| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rest0 | Structured version Visualization version GIF version | ||
| Description: The subspace topology induced by the topology 𝐽 on the empty set. (Contributed by FL, 22-Dec-2008.) (Revised by Mario Carneiro, 1-May-2015.) |
| Ref | Expression |
|---|---|
| rest0 | ⊢ (𝐽 ∈ Top → (𝐽 ↾t ∅) = {∅}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 5243 | . . . 4 ⊢ ∅ ∈ V | |
| 2 | restval 17322 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ ∅ ∈ V) → (𝐽 ↾t ∅) = ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ ∅))) | |
| 3 | 1, 2 | mpan2 691 | . . 3 ⊢ (𝐽 ∈ Top → (𝐽 ↾t ∅) = ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ ∅))) |
| 4 | in0 4343 | . . . . . . 7 ⊢ (𝑥 ∩ ∅) = ∅ | |
| 5 | 1 | elsn2 4616 | . . . . . . 7 ⊢ ((𝑥 ∩ ∅) ∈ {∅} ↔ (𝑥 ∩ ∅) = ∅) |
| 6 | 4, 5 | mpbir 231 | . . . . . 6 ⊢ (𝑥 ∩ ∅) ∈ {∅} |
| 7 | 6 | a1i 11 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽) → (𝑥 ∩ ∅) ∈ {∅}) |
| 8 | 7 | fmpttd 7043 | . . . 4 ⊢ (𝐽 ∈ Top → (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ ∅)):𝐽⟶{∅}) |
| 9 | 8 | frnd 6655 | . . 3 ⊢ (𝐽 ∈ Top → ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ ∅)) ⊆ {∅}) |
| 10 | 3, 9 | eqsstrd 3967 | . 2 ⊢ (𝐽 ∈ Top → (𝐽 ↾t ∅) ⊆ {∅}) |
| 11 | resttop 23068 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ ∅ ∈ V) → (𝐽 ↾t ∅) ∈ Top) | |
| 12 | 1, 11 | mpan2 691 | . . . 4 ⊢ (𝐽 ∈ Top → (𝐽 ↾t ∅) ∈ Top) |
| 13 | 0opn 22812 | . . . 4 ⊢ ((𝐽 ↾t ∅) ∈ Top → ∅ ∈ (𝐽 ↾t ∅)) | |
| 14 | 12, 13 | syl 17 | . . 3 ⊢ (𝐽 ∈ Top → ∅ ∈ (𝐽 ↾t ∅)) |
| 15 | 14 | snssd 4759 | . 2 ⊢ (𝐽 ∈ Top → {∅} ⊆ (𝐽 ↾t ∅)) |
| 16 | 10, 15 | eqssd 3950 | 1 ⊢ (𝐽 ∈ Top → (𝐽 ↾t ∅) = {∅}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2110 Vcvv 3434 ∩ cin 3899 ∅c0 4281 {csn 4574 ↦ cmpt 5170 ran crn 5615 (class class class)co 7341 ↾t crest 17316 Topctop 22801 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-en 8865 df-fin 8868 df-fi 9290 df-rest 17318 df-topgen 17339 df-top 22802 df-bases 22854 |
| This theorem is referenced by: fiuncmp 23312 xkouni 23507 icccmp 24734 cncfiooicc 45911 |
| Copyright terms: Public domain | W3C validator |