| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dibopelvalN | Structured version Visualization version GIF version | ||
| Description: Member of the partial isomorphism B. (Contributed by NM, 18-Jan-2014.) (Revised by Mario Carneiro, 6-May-2015.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dibval.b | ⊢ 𝐵 = (Base‘𝐾) |
| dibval.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dibval.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| dibval.o | ⊢ 0 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
| dibval.j | ⊢ 𝐽 = ((DIsoA‘𝐾)‘𝑊) |
| dibval.i | ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| dibopelvalN | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐽) → (〈𝐹, 𝑆〉 ∈ (𝐼‘𝑋) ↔ (𝐹 ∈ (𝐽‘𝑋) ∧ 𝑆 = 0 ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dibval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | dibval.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 3 | dibval.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 4 | dibval.o | . . . 4 ⊢ 0 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
| 5 | dibval.j | . . . 4 ⊢ 𝐽 = ((DIsoA‘𝐾)‘𝑊) | |
| 6 | dibval.i | . . . 4 ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) | |
| 7 | 1, 2, 3, 4, 5, 6 | dibval 41107 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐽) → (𝐼‘𝑋) = ((𝐽‘𝑋) × { 0 })) |
| 8 | 7 | eleq2d 2820 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐽) → (〈𝐹, 𝑆〉 ∈ (𝐼‘𝑋) ↔ 〈𝐹, 𝑆〉 ∈ ((𝐽‘𝑋) × { 0 }))) |
| 9 | opelxp 5690 | . . 3 ⊢ (〈𝐹, 𝑆〉 ∈ ((𝐽‘𝑋) × { 0 }) ↔ (𝐹 ∈ (𝐽‘𝑋) ∧ 𝑆 ∈ { 0 })) | |
| 10 | 3 | fvexi 6889 | . . . . . . 7 ⊢ 𝑇 ∈ V |
| 11 | 10 | mptex 7214 | . . . . . 6 ⊢ (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) ∈ V |
| 12 | 4, 11 | eqeltri 2830 | . . . . 5 ⊢ 0 ∈ V |
| 13 | 12 | elsn2 4641 | . . . 4 ⊢ (𝑆 ∈ { 0 } ↔ 𝑆 = 0 ) |
| 14 | 13 | anbi2i 623 | . . 3 ⊢ ((𝐹 ∈ (𝐽‘𝑋) ∧ 𝑆 ∈ { 0 }) ↔ (𝐹 ∈ (𝐽‘𝑋) ∧ 𝑆 = 0 )) |
| 15 | 9, 14 | bitri 275 | . 2 ⊢ (〈𝐹, 𝑆〉 ∈ ((𝐽‘𝑋) × { 0 }) ↔ (𝐹 ∈ (𝐽‘𝑋) ∧ 𝑆 = 0 )) |
| 16 | 8, 15 | bitrdi 287 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐽) → (〈𝐹, 𝑆〉 ∈ (𝐼‘𝑋) ↔ (𝐹 ∈ (𝐽‘𝑋) ∧ 𝑆 = 0 ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3459 {csn 4601 〈cop 4607 ↦ cmpt 5201 I cid 5547 × cxp 5652 dom cdm 5654 ↾ cres 5656 ‘cfv 6530 Basecbs 17226 LHypclh 39949 LTrncltrn 40066 DIsoAcdia 40993 DIsoBcdib 41103 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-dib 41104 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |