Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibopelvalN Structured version   Visualization version   GIF version

Theorem dibopelvalN 41130
Description: Member of the partial isomorphism B. (Contributed by NM, 18-Jan-2014.) (Revised by Mario Carneiro, 6-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
dibval.b 𝐵 = (Base‘𝐾)
dibval.h 𝐻 = (LHyp‘𝐾)
dibval.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dibval.o 0 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
dibval.j 𝐽 = ((DIsoA‘𝐾)‘𝑊)
dibval.i 𝐼 = ((DIsoB‘𝐾)‘𝑊)
Assertion
Ref Expression
dibopelvalN (((𝐾𝑉𝑊𝐻) ∧ 𝑋 ∈ dom 𝐽) → (⟨𝐹, 𝑆⟩ ∈ (𝐼𝑋) ↔ (𝐹 ∈ (𝐽𝑋) ∧ 𝑆 = 0 )))
Distinct variable groups:   𝑓,𝐾   𝑓,𝑊   𝑇,𝑓
Allowed substitution hints:   𝐵(𝑓)   𝑆(𝑓)   𝐹(𝑓)   𝐻(𝑓)   𝐼(𝑓)   𝐽(𝑓)   𝑉(𝑓)   𝑋(𝑓)   0 (𝑓)

Proof of Theorem dibopelvalN
StepHypRef Expression
1 dibval.b . . . 4 𝐵 = (Base‘𝐾)
2 dibval.h . . . 4 𝐻 = (LHyp‘𝐾)
3 dibval.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
4 dibval.o . . . 4 0 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
5 dibval.j . . . 4 𝐽 = ((DIsoA‘𝐾)‘𝑊)
6 dibval.i . . . 4 𝐼 = ((DIsoB‘𝐾)‘𝑊)
71, 2, 3, 4, 5, 6dibval 41129 . . 3 (((𝐾𝑉𝑊𝐻) ∧ 𝑋 ∈ dom 𝐽) → (𝐼𝑋) = ((𝐽𝑋) × { 0 }))
87eleq2d 2814 . 2 (((𝐾𝑉𝑊𝐻) ∧ 𝑋 ∈ dom 𝐽) → (⟨𝐹, 𝑆⟩ ∈ (𝐼𝑋) ↔ ⟨𝐹, 𝑆⟩ ∈ ((𝐽𝑋) × { 0 })))
9 opelxp 5667 . . 3 (⟨𝐹, 𝑆⟩ ∈ ((𝐽𝑋) × { 0 }) ↔ (𝐹 ∈ (𝐽𝑋) ∧ 𝑆 ∈ { 0 }))
103fvexi 6854 . . . . . . 7 𝑇 ∈ V
1110mptex 7179 . . . . . 6 (𝑓𝑇 ↦ ( I ↾ 𝐵)) ∈ V
124, 11eqeltri 2824 . . . . 5 0 ∈ V
1312elsn2 4625 . . . 4 (𝑆 ∈ { 0 } ↔ 𝑆 = 0 )
1413anbi2i 623 . . 3 ((𝐹 ∈ (𝐽𝑋) ∧ 𝑆 ∈ { 0 }) ↔ (𝐹 ∈ (𝐽𝑋) ∧ 𝑆 = 0 ))
159, 14bitri 275 . 2 (⟨𝐹, 𝑆⟩ ∈ ((𝐽𝑋) × { 0 }) ↔ (𝐹 ∈ (𝐽𝑋) ∧ 𝑆 = 0 ))
168, 15bitrdi 287 1 (((𝐾𝑉𝑊𝐻) ∧ 𝑋 ∈ dom 𝐽) → (⟨𝐹, 𝑆⟩ ∈ (𝐼𝑋) ↔ (𝐹 ∈ (𝐽𝑋) ∧ 𝑆 = 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3444  {csn 4585  cop 4591  cmpt 5183   I cid 5525   × cxp 5629  dom cdm 5631  cres 5633  cfv 6499  Basecbs 17155  LHypclh 39971  LTrncltrn 40088  DIsoAcdia 41015  DIsoBcdib 41125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-dib 41126
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator