![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dibopelvalN | Structured version Visualization version GIF version |
Description: Member of the partial isomorphism B. (Contributed by NM, 18-Jan-2014.) (Revised by Mario Carneiro, 6-May-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dibval.b | β’ π΅ = (BaseβπΎ) |
dibval.h | β’ π» = (LHypβπΎ) |
dibval.t | β’ π = ((LTrnβπΎ)βπ) |
dibval.o | β’ 0 = (π β π β¦ ( I βΎ π΅)) |
dibval.j | β’ π½ = ((DIsoAβπΎ)βπ) |
dibval.i | β’ πΌ = ((DIsoBβπΎ)βπ) |
Ref | Expression |
---|---|
dibopelvalN | β’ (((πΎ β π β§ π β π») β§ π β dom π½) β (β¨πΉ, πβ© β (πΌβπ) β (πΉ β (π½βπ) β§ π = 0 ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dibval.b | . . . 4 β’ π΅ = (BaseβπΎ) | |
2 | dibval.h | . . . 4 β’ π» = (LHypβπΎ) | |
3 | dibval.t | . . . 4 β’ π = ((LTrnβπΎ)βπ) | |
4 | dibval.o | . . . 4 β’ 0 = (π β π β¦ ( I βΎ π΅)) | |
5 | dibval.j | . . . 4 β’ π½ = ((DIsoAβπΎ)βπ) | |
6 | dibval.i | . . . 4 β’ πΌ = ((DIsoBβπΎ)βπ) | |
7 | 1, 2, 3, 4, 5, 6 | dibval 40008 | . . 3 β’ (((πΎ β π β§ π β π») β§ π β dom π½) β (πΌβπ) = ((π½βπ) Γ { 0 })) |
8 | 7 | eleq2d 2819 | . 2 β’ (((πΎ β π β§ π β π») β§ π β dom π½) β (β¨πΉ, πβ© β (πΌβπ) β β¨πΉ, πβ© β ((π½βπ) Γ { 0 }))) |
9 | opelxp 5712 | . . 3 β’ (β¨πΉ, πβ© β ((π½βπ) Γ { 0 }) β (πΉ β (π½βπ) β§ π β { 0 })) | |
10 | 3 | fvexi 6905 | . . . . . . 7 β’ π β V |
11 | 10 | mptex 7224 | . . . . . 6 β’ (π β π β¦ ( I βΎ π΅)) β V |
12 | 4, 11 | eqeltri 2829 | . . . . 5 β’ 0 β V |
13 | 12 | elsn2 4667 | . . . 4 β’ (π β { 0 } β π = 0 ) |
14 | 13 | anbi2i 623 | . . 3 β’ ((πΉ β (π½βπ) β§ π β { 0 }) β (πΉ β (π½βπ) β§ π = 0 )) |
15 | 9, 14 | bitri 274 | . 2 β’ (β¨πΉ, πβ© β ((π½βπ) Γ { 0 }) β (πΉ β (π½βπ) β§ π = 0 )) |
16 | 8, 15 | bitrdi 286 | 1 β’ (((πΎ β π β§ π β π») β§ π β dom π½) β (β¨πΉ, πβ© β (πΌβπ) β (πΉ β (π½βπ) β§ π = 0 ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 = wceq 1541 β wcel 2106 Vcvv 3474 {csn 4628 β¨cop 4634 β¦ cmpt 5231 I cid 5573 Γ cxp 5674 dom cdm 5676 βΎ cres 5678 βcfv 6543 Basecbs 17143 LHypclh 38850 LTrncltrn 38967 DIsoAcdia 39894 DIsoBcdib 40004 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-dib 40005 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |