MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rest0 Structured version   Visualization version   GIF version

Theorem rest0 21869
Description: The subspace topology induced by the topology 𝐽 on the empty set. (Contributed by FL, 22-Dec-2008.) (Revised by Mario Carneiro, 1-May-2015.)
Assertion
Ref Expression
rest0 (𝐽 ∈ Top → (𝐽t ∅) = {∅})

Proof of Theorem rest0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 0ex 5177 . . . 4 ∅ ∈ V
2 restval 16758 . . . 4 ((𝐽 ∈ Top ∧ ∅ ∈ V) → (𝐽t ∅) = ran (𝑥𝐽 ↦ (𝑥 ∩ ∅)))
31, 2mpan2 690 . . 3 (𝐽 ∈ Top → (𝐽t ∅) = ran (𝑥𝐽 ↦ (𝑥 ∩ ∅)))
4 in0 4287 . . . . . . 7 (𝑥 ∩ ∅) = ∅
51elsn2 4561 . . . . . . 7 ((𝑥 ∩ ∅) ∈ {∅} ↔ (𝑥 ∩ ∅) = ∅)
64, 5mpbir 234 . . . . . 6 (𝑥 ∩ ∅) ∈ {∅}
76a1i 11 . . . . 5 ((𝐽 ∈ Top ∧ 𝑥𝐽) → (𝑥 ∩ ∅) ∈ {∅})
87fmpttd 6870 . . . 4 (𝐽 ∈ Top → (𝑥𝐽 ↦ (𝑥 ∩ ∅)):𝐽⟶{∅})
98frnd 6505 . . 3 (𝐽 ∈ Top → ran (𝑥𝐽 ↦ (𝑥 ∩ ∅)) ⊆ {∅})
103, 9eqsstrd 3930 . 2 (𝐽 ∈ Top → (𝐽t ∅) ⊆ {∅})
11 resttop 21860 . . . . 5 ((𝐽 ∈ Top ∧ ∅ ∈ V) → (𝐽t ∅) ∈ Top)
121, 11mpan2 690 . . . 4 (𝐽 ∈ Top → (𝐽t ∅) ∈ Top)
13 0opn 21604 . . . 4 ((𝐽t ∅) ∈ Top → ∅ ∈ (𝐽t ∅))
1412, 13syl 17 . . 3 (𝐽 ∈ Top → ∅ ∈ (𝐽t ∅))
1514snssd 4699 . 2 (𝐽 ∈ Top → {∅} ⊆ (𝐽t ∅))
1610, 15eqssd 3909 1 (𝐽 ∈ Top → (𝐽t ∅) = {∅})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  Vcvv 3409  cin 3857  c0 4225  {csn 4522  cmpt 5112  ran crn 5525  (class class class)co 7150  t crest 16752  Topctop 21593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-1st 7693  df-2nd 7694  df-en 8528  df-fin 8531  df-fi 8908  df-rest 16754  df-topgen 16775  df-top 21594  df-bases 21646
This theorem is referenced by:  fiuncmp  22104  xkouni  22299  icccmp  23526  cncfiooicc  42902
  Copyright terms: Public domain W3C validator