MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumss Structured version   Visualization version   GIF version

Theorem fsumss 15667
Description: Change the index set to a subset in a finite sum. (Contributed by Mario Carneiro, 21-Apr-2014.)
Hypotheses
Ref Expression
sumss.1 (πœ‘ β†’ 𝐴 βŠ† 𝐡)
sumss.2 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ 𝐢 ∈ β„‚)
sumss.3 ((πœ‘ ∧ π‘˜ ∈ (𝐡 βˆ– 𝐴)) β†’ 𝐢 = 0)
fsumss.4 (πœ‘ β†’ 𝐡 ∈ Fin)
Assertion
Ref Expression
fsumss (πœ‘ β†’ Ξ£π‘˜ ∈ 𝐴 𝐢 = Ξ£π‘˜ ∈ 𝐡 𝐢)
Distinct variable groups:   𝐴,π‘˜   𝐡,π‘˜   πœ‘,π‘˜
Allowed substitution hint:   𝐢(π‘˜)

Proof of Theorem fsumss
Dummy variables 𝑓 π‘š 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sumss.1 . . . . 5 (πœ‘ β†’ 𝐴 βŠ† 𝐡)
21adantr 481 . . . 4 ((πœ‘ ∧ 𝐡 = βˆ…) β†’ 𝐴 βŠ† 𝐡)
3 sumss.2 . . . . 5 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ 𝐢 ∈ β„‚)
43adantlr 713 . . . 4 (((πœ‘ ∧ 𝐡 = βˆ…) ∧ π‘˜ ∈ 𝐴) β†’ 𝐢 ∈ β„‚)
5 sumss.3 . . . . 5 ((πœ‘ ∧ π‘˜ ∈ (𝐡 βˆ– 𝐴)) β†’ 𝐢 = 0)
65adantlr 713 . . . 4 (((πœ‘ ∧ 𝐡 = βˆ…) ∧ π‘˜ ∈ (𝐡 βˆ– 𝐴)) β†’ 𝐢 = 0)
7 simpr 485 . . . . 5 ((πœ‘ ∧ 𝐡 = βˆ…) β†’ 𝐡 = βˆ…)
8 0ss 4395 . . . . 5 βˆ… βŠ† (β„€β‰₯β€˜0)
97, 8eqsstrdi 4035 . . . 4 ((πœ‘ ∧ 𝐡 = βˆ…) β†’ 𝐡 βŠ† (β„€β‰₯β€˜0))
102, 4, 6, 9sumss 15666 . . 3 ((πœ‘ ∧ 𝐡 = βˆ…) β†’ Ξ£π‘˜ ∈ 𝐴 𝐢 = Ξ£π‘˜ ∈ 𝐡 𝐢)
1110ex 413 . 2 (πœ‘ β†’ (𝐡 = βˆ… β†’ Ξ£π‘˜ ∈ 𝐴 𝐢 = Ξ£π‘˜ ∈ 𝐡 𝐢))
12 cnvimass 6077 . . . . . . . . 9 (◑𝑓 β€œ 𝐴) βŠ† dom 𝑓
13 simprr 771 . . . . . . . . . 10 ((πœ‘ ∧ ((β™―β€˜π΅) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΅))–1-1-onto→𝐡)) β†’ 𝑓:(1...(β™―β€˜π΅))–1-1-onto→𝐡)
14 f1of 6830 . . . . . . . . . 10 (𝑓:(1...(β™―β€˜π΅))–1-1-onto→𝐡 β†’ 𝑓:(1...(β™―β€˜π΅))⟢𝐡)
1513, 14syl 17 . . . . . . . . 9 ((πœ‘ ∧ ((β™―β€˜π΅) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΅))–1-1-onto→𝐡)) β†’ 𝑓:(1...(β™―β€˜π΅))⟢𝐡)
1612, 15fssdm 6734 . . . . . . . 8 ((πœ‘ ∧ ((β™―β€˜π΅) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΅))–1-1-onto→𝐡)) β†’ (◑𝑓 β€œ 𝐴) βŠ† (1...(β™―β€˜π΅)))
1715ffnd 6715 . . . . . . . . . . . 12 ((πœ‘ ∧ ((β™―β€˜π΅) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΅))–1-1-onto→𝐡)) β†’ 𝑓 Fn (1...(β™―β€˜π΅)))
18 elpreima 7056 . . . . . . . . . . . 12 (𝑓 Fn (1...(β™―β€˜π΅)) β†’ (𝑛 ∈ (◑𝑓 β€œ 𝐴) ↔ (𝑛 ∈ (1...(β™―β€˜π΅)) ∧ (π‘“β€˜π‘›) ∈ 𝐴)))
1917, 18syl 17 . . . . . . . . . . 11 ((πœ‘ ∧ ((β™―β€˜π΅) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΅))–1-1-onto→𝐡)) β†’ (𝑛 ∈ (◑𝑓 β€œ 𝐴) ↔ (𝑛 ∈ (1...(β™―β€˜π΅)) ∧ (π‘“β€˜π‘›) ∈ 𝐴)))
2015ffvelcdmda 7083 . . . . . . . . . . . . 13 (((πœ‘ ∧ ((β™―β€˜π΅) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΅))–1-1-onto→𝐡)) ∧ 𝑛 ∈ (1...(β™―β€˜π΅))) β†’ (π‘“β€˜π‘›) ∈ 𝐡)
2120ex 413 . . . . . . . . . . . 12 ((πœ‘ ∧ ((β™―β€˜π΅) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΅))–1-1-onto→𝐡)) β†’ (𝑛 ∈ (1...(β™―β€˜π΅)) β†’ (π‘“β€˜π‘›) ∈ 𝐡))
2221adantrd 492 . . . . . . . . . . 11 ((πœ‘ ∧ ((β™―β€˜π΅) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΅))–1-1-onto→𝐡)) β†’ ((𝑛 ∈ (1...(β™―β€˜π΅)) ∧ (π‘“β€˜π‘›) ∈ 𝐴) β†’ (π‘“β€˜π‘›) ∈ 𝐡))
2319, 22sylbid 239 . . . . . . . . . 10 ((πœ‘ ∧ ((β™―β€˜π΅) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΅))–1-1-onto→𝐡)) β†’ (𝑛 ∈ (◑𝑓 β€œ 𝐴) β†’ (π‘“β€˜π‘›) ∈ 𝐡))
2423imp 407 . . . . . . . . 9 (((πœ‘ ∧ ((β™―β€˜π΅) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΅))–1-1-onto→𝐡)) ∧ 𝑛 ∈ (◑𝑓 β€œ 𝐴)) β†’ (π‘“β€˜π‘›) ∈ 𝐡)
253ex 413 . . . . . . . . . . . . . 14 (πœ‘ β†’ (π‘˜ ∈ 𝐴 β†’ 𝐢 ∈ β„‚))
2625adantr 481 . . . . . . . . . . . . 13 ((πœ‘ ∧ π‘˜ ∈ 𝐡) β†’ (π‘˜ ∈ 𝐴 β†’ 𝐢 ∈ β„‚))
27 eldif 3957 . . . . . . . . . . . . . . 15 (π‘˜ ∈ (𝐡 βˆ– 𝐴) ↔ (π‘˜ ∈ 𝐡 ∧ Β¬ π‘˜ ∈ 𝐴))
28 0cn 11202 . . . . . . . . . . . . . . . 16 0 ∈ β„‚
295, 28eqeltrdi 2841 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ π‘˜ ∈ (𝐡 βˆ– 𝐴)) β†’ 𝐢 ∈ β„‚)
3027, 29sylan2br 595 . . . . . . . . . . . . . 14 ((πœ‘ ∧ (π‘˜ ∈ 𝐡 ∧ Β¬ π‘˜ ∈ 𝐴)) β†’ 𝐢 ∈ β„‚)
3130expr 457 . . . . . . . . . . . . 13 ((πœ‘ ∧ π‘˜ ∈ 𝐡) β†’ (Β¬ π‘˜ ∈ 𝐴 β†’ 𝐢 ∈ β„‚))
3226, 31pm2.61d 179 . . . . . . . . . . . 12 ((πœ‘ ∧ π‘˜ ∈ 𝐡) β†’ 𝐢 ∈ β„‚)
3332fmpttd 7111 . . . . . . . . . . 11 (πœ‘ β†’ (π‘˜ ∈ 𝐡 ↦ 𝐢):π΅βŸΆβ„‚)
3433adantr 481 . . . . . . . . . 10 ((πœ‘ ∧ ((β™―β€˜π΅) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΅))–1-1-onto→𝐡)) β†’ (π‘˜ ∈ 𝐡 ↦ 𝐢):π΅βŸΆβ„‚)
3534ffvelcdmda 7083 . . . . . . . . 9 (((πœ‘ ∧ ((β™―β€˜π΅) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΅))–1-1-onto→𝐡)) ∧ (π‘“β€˜π‘›) ∈ 𝐡) β†’ ((π‘˜ ∈ 𝐡 ↦ 𝐢)β€˜(π‘“β€˜π‘›)) ∈ β„‚)
3624, 35syldan 591 . . . . . . . 8 (((πœ‘ ∧ ((β™―β€˜π΅) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΅))–1-1-onto→𝐡)) ∧ 𝑛 ∈ (◑𝑓 β€œ 𝐴)) β†’ ((π‘˜ ∈ 𝐡 ↦ 𝐢)β€˜(π‘“β€˜π‘›)) ∈ β„‚)
37 eldifi 4125 . . . . . . . . . . . 12 (𝑛 ∈ ((1...(β™―β€˜π΅)) βˆ– (◑𝑓 β€œ 𝐴)) β†’ 𝑛 ∈ (1...(β™―β€˜π΅)))
3837, 20sylan2 593 . . . . . . . . . . 11 (((πœ‘ ∧ ((β™―β€˜π΅) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΅))–1-1-onto→𝐡)) ∧ 𝑛 ∈ ((1...(β™―β€˜π΅)) βˆ– (◑𝑓 β€œ 𝐴))) β†’ (π‘“β€˜π‘›) ∈ 𝐡)
39 eldifn 4126 . . . . . . . . . . . . 13 (𝑛 ∈ ((1...(β™―β€˜π΅)) βˆ– (◑𝑓 β€œ 𝐴)) β†’ Β¬ 𝑛 ∈ (◑𝑓 β€œ 𝐴))
4039adantl 482 . . . . . . . . . . . 12 (((πœ‘ ∧ ((β™―β€˜π΅) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΅))–1-1-onto→𝐡)) ∧ 𝑛 ∈ ((1...(β™―β€˜π΅)) βˆ– (◑𝑓 β€œ 𝐴))) β†’ Β¬ 𝑛 ∈ (◑𝑓 β€œ 𝐴))
4137adantl 482 . . . . . . . . . . . . 13 (((πœ‘ ∧ ((β™―β€˜π΅) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΅))–1-1-onto→𝐡)) ∧ 𝑛 ∈ ((1...(β™―β€˜π΅)) βˆ– (◑𝑓 β€œ 𝐴))) β†’ 𝑛 ∈ (1...(β™―β€˜π΅)))
4219adantr 481 . . . . . . . . . . . . 13 (((πœ‘ ∧ ((β™―β€˜π΅) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΅))–1-1-onto→𝐡)) ∧ 𝑛 ∈ ((1...(β™―β€˜π΅)) βˆ– (◑𝑓 β€œ 𝐴))) β†’ (𝑛 ∈ (◑𝑓 β€œ 𝐴) ↔ (𝑛 ∈ (1...(β™―β€˜π΅)) ∧ (π‘“β€˜π‘›) ∈ 𝐴)))
4341, 42mpbirand 705 . . . . . . . . . . . 12 (((πœ‘ ∧ ((β™―β€˜π΅) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΅))–1-1-onto→𝐡)) ∧ 𝑛 ∈ ((1...(β™―β€˜π΅)) βˆ– (◑𝑓 β€œ 𝐴))) β†’ (𝑛 ∈ (◑𝑓 β€œ 𝐴) ↔ (π‘“β€˜π‘›) ∈ 𝐴))
4440, 43mtbid 323 . . . . . . . . . . 11 (((πœ‘ ∧ ((β™―β€˜π΅) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΅))–1-1-onto→𝐡)) ∧ 𝑛 ∈ ((1...(β™―β€˜π΅)) βˆ– (◑𝑓 β€œ 𝐴))) β†’ Β¬ (π‘“β€˜π‘›) ∈ 𝐴)
4538, 44eldifd 3958 . . . . . . . . . 10 (((πœ‘ ∧ ((β™―β€˜π΅) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΅))–1-1-onto→𝐡)) ∧ 𝑛 ∈ ((1...(β™―β€˜π΅)) βˆ– (◑𝑓 β€œ 𝐴))) β†’ (π‘“β€˜π‘›) ∈ (𝐡 βˆ– 𝐴))
46 difss 4130 . . . . . . . . . . . . 13 (𝐡 βˆ– 𝐴) βŠ† 𝐡
47 resmpt 6035 . . . . . . . . . . . . 13 ((𝐡 βˆ– 𝐴) βŠ† 𝐡 β†’ ((π‘˜ ∈ 𝐡 ↦ 𝐢) β†Ύ (𝐡 βˆ– 𝐴)) = (π‘˜ ∈ (𝐡 βˆ– 𝐴) ↦ 𝐢))
4846, 47ax-mp 5 . . . . . . . . . . . 12 ((π‘˜ ∈ 𝐡 ↦ 𝐢) β†Ύ (𝐡 βˆ– 𝐴)) = (π‘˜ ∈ (𝐡 βˆ– 𝐴) ↦ 𝐢)
4948fveq1i 6889 . . . . . . . . . . 11 (((π‘˜ ∈ 𝐡 ↦ 𝐢) β†Ύ (𝐡 βˆ– 𝐴))β€˜(π‘“β€˜π‘›)) = ((π‘˜ ∈ (𝐡 βˆ– 𝐴) ↦ 𝐢)β€˜(π‘“β€˜π‘›))
50 fvres 6907 . . . . . . . . . . 11 ((π‘“β€˜π‘›) ∈ (𝐡 βˆ– 𝐴) β†’ (((π‘˜ ∈ 𝐡 ↦ 𝐢) β†Ύ (𝐡 βˆ– 𝐴))β€˜(π‘“β€˜π‘›)) = ((π‘˜ ∈ 𝐡 ↦ 𝐢)β€˜(π‘“β€˜π‘›)))
5149, 50eqtr3id 2786 . . . . . . . . . 10 ((π‘“β€˜π‘›) ∈ (𝐡 βˆ– 𝐴) β†’ ((π‘˜ ∈ (𝐡 βˆ– 𝐴) ↦ 𝐢)β€˜(π‘“β€˜π‘›)) = ((π‘˜ ∈ 𝐡 ↦ 𝐢)β€˜(π‘“β€˜π‘›)))
5245, 51syl 17 . . . . . . . . 9 (((πœ‘ ∧ ((β™―β€˜π΅) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΅))–1-1-onto→𝐡)) ∧ 𝑛 ∈ ((1...(β™―β€˜π΅)) βˆ– (◑𝑓 β€œ 𝐴))) β†’ ((π‘˜ ∈ (𝐡 βˆ– 𝐴) ↦ 𝐢)β€˜(π‘“β€˜π‘›)) = ((π‘˜ ∈ 𝐡 ↦ 𝐢)β€˜(π‘“β€˜π‘›)))
53 c0ex 11204 . . . . . . . . . . . . . . 15 0 ∈ V
5453elsn2 4666 . . . . . . . . . . . . . 14 (𝐢 ∈ {0} ↔ 𝐢 = 0)
555, 54sylibr 233 . . . . . . . . . . . . 13 ((πœ‘ ∧ π‘˜ ∈ (𝐡 βˆ– 𝐴)) β†’ 𝐢 ∈ {0})
5655fmpttd 7111 . . . . . . . . . . . 12 (πœ‘ β†’ (π‘˜ ∈ (𝐡 βˆ– 𝐴) ↦ 𝐢):(𝐡 βˆ– 𝐴)⟢{0})
5756ad2antrr 724 . . . . . . . . . . 11 (((πœ‘ ∧ ((β™―β€˜π΅) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΅))–1-1-onto→𝐡)) ∧ 𝑛 ∈ ((1...(β™―β€˜π΅)) βˆ– (◑𝑓 β€œ 𝐴))) β†’ (π‘˜ ∈ (𝐡 βˆ– 𝐴) ↦ 𝐢):(𝐡 βˆ– 𝐴)⟢{0})
5857, 45ffvelcdmd 7084 . . . . . . . . . 10 (((πœ‘ ∧ ((β™―β€˜π΅) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΅))–1-1-onto→𝐡)) ∧ 𝑛 ∈ ((1...(β™―β€˜π΅)) βˆ– (◑𝑓 β€œ 𝐴))) β†’ ((π‘˜ ∈ (𝐡 βˆ– 𝐴) ↦ 𝐢)β€˜(π‘“β€˜π‘›)) ∈ {0})
59 elsni 4644 . . . . . . . . . 10 (((π‘˜ ∈ (𝐡 βˆ– 𝐴) ↦ 𝐢)β€˜(π‘“β€˜π‘›)) ∈ {0} β†’ ((π‘˜ ∈ (𝐡 βˆ– 𝐴) ↦ 𝐢)β€˜(π‘“β€˜π‘›)) = 0)
6058, 59syl 17 . . . . . . . . 9 (((πœ‘ ∧ ((β™―β€˜π΅) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΅))–1-1-onto→𝐡)) ∧ 𝑛 ∈ ((1...(β™―β€˜π΅)) βˆ– (◑𝑓 β€œ 𝐴))) β†’ ((π‘˜ ∈ (𝐡 βˆ– 𝐴) ↦ 𝐢)β€˜(π‘“β€˜π‘›)) = 0)
6152, 60eqtr3d 2774 . . . . . . . 8 (((πœ‘ ∧ ((β™―β€˜π΅) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΅))–1-1-onto→𝐡)) ∧ 𝑛 ∈ ((1...(β™―β€˜π΅)) βˆ– (◑𝑓 β€œ 𝐴))) β†’ ((π‘˜ ∈ 𝐡 ↦ 𝐢)β€˜(π‘“β€˜π‘›)) = 0)
62 fzssuz 13538 . . . . . . . . 9 (1...(β™―β€˜π΅)) βŠ† (β„€β‰₯β€˜1)
6362a1i 11 . . . . . . . 8 ((πœ‘ ∧ ((β™―β€˜π΅) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΅))–1-1-onto→𝐡)) β†’ (1...(β™―β€˜π΅)) βŠ† (β„€β‰₯β€˜1))
6416, 36, 61, 63sumss 15666 . . . . . . 7 ((πœ‘ ∧ ((β™―β€˜π΅) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΅))–1-1-onto→𝐡)) β†’ Σ𝑛 ∈ (◑𝑓 β€œ 𝐴)((π‘˜ ∈ 𝐡 ↦ 𝐢)β€˜(π‘“β€˜π‘›)) = Σ𝑛 ∈ (1...(β™―β€˜π΅))((π‘˜ ∈ 𝐡 ↦ 𝐢)β€˜(π‘“β€˜π‘›)))
651ad2antrr 724 . . . . . . . . . . . 12 (((πœ‘ ∧ ((β™―β€˜π΅) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΅))–1-1-onto→𝐡)) ∧ π‘š ∈ 𝐴) β†’ 𝐴 βŠ† 𝐡)
6665resmptd 6038 . . . . . . . . . . 11 (((πœ‘ ∧ ((β™―β€˜π΅) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΅))–1-1-onto→𝐡)) ∧ π‘š ∈ 𝐴) β†’ ((π‘˜ ∈ 𝐡 ↦ 𝐢) β†Ύ 𝐴) = (π‘˜ ∈ 𝐴 ↦ 𝐢))
6766fveq1d 6890 . . . . . . . . . 10 (((πœ‘ ∧ ((β™―β€˜π΅) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΅))–1-1-onto→𝐡)) ∧ π‘š ∈ 𝐴) β†’ (((π‘˜ ∈ 𝐡 ↦ 𝐢) β†Ύ 𝐴)β€˜π‘š) = ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜π‘š))
68 fvres 6907 . . . . . . . . . . 11 (π‘š ∈ 𝐴 β†’ (((π‘˜ ∈ 𝐡 ↦ 𝐢) β†Ύ 𝐴)β€˜π‘š) = ((π‘˜ ∈ 𝐡 ↦ 𝐢)β€˜π‘š))
6968adantl 482 . . . . . . . . . 10 (((πœ‘ ∧ ((β™―β€˜π΅) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΅))–1-1-onto→𝐡)) ∧ π‘š ∈ 𝐴) β†’ (((π‘˜ ∈ 𝐡 ↦ 𝐢) β†Ύ 𝐴)β€˜π‘š) = ((π‘˜ ∈ 𝐡 ↦ 𝐢)β€˜π‘š))
7067, 69eqtr3d 2774 . . . . . . . . 9 (((πœ‘ ∧ ((β™―β€˜π΅) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΅))–1-1-onto→𝐡)) ∧ π‘š ∈ 𝐴) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜π‘š) = ((π‘˜ ∈ 𝐡 ↦ 𝐢)β€˜π‘š))
7170sumeq2dv 15645 . . . . . . . 8 ((πœ‘ ∧ ((β™―β€˜π΅) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΅))–1-1-onto→𝐡)) β†’ Ξ£π‘š ∈ 𝐴 ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜π‘š) = Ξ£π‘š ∈ 𝐴 ((π‘˜ ∈ 𝐡 ↦ 𝐢)β€˜π‘š))
72 fveq2 6888 . . . . . . . . 9 (π‘š = (π‘“β€˜π‘›) β†’ ((π‘˜ ∈ 𝐡 ↦ 𝐢)β€˜π‘š) = ((π‘˜ ∈ 𝐡 ↦ 𝐢)β€˜(π‘“β€˜π‘›)))
73 fzfid 13934 . . . . . . . . . 10 ((πœ‘ ∧ ((β™―β€˜π΅) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΅))–1-1-onto→𝐡)) β†’ (1...(β™―β€˜π΅)) ∈ Fin)
7473, 15fisuppfi 9366 . . . . . . . . 9 ((πœ‘ ∧ ((β™―β€˜π΅) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΅))–1-1-onto→𝐡)) β†’ (◑𝑓 β€œ 𝐴) ∈ Fin)
75 f1of1 6829 . . . . . . . . . . . 12 (𝑓:(1...(β™―β€˜π΅))–1-1-onto→𝐡 β†’ 𝑓:(1...(β™―β€˜π΅))–1-1→𝐡)
7613, 75syl 17 . . . . . . . . . . 11 ((πœ‘ ∧ ((β™―β€˜π΅) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΅))–1-1-onto→𝐡)) β†’ 𝑓:(1...(β™―β€˜π΅))–1-1→𝐡)
77 f1ores 6844 . . . . . . . . . . 11 ((𝑓:(1...(β™―β€˜π΅))–1-1→𝐡 ∧ (◑𝑓 β€œ 𝐴) βŠ† (1...(β™―β€˜π΅))) β†’ (𝑓 β†Ύ (◑𝑓 β€œ 𝐴)):(◑𝑓 β€œ 𝐴)–1-1-ontoβ†’(𝑓 β€œ (◑𝑓 β€œ 𝐴)))
7876, 16, 77syl2anc 584 . . . . . . . . . 10 ((πœ‘ ∧ ((β™―β€˜π΅) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΅))–1-1-onto→𝐡)) β†’ (𝑓 β†Ύ (◑𝑓 β€œ 𝐴)):(◑𝑓 β€œ 𝐴)–1-1-ontoβ†’(𝑓 β€œ (◑𝑓 β€œ 𝐴)))
79 f1ofo 6837 . . . . . . . . . . . . 13 (𝑓:(1...(β™―β€˜π΅))–1-1-onto→𝐡 β†’ 𝑓:(1...(β™―β€˜π΅))–onto→𝐡)
8013, 79syl 17 . . . . . . . . . . . 12 ((πœ‘ ∧ ((β™―β€˜π΅) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΅))–1-1-onto→𝐡)) β†’ 𝑓:(1...(β™―β€˜π΅))–onto→𝐡)
811adantr 481 . . . . . . . . . . . 12 ((πœ‘ ∧ ((β™―β€˜π΅) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΅))–1-1-onto→𝐡)) β†’ 𝐴 βŠ† 𝐡)
82 foimacnv 6847 . . . . . . . . . . . 12 ((𝑓:(1...(β™―β€˜π΅))–onto→𝐡 ∧ 𝐴 βŠ† 𝐡) β†’ (𝑓 β€œ (◑𝑓 β€œ 𝐴)) = 𝐴)
8380, 81, 82syl2anc 584 . . . . . . . . . . 11 ((πœ‘ ∧ ((β™―β€˜π΅) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΅))–1-1-onto→𝐡)) β†’ (𝑓 β€œ (◑𝑓 β€œ 𝐴)) = 𝐴)
8483f1oeq3d 6827 . . . . . . . . . 10 ((πœ‘ ∧ ((β™―β€˜π΅) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΅))–1-1-onto→𝐡)) β†’ ((𝑓 β†Ύ (◑𝑓 β€œ 𝐴)):(◑𝑓 β€œ 𝐴)–1-1-ontoβ†’(𝑓 β€œ (◑𝑓 β€œ 𝐴)) ↔ (𝑓 β†Ύ (◑𝑓 β€œ 𝐴)):(◑𝑓 β€œ 𝐴)–1-1-onto→𝐴))
8578, 84mpbid 231 . . . . . . . . 9 ((πœ‘ ∧ ((β™―β€˜π΅) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΅))–1-1-onto→𝐡)) β†’ (𝑓 β†Ύ (◑𝑓 β€œ 𝐴)):(◑𝑓 β€œ 𝐴)–1-1-onto→𝐴)
86 fvres 6907 . . . . . . . . . 10 (𝑛 ∈ (◑𝑓 β€œ 𝐴) β†’ ((𝑓 β†Ύ (◑𝑓 β€œ 𝐴))β€˜π‘›) = (π‘“β€˜π‘›))
8786adantl 482 . . . . . . . . 9 (((πœ‘ ∧ ((β™―β€˜π΅) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΅))–1-1-onto→𝐡)) ∧ 𝑛 ∈ (◑𝑓 β€œ 𝐴)) β†’ ((𝑓 β†Ύ (◑𝑓 β€œ 𝐴))β€˜π‘›) = (π‘“β€˜π‘›))
8881sselda 3981 . . . . . . . . . 10 (((πœ‘ ∧ ((β™―β€˜π΅) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΅))–1-1-onto→𝐡)) ∧ π‘š ∈ 𝐴) β†’ π‘š ∈ 𝐡)
8934ffvelcdmda 7083 . . . . . . . . . 10 (((πœ‘ ∧ ((β™―β€˜π΅) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΅))–1-1-onto→𝐡)) ∧ π‘š ∈ 𝐡) β†’ ((π‘˜ ∈ 𝐡 ↦ 𝐢)β€˜π‘š) ∈ β„‚)
9088, 89syldan 591 . . . . . . . . 9 (((πœ‘ ∧ ((β™―β€˜π΅) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΅))–1-1-onto→𝐡)) ∧ π‘š ∈ 𝐴) β†’ ((π‘˜ ∈ 𝐡 ↦ 𝐢)β€˜π‘š) ∈ β„‚)
9172, 74, 85, 87, 90fsumf1o 15665 . . . . . . . 8 ((πœ‘ ∧ ((β™―β€˜π΅) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΅))–1-1-onto→𝐡)) β†’ Ξ£π‘š ∈ 𝐴 ((π‘˜ ∈ 𝐡 ↦ 𝐢)β€˜π‘š) = Σ𝑛 ∈ (◑𝑓 β€œ 𝐴)((π‘˜ ∈ 𝐡 ↦ 𝐢)β€˜(π‘“β€˜π‘›)))
9271, 91eqtrd 2772 . . . . . . 7 ((πœ‘ ∧ ((β™―β€˜π΅) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΅))–1-1-onto→𝐡)) β†’ Ξ£π‘š ∈ 𝐴 ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜π‘š) = Σ𝑛 ∈ (◑𝑓 β€œ 𝐴)((π‘˜ ∈ 𝐡 ↦ 𝐢)β€˜(π‘“β€˜π‘›)))
93 eqidd 2733 . . . . . . . 8 (((πœ‘ ∧ ((β™―β€˜π΅) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΅))–1-1-onto→𝐡)) ∧ 𝑛 ∈ (1...(β™―β€˜π΅))) β†’ (π‘“β€˜π‘›) = (π‘“β€˜π‘›))
9472, 73, 13, 93, 89fsumf1o 15665 . . . . . . 7 ((πœ‘ ∧ ((β™―β€˜π΅) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΅))–1-1-onto→𝐡)) β†’ Ξ£π‘š ∈ 𝐡 ((π‘˜ ∈ 𝐡 ↦ 𝐢)β€˜π‘š) = Σ𝑛 ∈ (1...(β™―β€˜π΅))((π‘˜ ∈ 𝐡 ↦ 𝐢)β€˜(π‘“β€˜π‘›)))
9564, 92, 943eqtr4d 2782 . . . . . 6 ((πœ‘ ∧ ((β™―β€˜π΅) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΅))–1-1-onto→𝐡)) β†’ Ξ£π‘š ∈ 𝐴 ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜π‘š) = Ξ£π‘š ∈ 𝐡 ((π‘˜ ∈ 𝐡 ↦ 𝐢)β€˜π‘š))
96 sumfc 15651 . . . . . 6 Ξ£π‘š ∈ 𝐴 ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜π‘š) = Ξ£π‘˜ ∈ 𝐴 𝐢
97 sumfc 15651 . . . . . 6 Ξ£π‘š ∈ 𝐡 ((π‘˜ ∈ 𝐡 ↦ 𝐢)β€˜π‘š) = Ξ£π‘˜ ∈ 𝐡 𝐢
9895, 96, 973eqtr3g 2795 . . . . 5 ((πœ‘ ∧ ((β™―β€˜π΅) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΅))–1-1-onto→𝐡)) β†’ Ξ£π‘˜ ∈ 𝐴 𝐢 = Ξ£π‘˜ ∈ 𝐡 𝐢)
9998expr 457 . . . 4 ((πœ‘ ∧ (β™―β€˜π΅) ∈ β„•) β†’ (𝑓:(1...(β™―β€˜π΅))–1-1-onto→𝐡 β†’ Ξ£π‘˜ ∈ 𝐴 𝐢 = Ξ£π‘˜ ∈ 𝐡 𝐢))
10099exlimdv 1936 . . 3 ((πœ‘ ∧ (β™―β€˜π΅) ∈ β„•) β†’ (βˆƒπ‘“ 𝑓:(1...(β™―β€˜π΅))–1-1-onto→𝐡 β†’ Ξ£π‘˜ ∈ 𝐴 𝐢 = Ξ£π‘˜ ∈ 𝐡 𝐢))
101100expimpd 454 . 2 (πœ‘ β†’ (((β™―β€˜π΅) ∈ β„• ∧ βˆƒπ‘“ 𝑓:(1...(β™―β€˜π΅))–1-1-onto→𝐡) β†’ Ξ£π‘˜ ∈ 𝐴 𝐢 = Ξ£π‘˜ ∈ 𝐡 𝐢))
102 fsumss.4 . . 3 (πœ‘ β†’ 𝐡 ∈ Fin)
103 fz1f1o 15652 . . 3 (𝐡 ∈ Fin β†’ (𝐡 = βˆ… ∨ ((β™―β€˜π΅) ∈ β„• ∧ βˆƒπ‘“ 𝑓:(1...(β™―β€˜π΅))–1-1-onto→𝐡)))
104102, 103syl 17 . 2 (πœ‘ β†’ (𝐡 = βˆ… ∨ ((β™―β€˜π΅) ∈ β„• ∧ βˆƒπ‘“ 𝑓:(1...(β™―β€˜π΅))–1-1-onto→𝐡)))
10511, 101, 104mpjaod 858 1 (πœ‘ β†’ Ξ£π‘˜ ∈ 𝐴 𝐢 = Ξ£π‘˜ ∈ 𝐡 𝐢)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∨ wo 845   = wceq 1541  βˆƒwex 1781   ∈ wcel 2106   βˆ– cdif 3944   βŠ† wss 3947  βˆ…c0 4321  {csn 4627   ↦ cmpt 5230  β—‘ccnv 5674   β†Ύ cres 5677   β€œ cima 5678   Fn wfn 6535  βŸΆwf 6536  β€“1-1β†’wf1 6537  β€“ontoβ†’wfo 6538  β€“1-1-ontoβ†’wf1o 6539  β€˜cfv 6540  (class class class)co 7405  Fincfn 8935  β„‚cc 11104  0cc0 11106  1c1 11107  β„•cn 12208  β„€β‰₯cuz 12818  ...cfz 13480  β™―chash 14286  Ξ£csu 15628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-oi 9501  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-z 12555  df-uz 12819  df-rp 12971  df-fz 13481  df-fzo 13624  df-seq 13963  df-exp 14024  df-hash 14287  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-clim 15428  df-sum 15629
This theorem is referenced by:  sumss2  15668  rrxmval  24913  rrxmetlem  24915  itg1val2  25192  itg1addlem4  25207  itg1addlem4OLD  25208  itg1addlem5  25209  ply1termlem  25708  plyaddlem1  25718  plymullem1  25719  coeeulem  25729  coeidlem  25742  coeid3  25745  coefv0  25753  coemulhi  25759  coemulc  25760  dvply1  25788  vieta1lem2  25815  dvtaylp  25873  pserdvlem2  25931  basellem3  26576  musum  26684  muinv  26686  fsumvma  26705  chpub  26712  logexprlim  26717  dchrsum  26761  chebbnd1lem1  26961  rpvmasumlem  26979  dchrisum0fno1  27003  rplogsum  27019  indsum  33007  eulerpartlemgs2  33367  flcidc  41901  fsumsupp0  44280  elaa2lem  44935
  Copyright terms: Public domain W3C validator