| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rest0 | Structured version Visualization version GIF version | ||
| Description: The subspace topology induced by the topology 𝐽 on the empty set. (Contributed by FL, 22-Dec-2008.) (Revised by Mario Carneiro, 1-May-2015.) |
| Ref | Expression |
|---|---|
| rest0 | ⊢ (𝐽 ∈ Top → (𝐽 ↾t ∅) = {∅}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 5262 | . . . 4 ⊢ ∅ ∈ V | |
| 2 | restval 17389 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ ∅ ∈ V) → (𝐽 ↾t ∅) = ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ ∅))) | |
| 3 | 1, 2 | mpan2 691 | . . 3 ⊢ (𝐽 ∈ Top → (𝐽 ↾t ∅) = ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ ∅))) |
| 4 | in0 4358 | . . . . . . 7 ⊢ (𝑥 ∩ ∅) = ∅ | |
| 5 | 1 | elsn2 4629 | . . . . . . 7 ⊢ ((𝑥 ∩ ∅) ∈ {∅} ↔ (𝑥 ∩ ∅) = ∅) |
| 6 | 4, 5 | mpbir 231 | . . . . . 6 ⊢ (𝑥 ∩ ∅) ∈ {∅} |
| 7 | 6 | a1i 11 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽) → (𝑥 ∩ ∅) ∈ {∅}) |
| 8 | 7 | fmpttd 7087 | . . . 4 ⊢ (𝐽 ∈ Top → (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ ∅)):𝐽⟶{∅}) |
| 9 | 8 | frnd 6696 | . . 3 ⊢ (𝐽 ∈ Top → ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ ∅)) ⊆ {∅}) |
| 10 | 3, 9 | eqsstrd 3981 | . 2 ⊢ (𝐽 ∈ Top → (𝐽 ↾t ∅) ⊆ {∅}) |
| 11 | resttop 23047 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ ∅ ∈ V) → (𝐽 ↾t ∅) ∈ Top) | |
| 12 | 1, 11 | mpan2 691 | . . . 4 ⊢ (𝐽 ∈ Top → (𝐽 ↾t ∅) ∈ Top) |
| 13 | 0opn 22791 | . . . 4 ⊢ ((𝐽 ↾t ∅) ∈ Top → ∅ ∈ (𝐽 ↾t ∅)) | |
| 14 | 12, 13 | syl 17 | . . 3 ⊢ (𝐽 ∈ Top → ∅ ∈ (𝐽 ↾t ∅)) |
| 15 | 14 | snssd 4773 | . 2 ⊢ (𝐽 ∈ Top → {∅} ⊆ (𝐽 ↾t ∅)) |
| 16 | 10, 15 | eqssd 3964 | 1 ⊢ (𝐽 ∈ Top → (𝐽 ↾t ∅) = {∅}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∩ cin 3913 ∅c0 4296 {csn 4589 ↦ cmpt 5188 ran crn 5639 (class class class)co 7387 ↾t crest 17383 Topctop 22780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-en 8919 df-fin 8922 df-fi 9362 df-rest 17385 df-topgen 17406 df-top 22781 df-bases 22833 |
| This theorem is referenced by: fiuncmp 23291 xkouni 23486 icccmp 24714 cncfiooicc 45892 |
| Copyright terms: Public domain | W3C validator |