Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibopelvalN Structured version   Visualization version   GIF version

Theorem dibopelvalN 40009
Description: Member of the partial isomorphism B. (Contributed by NM, 18-Jan-2014.) (Revised by Mario Carneiro, 6-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
dibval.b 𝐡 = (Baseβ€˜πΎ)
dibval.h 𝐻 = (LHypβ€˜πΎ)
dibval.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
dibval.o 0 = (𝑓 ∈ 𝑇 ↦ ( I β†Ύ 𝐡))
dibval.j 𝐽 = ((DIsoAβ€˜πΎ)β€˜π‘Š)
dibval.i 𝐼 = ((DIsoBβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
dibopelvalN (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐽) β†’ (⟨𝐹, π‘†βŸ© ∈ (πΌβ€˜π‘‹) ↔ (𝐹 ∈ (π½β€˜π‘‹) ∧ 𝑆 = 0 )))
Distinct variable groups:   𝑓,𝐾   𝑓,π‘Š   𝑇,𝑓
Allowed substitution hints:   𝐡(𝑓)   𝑆(𝑓)   𝐹(𝑓)   𝐻(𝑓)   𝐼(𝑓)   𝐽(𝑓)   𝑉(𝑓)   𝑋(𝑓)   0 (𝑓)

Proof of Theorem dibopelvalN
StepHypRef Expression
1 dibval.b . . . 4 𝐡 = (Baseβ€˜πΎ)
2 dibval.h . . . 4 𝐻 = (LHypβ€˜πΎ)
3 dibval.t . . . 4 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
4 dibval.o . . . 4 0 = (𝑓 ∈ 𝑇 ↦ ( I β†Ύ 𝐡))
5 dibval.j . . . 4 𝐽 = ((DIsoAβ€˜πΎ)β€˜π‘Š)
6 dibval.i . . . 4 𝐼 = ((DIsoBβ€˜πΎ)β€˜π‘Š)
71, 2, 3, 4, 5, 6dibval 40008 . . 3 (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐽) β†’ (πΌβ€˜π‘‹) = ((π½β€˜π‘‹) Γ— { 0 }))
87eleq2d 2819 . 2 (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐽) β†’ (⟨𝐹, π‘†βŸ© ∈ (πΌβ€˜π‘‹) ↔ ⟨𝐹, π‘†βŸ© ∈ ((π½β€˜π‘‹) Γ— { 0 })))
9 opelxp 5712 . . 3 (⟨𝐹, π‘†βŸ© ∈ ((π½β€˜π‘‹) Γ— { 0 }) ↔ (𝐹 ∈ (π½β€˜π‘‹) ∧ 𝑆 ∈ { 0 }))
103fvexi 6905 . . . . . . 7 𝑇 ∈ V
1110mptex 7224 . . . . . 6 (𝑓 ∈ 𝑇 ↦ ( I β†Ύ 𝐡)) ∈ V
124, 11eqeltri 2829 . . . . 5 0 ∈ V
1312elsn2 4667 . . . 4 (𝑆 ∈ { 0 } ↔ 𝑆 = 0 )
1413anbi2i 623 . . 3 ((𝐹 ∈ (π½β€˜π‘‹) ∧ 𝑆 ∈ { 0 }) ↔ (𝐹 ∈ (π½β€˜π‘‹) ∧ 𝑆 = 0 ))
159, 14bitri 274 . 2 (⟨𝐹, π‘†βŸ© ∈ ((π½β€˜π‘‹) Γ— { 0 }) ↔ (𝐹 ∈ (π½β€˜π‘‹) ∧ 𝑆 = 0 ))
168, 15bitrdi 286 1 (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐽) β†’ (⟨𝐹, π‘†βŸ© ∈ (πΌβ€˜π‘‹) ↔ (𝐹 ∈ (π½β€˜π‘‹) ∧ 𝑆 = 0 )))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106  Vcvv 3474  {csn 4628  βŸ¨cop 4634   ↦ cmpt 5231   I cid 5573   Γ— cxp 5674  dom cdm 5676   β†Ύ cres 5678  β€˜cfv 6543  Basecbs 17143  LHypclh 38850  LTrncltrn 38967  DIsoAcdia 39894  DIsoBcdib 40004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-dib 40005
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator