MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumss Structured version   Visualization version   GIF version

Theorem fsumss 15076
Description: Change the index set to a subset in a finite sum. (Contributed by Mario Carneiro, 21-Apr-2014.)
Hypotheses
Ref Expression
sumss.1 (𝜑𝐴𝐵)
sumss.2 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
sumss.3 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 = 0)
fsumss.4 (𝜑𝐵 ∈ Fin)
Assertion
Ref Expression
fsumss (𝜑 → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 𝐶)
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝜑,𝑘
Allowed substitution hint:   𝐶(𝑘)

Proof of Theorem fsumss
Dummy variables 𝑓 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sumss.1 . . . . 5 (𝜑𝐴𝐵)
21adantr 483 . . . 4 ((𝜑𝐵 = ∅) → 𝐴𝐵)
3 sumss.2 . . . . 5 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
43adantlr 713 . . . 4 (((𝜑𝐵 = ∅) ∧ 𝑘𝐴) → 𝐶 ∈ ℂ)
5 sumss.3 . . . . 5 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 = 0)
65adantlr 713 . . . 4 (((𝜑𝐵 = ∅) ∧ 𝑘 ∈ (𝐵𝐴)) → 𝐶 = 0)
7 simpr 487 . . . . 5 ((𝜑𝐵 = ∅) → 𝐵 = ∅)
8 0ss 4349 . . . . 5 ∅ ⊆ (ℤ‘0)
97, 8eqsstrdi 4020 . . . 4 ((𝜑𝐵 = ∅) → 𝐵 ⊆ (ℤ‘0))
102, 4, 6, 9sumss 15075 . . 3 ((𝜑𝐵 = ∅) → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 𝐶)
1110ex 415 . 2 (𝜑 → (𝐵 = ∅ → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 𝐶))
12 cnvimass 5943 . . . . . . . . 9 (𝑓𝐴) ⊆ dom 𝑓
13 simprr 771 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)
14 f1of 6609 . . . . . . . . . 10 (𝑓:(1...(♯‘𝐵))–1-1-onto𝐵𝑓:(1...(♯‘𝐵))⟶𝐵)
1513, 14syl 17 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → 𝑓:(1...(♯‘𝐵))⟶𝐵)
1612, 15fssdm 6524 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → (𝑓𝐴) ⊆ (1...(♯‘𝐵)))
1715ffnd 6509 . . . . . . . . . . . 12 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → 𝑓 Fn (1...(♯‘𝐵)))
18 elpreima 6822 . . . . . . . . . . . 12 (𝑓 Fn (1...(♯‘𝐵)) → (𝑛 ∈ (𝑓𝐴) ↔ (𝑛 ∈ (1...(♯‘𝐵)) ∧ (𝑓𝑛) ∈ 𝐴)))
1917, 18syl 17 . . . . . . . . . . 11 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → (𝑛 ∈ (𝑓𝐴) ↔ (𝑛 ∈ (1...(♯‘𝐵)) ∧ (𝑓𝑛) ∈ 𝐴)))
2015ffvelrnda 6845 . . . . . . . . . . . . 13 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ (1...(♯‘𝐵))) → (𝑓𝑛) ∈ 𝐵)
2120ex 415 . . . . . . . . . . . 12 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → (𝑛 ∈ (1...(♯‘𝐵)) → (𝑓𝑛) ∈ 𝐵))
2221adantrd 494 . . . . . . . . . . 11 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → ((𝑛 ∈ (1...(♯‘𝐵)) ∧ (𝑓𝑛) ∈ 𝐴) → (𝑓𝑛) ∈ 𝐵))
2319, 22sylbid 242 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → (𝑛 ∈ (𝑓𝐴) → (𝑓𝑛) ∈ 𝐵))
2423imp 409 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ (𝑓𝐴)) → (𝑓𝑛) ∈ 𝐵)
253ex 415 . . . . . . . . . . . . . 14 (𝜑 → (𝑘𝐴𝐶 ∈ ℂ))
2625adantr 483 . . . . . . . . . . . . 13 ((𝜑𝑘𝐵) → (𝑘𝐴𝐶 ∈ ℂ))
27 eldif 3945 . . . . . . . . . . . . . . 15 (𝑘 ∈ (𝐵𝐴) ↔ (𝑘𝐵 ∧ ¬ 𝑘𝐴))
28 0cn 10627 . . . . . . . . . . . . . . . 16 0 ∈ ℂ
295, 28eqeltrdi 2921 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 ∈ ℂ)
3027, 29sylan2br 596 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘𝐵 ∧ ¬ 𝑘𝐴)) → 𝐶 ∈ ℂ)
3130expr 459 . . . . . . . . . . . . 13 ((𝜑𝑘𝐵) → (¬ 𝑘𝐴𝐶 ∈ ℂ))
3226, 31pm2.61d 181 . . . . . . . . . . . 12 ((𝜑𝑘𝐵) → 𝐶 ∈ ℂ)
3332fmpttd 6873 . . . . . . . . . . 11 (𝜑 → (𝑘𝐵𝐶):𝐵⟶ℂ)
3433adantr 483 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → (𝑘𝐵𝐶):𝐵⟶ℂ)
3534ffvelrnda 6845 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ (𝑓𝑛) ∈ 𝐵) → ((𝑘𝐵𝐶)‘(𝑓𝑛)) ∈ ℂ)
3624, 35syldan 593 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ (𝑓𝐴)) → ((𝑘𝐵𝐶)‘(𝑓𝑛)) ∈ ℂ)
37 eldifi 4102 . . . . . . . . . . . 12 (𝑛 ∈ ((1...(♯‘𝐵)) ∖ (𝑓𝐴)) → 𝑛 ∈ (1...(♯‘𝐵)))
3837, 20sylan2 594 . . . . . . . . . . 11 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (𝑓𝐴))) → (𝑓𝑛) ∈ 𝐵)
39 eldifn 4103 . . . . . . . . . . . . 13 (𝑛 ∈ ((1...(♯‘𝐵)) ∖ (𝑓𝐴)) → ¬ 𝑛 ∈ (𝑓𝐴))
4039adantl 484 . . . . . . . . . . . 12 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (𝑓𝐴))) → ¬ 𝑛 ∈ (𝑓𝐴))
4137adantl 484 . . . . . . . . . . . . 13 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (𝑓𝐴))) → 𝑛 ∈ (1...(♯‘𝐵)))
4219adantr 483 . . . . . . . . . . . . 13 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (𝑓𝐴))) → (𝑛 ∈ (𝑓𝐴) ↔ (𝑛 ∈ (1...(♯‘𝐵)) ∧ (𝑓𝑛) ∈ 𝐴)))
4341, 42mpbirand 705 . . . . . . . . . . . 12 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (𝑓𝐴))) → (𝑛 ∈ (𝑓𝐴) ↔ (𝑓𝑛) ∈ 𝐴))
4440, 43mtbid 326 . . . . . . . . . . 11 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (𝑓𝐴))) → ¬ (𝑓𝑛) ∈ 𝐴)
4538, 44eldifd 3946 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (𝑓𝐴))) → (𝑓𝑛) ∈ (𝐵𝐴))
46 difss 4107 . . . . . . . . . . . . 13 (𝐵𝐴) ⊆ 𝐵
47 resmpt 5899 . . . . . . . . . . . . 13 ((𝐵𝐴) ⊆ 𝐵 → ((𝑘𝐵𝐶) ↾ (𝐵𝐴)) = (𝑘 ∈ (𝐵𝐴) ↦ 𝐶))
4846, 47ax-mp 5 . . . . . . . . . . . 12 ((𝑘𝐵𝐶) ↾ (𝐵𝐴)) = (𝑘 ∈ (𝐵𝐴) ↦ 𝐶)
4948fveq1i 6665 . . . . . . . . . . 11 (((𝑘𝐵𝐶) ↾ (𝐵𝐴))‘(𝑓𝑛)) = ((𝑘 ∈ (𝐵𝐴) ↦ 𝐶)‘(𝑓𝑛))
50 fvres 6683 . . . . . . . . . . 11 ((𝑓𝑛) ∈ (𝐵𝐴) → (((𝑘𝐵𝐶) ↾ (𝐵𝐴))‘(𝑓𝑛)) = ((𝑘𝐵𝐶)‘(𝑓𝑛)))
5149, 50syl5eqr 2870 . . . . . . . . . 10 ((𝑓𝑛) ∈ (𝐵𝐴) → ((𝑘 ∈ (𝐵𝐴) ↦ 𝐶)‘(𝑓𝑛)) = ((𝑘𝐵𝐶)‘(𝑓𝑛)))
5245, 51syl 17 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (𝑓𝐴))) → ((𝑘 ∈ (𝐵𝐴) ↦ 𝐶)‘(𝑓𝑛)) = ((𝑘𝐵𝐶)‘(𝑓𝑛)))
53 c0ex 10629 . . . . . . . . . . . . . . 15 0 ∈ V
5453elsn2 4597 . . . . . . . . . . . . . 14 (𝐶 ∈ {0} ↔ 𝐶 = 0)
555, 54sylibr 236 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 ∈ {0})
5655fmpttd 6873 . . . . . . . . . . . 12 (𝜑 → (𝑘 ∈ (𝐵𝐴) ↦ 𝐶):(𝐵𝐴)⟶{0})
5756ad2antrr 724 . . . . . . . . . . 11 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (𝑓𝐴))) → (𝑘 ∈ (𝐵𝐴) ↦ 𝐶):(𝐵𝐴)⟶{0})
5857, 45ffvelrnd 6846 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (𝑓𝐴))) → ((𝑘 ∈ (𝐵𝐴) ↦ 𝐶)‘(𝑓𝑛)) ∈ {0})
59 elsni 4577 . . . . . . . . . 10 (((𝑘 ∈ (𝐵𝐴) ↦ 𝐶)‘(𝑓𝑛)) ∈ {0} → ((𝑘 ∈ (𝐵𝐴) ↦ 𝐶)‘(𝑓𝑛)) = 0)
6058, 59syl 17 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (𝑓𝐴))) → ((𝑘 ∈ (𝐵𝐴) ↦ 𝐶)‘(𝑓𝑛)) = 0)
6152, 60eqtr3d 2858 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (𝑓𝐴))) → ((𝑘𝐵𝐶)‘(𝑓𝑛)) = 0)
62 fzssuz 12942 . . . . . . . . 9 (1...(♯‘𝐵)) ⊆ (ℤ‘1)
6362a1i 11 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → (1...(♯‘𝐵)) ⊆ (ℤ‘1))
6416, 36, 61, 63sumss 15075 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → Σ𝑛 ∈ (𝑓𝐴)((𝑘𝐵𝐶)‘(𝑓𝑛)) = Σ𝑛 ∈ (1...(♯‘𝐵))((𝑘𝐵𝐶)‘(𝑓𝑛)))
651ad2antrr 724 . . . . . . . . . . . 12 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑚𝐴) → 𝐴𝐵)
6665resmptd 5902 . . . . . . . . . . 11 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑚𝐴) → ((𝑘𝐵𝐶) ↾ 𝐴) = (𝑘𝐴𝐶))
6766fveq1d 6666 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑚𝐴) → (((𝑘𝐵𝐶) ↾ 𝐴)‘𝑚) = ((𝑘𝐴𝐶)‘𝑚))
68 fvres 6683 . . . . . . . . . . 11 (𝑚𝐴 → (((𝑘𝐵𝐶) ↾ 𝐴)‘𝑚) = ((𝑘𝐵𝐶)‘𝑚))
6968adantl 484 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑚𝐴) → (((𝑘𝐵𝐶) ↾ 𝐴)‘𝑚) = ((𝑘𝐵𝐶)‘𝑚))
7067, 69eqtr3d 2858 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑚𝐴) → ((𝑘𝐴𝐶)‘𝑚) = ((𝑘𝐵𝐶)‘𝑚))
7170sumeq2dv 15054 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → Σ𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = Σ𝑚𝐴 ((𝑘𝐵𝐶)‘𝑚))
72 fveq2 6664 . . . . . . . . 9 (𝑚 = (𝑓𝑛) → ((𝑘𝐵𝐶)‘𝑚) = ((𝑘𝐵𝐶)‘(𝑓𝑛)))
73 fzfid 13335 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → (1...(♯‘𝐵)) ∈ Fin)
7473, 15fisuppfi 8835 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → (𝑓𝐴) ∈ Fin)
75 f1of1 6608 . . . . . . . . . . . 12 (𝑓:(1...(♯‘𝐵))–1-1-onto𝐵𝑓:(1...(♯‘𝐵))–1-1𝐵)
7613, 75syl 17 . . . . . . . . . . 11 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → 𝑓:(1...(♯‘𝐵))–1-1𝐵)
77 f1ores 6623 . . . . . . . . . . 11 ((𝑓:(1...(♯‘𝐵))–1-1𝐵 ∧ (𝑓𝐴) ⊆ (1...(♯‘𝐵))) → (𝑓 ↾ (𝑓𝐴)):(𝑓𝐴)–1-1-onto→(𝑓 “ (𝑓𝐴)))
7876, 16, 77syl2anc 586 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → (𝑓 ↾ (𝑓𝐴)):(𝑓𝐴)–1-1-onto→(𝑓 “ (𝑓𝐴)))
79 f1ofo 6616 . . . . . . . . . . . . 13 (𝑓:(1...(♯‘𝐵))–1-1-onto𝐵𝑓:(1...(♯‘𝐵))–onto𝐵)
8013, 79syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → 𝑓:(1...(♯‘𝐵))–onto𝐵)
811adantr 483 . . . . . . . . . . . 12 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → 𝐴𝐵)
82 foimacnv 6626 . . . . . . . . . . . 12 ((𝑓:(1...(♯‘𝐵))–onto𝐵𝐴𝐵) → (𝑓 “ (𝑓𝐴)) = 𝐴)
8380, 81, 82syl2anc 586 . . . . . . . . . . 11 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → (𝑓 “ (𝑓𝐴)) = 𝐴)
8483f1oeq3d 6606 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → ((𝑓 ↾ (𝑓𝐴)):(𝑓𝐴)–1-1-onto→(𝑓 “ (𝑓𝐴)) ↔ (𝑓 ↾ (𝑓𝐴)):(𝑓𝐴)–1-1-onto𝐴))
8578, 84mpbid 234 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → (𝑓 ↾ (𝑓𝐴)):(𝑓𝐴)–1-1-onto𝐴)
86 fvres 6683 . . . . . . . . . 10 (𝑛 ∈ (𝑓𝐴) → ((𝑓 ↾ (𝑓𝐴))‘𝑛) = (𝑓𝑛))
8786adantl 484 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ (𝑓𝐴)) → ((𝑓 ↾ (𝑓𝐴))‘𝑛) = (𝑓𝑛))
8881sselda 3966 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑚𝐴) → 𝑚𝐵)
8934ffvelrnda 6845 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑚𝐵) → ((𝑘𝐵𝐶)‘𝑚) ∈ ℂ)
9088, 89syldan 593 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑚𝐴) → ((𝑘𝐵𝐶)‘𝑚) ∈ ℂ)
9172, 74, 85, 87, 90fsumf1o 15074 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → Σ𝑚𝐴 ((𝑘𝐵𝐶)‘𝑚) = Σ𝑛 ∈ (𝑓𝐴)((𝑘𝐵𝐶)‘(𝑓𝑛)))
9271, 91eqtrd 2856 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → Σ𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = Σ𝑛 ∈ (𝑓𝐴)((𝑘𝐵𝐶)‘(𝑓𝑛)))
93 eqidd 2822 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ (1...(♯‘𝐵))) → (𝑓𝑛) = (𝑓𝑛))
9472, 73, 13, 93, 89fsumf1o 15074 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → Σ𝑚𝐵 ((𝑘𝐵𝐶)‘𝑚) = Σ𝑛 ∈ (1...(♯‘𝐵))((𝑘𝐵𝐶)‘(𝑓𝑛)))
9564, 92, 943eqtr4d 2866 . . . . . 6 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → Σ𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = Σ𝑚𝐵 ((𝑘𝐵𝐶)‘𝑚))
96 sumfc 15060 . . . . . 6 Σ𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = Σ𝑘𝐴 𝐶
97 sumfc 15060 . . . . . 6 Σ𝑚𝐵 ((𝑘𝐵𝐶)‘𝑚) = Σ𝑘𝐵 𝐶
9895, 96, 973eqtr3g 2879 . . . . 5 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 𝐶)
9998expr 459 . . . 4 ((𝜑 ∧ (♯‘𝐵) ∈ ℕ) → (𝑓:(1...(♯‘𝐵))–1-1-onto𝐵 → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 𝐶))
10099exlimdv 1930 . . 3 ((𝜑 ∧ (♯‘𝐵) ∈ ℕ) → (∃𝑓 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵 → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 𝐶))
101100expimpd 456 . 2 (𝜑 → (((♯‘𝐵) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵) → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 𝐶))
102 fsumss.4 . . 3 (𝜑𝐵 ∈ Fin)
103 fz1f1o 15061 . . 3 (𝐵 ∈ Fin → (𝐵 = ∅ ∨ ((♯‘𝐵) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)))
104102, 103syl 17 . 2 (𝜑 → (𝐵 = ∅ ∨ ((♯‘𝐵) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)))
10511, 101, 104mpjaod 856 1 (𝜑 → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843   = wceq 1533  wex 1776  wcel 2110  cdif 3932  wss 3935  c0 4290  {csn 4560  cmpt 5138  ccnv 5548  cres 5551  cima 5552   Fn wfn 6344  wf 6345  1-1wf1 6346  ontowfo 6347  1-1-ontowf1o 6348  cfv 6349  (class class class)co 7150  Fincfn 8503  cc 10529  0cc0 10531  1c1 10532  cn 11632  cuz 12237  ...cfz 12886  chash 13684  Σcsu 15036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-fz 12887  df-fzo 13028  df-seq 13364  df-exp 13424  df-hash 13685  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-clim 14839  df-sum 15037
This theorem is referenced by:  sumss2  15077  rrxmval  24002  rrxmetlem  24004  itg1val2  24279  itg1addlem4  24294  itg1addlem5  24295  ply1termlem  24787  plyaddlem1  24797  plymullem1  24798  coeeulem  24808  coeidlem  24821  coeid3  24824  coefv0  24832  coemulhi  24838  coemulc  24839  dvply1  24867  vieta1lem2  24894  dvtaylp  24952  pserdvlem2  25010  basellem3  25654  musum  25762  muinv  25764  fsumvma  25783  chpub  25790  logexprlim  25795  dchrsum  25839  chebbnd1lem1  26039  rpvmasumlem  26057  dchrisum0fno1  26081  rplogsum  26097  indsum  31275  eulerpartlemgs2  31633  flcidc  39767  fsumsupp0  41852  elaa2lem  42512
  Copyright terms: Public domain W3C validator