![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rest0 | Structured version Visualization version GIF version |
Description: The subspace topology induced by the topology 𝐽 on the empty set. (Contributed by FL, 22-Dec-2008.) (Revised by Mario Carneiro, 1-May-2015.) |
Ref | Expression |
---|---|
rest0 | ⊢ (𝐽 ∈ Top → (𝐽 ↾t ∅) = {∅}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5307 | . . . 4 ⊢ ∅ ∈ V | |
2 | restval 17376 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ ∅ ∈ V) → (𝐽 ↾t ∅) = ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ ∅))) | |
3 | 1, 2 | mpan2 689 | . . 3 ⊢ (𝐽 ∈ Top → (𝐽 ↾t ∅) = ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ ∅))) |
4 | in0 4391 | . . . . . . 7 ⊢ (𝑥 ∩ ∅) = ∅ | |
5 | 1 | elsn2 4667 | . . . . . . 7 ⊢ ((𝑥 ∩ ∅) ∈ {∅} ↔ (𝑥 ∩ ∅) = ∅) |
6 | 4, 5 | mpbir 230 | . . . . . 6 ⊢ (𝑥 ∩ ∅) ∈ {∅} |
7 | 6 | a1i 11 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽) → (𝑥 ∩ ∅) ∈ {∅}) |
8 | 7 | fmpttd 7116 | . . . 4 ⊢ (𝐽 ∈ Top → (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ ∅)):𝐽⟶{∅}) |
9 | 8 | frnd 6725 | . . 3 ⊢ (𝐽 ∈ Top → ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ ∅)) ⊆ {∅}) |
10 | 3, 9 | eqsstrd 4020 | . 2 ⊢ (𝐽 ∈ Top → (𝐽 ↾t ∅) ⊆ {∅}) |
11 | resttop 22884 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ ∅ ∈ V) → (𝐽 ↾t ∅) ∈ Top) | |
12 | 1, 11 | mpan2 689 | . . . 4 ⊢ (𝐽 ∈ Top → (𝐽 ↾t ∅) ∈ Top) |
13 | 0opn 22626 | . . . 4 ⊢ ((𝐽 ↾t ∅) ∈ Top → ∅ ∈ (𝐽 ↾t ∅)) | |
14 | 12, 13 | syl 17 | . . 3 ⊢ (𝐽 ∈ Top → ∅ ∈ (𝐽 ↾t ∅)) |
15 | 14 | snssd 4812 | . 2 ⊢ (𝐽 ∈ Top → {∅} ⊆ (𝐽 ↾t ∅)) |
16 | 10, 15 | eqssd 3999 | 1 ⊢ (𝐽 ∈ Top → (𝐽 ↾t ∅) = {∅}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ∩ cin 3947 ∅c0 4322 {csn 4628 ↦ cmpt 5231 ran crn 5677 (class class class)co 7411 ↾t crest 17370 Topctop 22615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-en 8942 df-fin 8945 df-fi 9408 df-rest 17372 df-topgen 17393 df-top 22616 df-bases 22669 |
This theorem is referenced by: fiuncmp 23128 xkouni 23323 icccmp 24561 cncfiooicc 44909 |
Copyright terms: Public domain | W3C validator |