| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rest0 | Structured version Visualization version GIF version | ||
| Description: The subspace topology induced by the topology 𝐽 on the empty set. (Contributed by FL, 22-Dec-2008.) (Revised by Mario Carneiro, 1-May-2015.) |
| Ref | Expression |
|---|---|
| rest0 | ⊢ (𝐽 ∈ Top → (𝐽 ↾t ∅) = {∅}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 5277 | . . . 4 ⊢ ∅ ∈ V | |
| 2 | restval 17438 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ ∅ ∈ V) → (𝐽 ↾t ∅) = ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ ∅))) | |
| 3 | 1, 2 | mpan2 691 | . . 3 ⊢ (𝐽 ∈ Top → (𝐽 ↾t ∅) = ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ ∅))) |
| 4 | in0 4370 | . . . . . . 7 ⊢ (𝑥 ∩ ∅) = ∅ | |
| 5 | 1 | elsn2 4641 | . . . . . . 7 ⊢ ((𝑥 ∩ ∅) ∈ {∅} ↔ (𝑥 ∩ ∅) = ∅) |
| 6 | 4, 5 | mpbir 231 | . . . . . 6 ⊢ (𝑥 ∩ ∅) ∈ {∅} |
| 7 | 6 | a1i 11 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽) → (𝑥 ∩ ∅) ∈ {∅}) |
| 8 | 7 | fmpttd 7104 | . . . 4 ⊢ (𝐽 ∈ Top → (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ ∅)):𝐽⟶{∅}) |
| 9 | 8 | frnd 6713 | . . 3 ⊢ (𝐽 ∈ Top → ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ ∅)) ⊆ {∅}) |
| 10 | 3, 9 | eqsstrd 3993 | . 2 ⊢ (𝐽 ∈ Top → (𝐽 ↾t ∅) ⊆ {∅}) |
| 11 | resttop 23096 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ ∅ ∈ V) → (𝐽 ↾t ∅) ∈ Top) | |
| 12 | 1, 11 | mpan2 691 | . . . 4 ⊢ (𝐽 ∈ Top → (𝐽 ↾t ∅) ∈ Top) |
| 13 | 0opn 22840 | . . . 4 ⊢ ((𝐽 ↾t ∅) ∈ Top → ∅ ∈ (𝐽 ↾t ∅)) | |
| 14 | 12, 13 | syl 17 | . . 3 ⊢ (𝐽 ∈ Top → ∅ ∈ (𝐽 ↾t ∅)) |
| 15 | 14 | snssd 4785 | . 2 ⊢ (𝐽 ∈ Top → {∅} ⊆ (𝐽 ↾t ∅)) |
| 16 | 10, 15 | eqssd 3976 | 1 ⊢ (𝐽 ∈ Top → (𝐽 ↾t ∅) = {∅}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ∩ cin 3925 ∅c0 4308 {csn 4601 ↦ cmpt 5201 ran crn 5655 (class class class)co 7403 ↾t crest 17432 Topctop 22829 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-en 8958 df-fin 8961 df-fi 9421 df-rest 17434 df-topgen 17455 df-top 22830 df-bases 22882 |
| This theorem is referenced by: fiuncmp 23340 xkouni 23535 icccmp 24763 cncfiooicc 45871 |
| Copyright terms: Public domain | W3C validator |