Step | Hyp | Ref
| Expression |
1 | | sumss.1 |
. . . . 5
⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
2 | 1 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝐵 = ∅) → 𝐴 ⊆ 𝐵) |
3 | | sumss.2 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) |
4 | 3 | adantlr 711 |
. . . 4
⊢ (((𝜑 ∧ 𝐵 = ∅) ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) |
5 | | sumss.3 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ 𝐴)) → 𝐶 = 0) |
6 | 5 | adantlr 711 |
. . . 4
⊢ (((𝜑 ∧ 𝐵 = ∅) ∧ 𝑘 ∈ (𝐵 ∖ 𝐴)) → 𝐶 = 0) |
7 | | simpr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝐵 = ∅) → 𝐵 = ∅) |
8 | | 0ss 4333 |
. . . . 5
⊢ ∅
⊆ (ℤ≥‘0) |
9 | 7, 8 | eqsstrdi 3977 |
. . . 4
⊢ ((𝜑 ∧ 𝐵 = ∅) → 𝐵 ⊆
(ℤ≥‘0)) |
10 | 2, 4, 6, 9 | sumss 15464 |
. . 3
⊢ ((𝜑 ∧ 𝐵 = ∅) → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶) |
11 | 10 | ex 412 |
. 2
⊢ (𝜑 → (𝐵 = ∅ → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶)) |
12 | | cnvimass 5990 |
. . . . . . . . 9
⊢ (◡𝑓 “ 𝐴) ⊆ dom 𝑓 |
13 | | simprr 769 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵) |
14 | | f1of 6734 |
. . . . . . . . . 10
⊢ (𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵 → 𝑓:(1...(♯‘𝐵))⟶𝐵) |
15 | 13, 14 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → 𝑓:(1...(♯‘𝐵))⟶𝐵) |
16 | 12, 15 | fssdm 6638 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → (◡𝑓 “ 𝐴) ⊆ (1...(♯‘𝐵))) |
17 | 15 | ffnd 6619 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → 𝑓 Fn (1...(♯‘𝐵))) |
18 | | elpreima 6955 |
. . . . . . . . . . . 12
⊢ (𝑓 Fn (1...(♯‘𝐵)) → (𝑛 ∈ (◡𝑓 “ 𝐴) ↔ (𝑛 ∈ (1...(♯‘𝐵)) ∧ (𝑓‘𝑛) ∈ 𝐴))) |
19 | 17, 18 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → (𝑛 ∈ (◡𝑓 “ 𝐴) ↔ (𝑛 ∈ (1...(♯‘𝐵)) ∧ (𝑓‘𝑛) ∈ 𝐴))) |
20 | 15 | ffvelcdmda 6981 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑛 ∈ (1...(♯‘𝐵))) → (𝑓‘𝑛) ∈ 𝐵) |
21 | 20 | ex 412 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → (𝑛 ∈ (1...(♯‘𝐵)) → (𝑓‘𝑛) ∈ 𝐵)) |
22 | 21 | adantrd 491 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → ((𝑛 ∈ (1...(♯‘𝐵)) ∧ (𝑓‘𝑛) ∈ 𝐴) → (𝑓‘𝑛) ∈ 𝐵)) |
23 | 19, 22 | sylbid 239 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → (𝑛 ∈ (◡𝑓 “ 𝐴) → (𝑓‘𝑛) ∈ 𝐵)) |
24 | 23 | imp 406 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑛 ∈ (◡𝑓 “ 𝐴)) → (𝑓‘𝑛) ∈ 𝐵) |
25 | 3 | ex 412 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑘 ∈ 𝐴 → 𝐶 ∈ ℂ)) |
26 | 25 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑘 ∈ 𝐴 → 𝐶 ∈ ℂ)) |
27 | | eldif 3899 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (𝐵 ∖ 𝐴) ↔ (𝑘 ∈ 𝐵 ∧ ¬ 𝑘 ∈ 𝐴)) |
28 | | 0cn 10995 |
. . . . . . . . . . . . . . . 16
⊢ 0 ∈
ℂ |
29 | 5, 28 | eqeltrdi 2842 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ 𝐴)) → 𝐶 ∈ ℂ) |
30 | 27, 29 | sylan2br 594 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑘 ∈ 𝐵 ∧ ¬ 𝑘 ∈ 𝐴)) → 𝐶 ∈ ℂ) |
31 | 30 | expr 456 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (¬ 𝑘 ∈ 𝐴 → 𝐶 ∈ ℂ)) |
32 | 26, 31 | pm2.61d 179 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝐶 ∈ ℂ) |
33 | 32 | fmpttd 7009 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑘 ∈ 𝐵 ↦ 𝐶):𝐵⟶ℂ) |
34 | 33 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → (𝑘 ∈ 𝐵 ↦ 𝐶):𝐵⟶ℂ) |
35 | 34 | ffvelcdmda 6981 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ (𝑓‘𝑛) ∈ 𝐵) → ((𝑘 ∈ 𝐵 ↦ 𝐶)‘(𝑓‘𝑛)) ∈ ℂ) |
36 | 24, 35 | syldan 590 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑛 ∈ (◡𝑓 “ 𝐴)) → ((𝑘 ∈ 𝐵 ↦ 𝐶)‘(𝑓‘𝑛)) ∈ ℂ) |
37 | | eldifi 4064 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈
((1...(♯‘𝐵))
∖ (◡𝑓 “ 𝐴)) → 𝑛 ∈ (1...(♯‘𝐵))) |
38 | 37, 20 | sylan2 592 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (◡𝑓 “ 𝐴))) → (𝑓‘𝑛) ∈ 𝐵) |
39 | | eldifn 4065 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈
((1...(♯‘𝐵))
∖ (◡𝑓 “ 𝐴)) → ¬ 𝑛 ∈ (◡𝑓 “ 𝐴)) |
40 | 39 | adantl 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (◡𝑓 “ 𝐴))) → ¬ 𝑛 ∈ (◡𝑓 “ 𝐴)) |
41 | 37 | adantl 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (◡𝑓 “ 𝐴))) → 𝑛 ∈ (1...(♯‘𝐵))) |
42 | 19 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (◡𝑓 “ 𝐴))) → (𝑛 ∈ (◡𝑓 “ 𝐴) ↔ (𝑛 ∈ (1...(♯‘𝐵)) ∧ (𝑓‘𝑛) ∈ 𝐴))) |
43 | 41, 42 | mpbirand 703 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (◡𝑓 “ 𝐴))) → (𝑛 ∈ (◡𝑓 “ 𝐴) ↔ (𝑓‘𝑛) ∈ 𝐴)) |
44 | 40, 43 | mtbid 323 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (◡𝑓 “ 𝐴))) → ¬ (𝑓‘𝑛) ∈ 𝐴) |
45 | 38, 44 | eldifd 3900 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (◡𝑓 “ 𝐴))) → (𝑓‘𝑛) ∈ (𝐵 ∖ 𝐴)) |
46 | | difss 4069 |
. . . . . . . . . . . . 13
⊢ (𝐵 ∖ 𝐴) ⊆ 𝐵 |
47 | | resmpt 5948 |
. . . . . . . . . . . . 13
⊢ ((𝐵 ∖ 𝐴) ⊆ 𝐵 → ((𝑘 ∈ 𝐵 ↦ 𝐶) ↾ (𝐵 ∖ 𝐴)) = (𝑘 ∈ (𝐵 ∖ 𝐴) ↦ 𝐶)) |
48 | 46, 47 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈ 𝐵 ↦ 𝐶) ↾ (𝐵 ∖ 𝐴)) = (𝑘 ∈ (𝐵 ∖ 𝐴) ↦ 𝐶) |
49 | 48 | fveq1i 6793 |
. . . . . . . . . . 11
⊢ (((𝑘 ∈ 𝐵 ↦ 𝐶) ↾ (𝐵 ∖ 𝐴))‘(𝑓‘𝑛)) = ((𝑘 ∈ (𝐵 ∖ 𝐴) ↦ 𝐶)‘(𝑓‘𝑛)) |
50 | | fvres 6811 |
. . . . . . . . . . 11
⊢ ((𝑓‘𝑛) ∈ (𝐵 ∖ 𝐴) → (((𝑘 ∈ 𝐵 ↦ 𝐶) ↾ (𝐵 ∖ 𝐴))‘(𝑓‘𝑛)) = ((𝑘 ∈ 𝐵 ↦ 𝐶)‘(𝑓‘𝑛))) |
51 | 49, 50 | eqtr3id 2787 |
. . . . . . . . . 10
⊢ ((𝑓‘𝑛) ∈ (𝐵 ∖ 𝐴) → ((𝑘 ∈ (𝐵 ∖ 𝐴) ↦ 𝐶)‘(𝑓‘𝑛)) = ((𝑘 ∈ 𝐵 ↦ 𝐶)‘(𝑓‘𝑛))) |
52 | 45, 51 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (◡𝑓 “ 𝐴))) → ((𝑘 ∈ (𝐵 ∖ 𝐴) ↦ 𝐶)‘(𝑓‘𝑛)) = ((𝑘 ∈ 𝐵 ↦ 𝐶)‘(𝑓‘𝑛))) |
53 | | c0ex 10997 |
. . . . . . . . . . . . . . 15
⊢ 0 ∈
V |
54 | 53 | elsn2 4603 |
. . . . . . . . . . . . . 14
⊢ (𝐶 ∈ {0} ↔ 𝐶 = 0) |
55 | 5, 54 | sylibr 233 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ 𝐴)) → 𝐶 ∈ {0}) |
56 | 55 | fmpttd 7009 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑘 ∈ (𝐵 ∖ 𝐴) ↦ 𝐶):(𝐵 ∖ 𝐴)⟶{0}) |
57 | 56 | ad2antrr 722 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (◡𝑓 “ 𝐴))) → (𝑘 ∈ (𝐵 ∖ 𝐴) ↦ 𝐶):(𝐵 ∖ 𝐴)⟶{0}) |
58 | 57, 45 | ffvelcdmd 6982 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (◡𝑓 “ 𝐴))) → ((𝑘 ∈ (𝐵 ∖ 𝐴) ↦ 𝐶)‘(𝑓‘𝑛)) ∈ {0}) |
59 | | elsni 4581 |
. . . . . . . . . 10
⊢ (((𝑘 ∈ (𝐵 ∖ 𝐴) ↦ 𝐶)‘(𝑓‘𝑛)) ∈ {0} → ((𝑘 ∈ (𝐵 ∖ 𝐴) ↦ 𝐶)‘(𝑓‘𝑛)) = 0) |
60 | 58, 59 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (◡𝑓 “ 𝐴))) → ((𝑘 ∈ (𝐵 ∖ 𝐴) ↦ 𝐶)‘(𝑓‘𝑛)) = 0) |
61 | 52, 60 | eqtr3d 2775 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (◡𝑓 “ 𝐴))) → ((𝑘 ∈ 𝐵 ↦ 𝐶)‘(𝑓‘𝑛)) = 0) |
62 | | fzssuz 13325 |
. . . . . . . . 9
⊢
(1...(♯‘𝐵)) ⊆
(ℤ≥‘1) |
63 | 62 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) →
(1...(♯‘𝐵))
⊆ (ℤ≥‘1)) |
64 | 16, 36, 61, 63 | sumss 15464 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → Σ𝑛 ∈ (◡𝑓 “ 𝐴)((𝑘 ∈ 𝐵 ↦ 𝐶)‘(𝑓‘𝑛)) = Σ𝑛 ∈ (1...(♯‘𝐵))((𝑘 ∈ 𝐵 ↦ 𝐶)‘(𝑓‘𝑛))) |
65 | 1 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑚 ∈ 𝐴) → 𝐴 ⊆ 𝐵) |
66 | 65 | resmptd 5951 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑚 ∈ 𝐴) → ((𝑘 ∈ 𝐵 ↦ 𝐶) ↾ 𝐴) = (𝑘 ∈ 𝐴 ↦ 𝐶)) |
67 | 66 | fveq1d 6794 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑚 ∈ 𝐴) → (((𝑘 ∈ 𝐵 ↦ 𝐶) ↾ 𝐴)‘𝑚) = ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚)) |
68 | | fvres 6811 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ 𝐴 → (((𝑘 ∈ 𝐵 ↦ 𝐶) ↾ 𝐴)‘𝑚) = ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚)) |
69 | 68 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑚 ∈ 𝐴) → (((𝑘 ∈ 𝐵 ↦ 𝐶) ↾ 𝐴)‘𝑚) = ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚)) |
70 | 67, 69 | eqtr3d 2775 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑚 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚) = ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚)) |
71 | 70 | sumeq2dv 15443 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → Σ𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚) = Σ𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚)) |
72 | | fveq2 6792 |
. . . . . . . . 9
⊢ (𝑚 = (𝑓‘𝑛) → ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚) = ((𝑘 ∈ 𝐵 ↦ 𝐶)‘(𝑓‘𝑛))) |
73 | | fzfid 13721 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) →
(1...(♯‘𝐵))
∈ Fin) |
74 | 73, 15 | fisuppfi 9164 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → (◡𝑓 “ 𝐴) ∈ Fin) |
75 | | f1of1 6733 |
. . . . . . . . . . . 12
⊢ (𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵 → 𝑓:(1...(♯‘𝐵))–1-1→𝐵) |
76 | 13, 75 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → 𝑓:(1...(♯‘𝐵))–1-1→𝐵) |
77 | | f1ores 6748 |
. . . . . . . . . . 11
⊢ ((𝑓:(1...(♯‘𝐵))–1-1→𝐵 ∧ (◡𝑓 “ 𝐴) ⊆ (1...(♯‘𝐵))) → (𝑓 ↾ (◡𝑓 “ 𝐴)):(◡𝑓 “ 𝐴)–1-1-onto→(𝑓 “ (◡𝑓 “ 𝐴))) |
78 | 76, 16, 77 | syl2anc 583 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → (𝑓 ↾ (◡𝑓 “ 𝐴)):(◡𝑓 “ 𝐴)–1-1-onto→(𝑓 “ (◡𝑓 “ 𝐴))) |
79 | | f1ofo 6741 |
. . . . . . . . . . . . 13
⊢ (𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵 → 𝑓:(1...(♯‘𝐵))–onto→𝐵) |
80 | 13, 79 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → 𝑓:(1...(♯‘𝐵))–onto→𝐵) |
81 | 1 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → 𝐴 ⊆ 𝐵) |
82 | | foimacnv 6751 |
. . . . . . . . . . . 12
⊢ ((𝑓:(1...(♯‘𝐵))–onto→𝐵 ∧ 𝐴 ⊆ 𝐵) → (𝑓 “ (◡𝑓 “ 𝐴)) = 𝐴) |
83 | 80, 81, 82 | syl2anc 583 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → (𝑓 “ (◡𝑓 “ 𝐴)) = 𝐴) |
84 | 83 | f1oeq3d 6731 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → ((𝑓 ↾ (◡𝑓 “ 𝐴)):(◡𝑓 “ 𝐴)–1-1-onto→(𝑓 “ (◡𝑓 “ 𝐴)) ↔ (𝑓 ↾ (◡𝑓 “ 𝐴)):(◡𝑓 “ 𝐴)–1-1-onto→𝐴)) |
85 | 78, 84 | mpbid 231 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → (𝑓 ↾ (◡𝑓 “ 𝐴)):(◡𝑓 “ 𝐴)–1-1-onto→𝐴) |
86 | | fvres 6811 |
. . . . . . . . . 10
⊢ (𝑛 ∈ (◡𝑓 “ 𝐴) → ((𝑓 ↾ (◡𝑓 “ 𝐴))‘𝑛) = (𝑓‘𝑛)) |
87 | 86 | adantl 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑛 ∈ (◡𝑓 “ 𝐴)) → ((𝑓 ↾ (◡𝑓 “ 𝐴))‘𝑛) = (𝑓‘𝑛)) |
88 | 81 | sselda 3923 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑚 ∈ 𝐴) → 𝑚 ∈ 𝐵) |
89 | 34 | ffvelcdmda 6981 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑚 ∈ 𝐵) → ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚) ∈ ℂ) |
90 | 88, 89 | syldan 590 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑚 ∈ 𝐴) → ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚) ∈ ℂ) |
91 | 72, 74, 85, 87, 90 | fsumf1o 15463 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → Σ𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚) = Σ𝑛 ∈ (◡𝑓 “ 𝐴)((𝑘 ∈ 𝐵 ↦ 𝐶)‘(𝑓‘𝑛))) |
92 | 71, 91 | eqtrd 2773 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → Σ𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚) = Σ𝑛 ∈ (◡𝑓 “ 𝐴)((𝑘 ∈ 𝐵 ↦ 𝐶)‘(𝑓‘𝑛))) |
93 | | eqidd 2734 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑛 ∈ (1...(♯‘𝐵))) → (𝑓‘𝑛) = (𝑓‘𝑛)) |
94 | 72, 73, 13, 93, 89 | fsumf1o 15463 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → Σ𝑚 ∈ 𝐵 ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚) = Σ𝑛 ∈ (1...(♯‘𝐵))((𝑘 ∈ 𝐵 ↦ 𝐶)‘(𝑓‘𝑛))) |
95 | 64, 92, 94 | 3eqtr4d 2783 |
. . . . . 6
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → Σ𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚) = Σ𝑚 ∈ 𝐵 ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚)) |
96 | | sumfc 15449 |
. . . . . 6
⊢
Σ𝑚 ∈
𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚) = Σ𝑘 ∈ 𝐴 𝐶 |
97 | | sumfc 15449 |
. . . . . 6
⊢
Σ𝑚 ∈
𝐵 ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚) = Σ𝑘 ∈ 𝐵 𝐶 |
98 | 95, 96, 97 | 3eqtr3g 2796 |
. . . . 5
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶) |
99 | 98 | expr 456 |
. . . 4
⊢ ((𝜑 ∧ (♯‘𝐵) ∈ ℕ) → (𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵 → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶)) |
100 | 99 | exlimdv 1932 |
. . 3
⊢ ((𝜑 ∧ (♯‘𝐵) ∈ ℕ) →
(∃𝑓 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵 → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶)) |
101 | 100 | expimpd 453 |
. 2
⊢ (𝜑 → (((♯‘𝐵) ∈ ℕ ∧
∃𝑓 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵) → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶)) |
102 | | fsumss.4 |
. . 3
⊢ (𝜑 → 𝐵 ∈ Fin) |
103 | | fz1f1o 15450 |
. . 3
⊢ (𝐵 ∈ Fin → (𝐵 = ∅ ∨
((♯‘𝐵) ∈
ℕ ∧ ∃𝑓
𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵))) |
104 | 102, 103 | syl 17 |
. 2
⊢ (𝜑 → (𝐵 = ∅ ∨ ((♯‘𝐵) ∈ ℕ ∧
∃𝑓 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵))) |
105 | 11, 101, 104 | mpjaod 856 |
1
⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶) |