽𝑌))) |
13 | 9, 12 | bitri 274 | . 2 ⊢ (𝑍({〈𝑋, 𝑌〉} × (𝑋𝐽𝑌))𝐹 ↔ (𝑍 = 〈𝑋, 𝑌〉 ∧ 𝐹 ∈ (𝑋𝐽𝑌))) |
14 | 8, 13 | bitrdi 286 | 1 ⊢ (𝜑 → (𝑍(𝑋𝐻𝑌)𝐹 ↔ (𝑍 = 〈𝑋, 𝑌〉 ∧ 𝐹 ∈ (𝑋𝐽𝑌)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {csn 4558 〈cop 4564 class class class wbr 5070 × cxp 5578 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 Hom chom 16899 Catccat 17290 Homachoma 17654 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-homa 17657 |
This theorem is referenced by: elhomai 17664 homa1 17668 homahom2 17669 |
Copyright terms: Public domain | W3C validator |