| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dibopelvalN | Structured version Visualization version GIF version | ||
| Description: Member of the partial isomorphism B. (Contributed by NM, 18-Jan-2014.) (Revised by Mario Carneiro, 6-May-2015.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dibval.b | ⊢ 𝐵 = (Base‘𝐾) |
| dibval.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dibval.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| dibval.o | ⊢ 0 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
| dibval.j | ⊢ 𝐽 = ((DIsoA‘𝐾)‘𝑊) |
| dibval.i | ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| dibopelvalN | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐽) → (〈𝐹, 𝑆〉 ∈ (𝐼‘𝑋) ↔ (𝐹 ∈ (𝐽‘𝑋) ∧ 𝑆 = 0 ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dibval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | dibval.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 3 | dibval.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 4 | dibval.o | . . . 4 ⊢ 0 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
| 5 | dibval.j | . . . 4 ⊢ 𝐽 = ((DIsoA‘𝐾)‘𝑊) | |
| 6 | dibval.i | . . . 4 ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) | |
| 7 | 1, 2, 3, 4, 5, 6 | dibval 41160 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐽) → (𝐼‘𝑋) = ((𝐽‘𝑋) × { 0 })) |
| 8 | 7 | eleq2d 2815 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐽) → (〈𝐹, 𝑆〉 ∈ (𝐼‘𝑋) ↔ 〈𝐹, 𝑆〉 ∈ ((𝐽‘𝑋) × { 0 }))) |
| 9 | opelxp 5650 | . . 3 ⊢ (〈𝐹, 𝑆〉 ∈ ((𝐽‘𝑋) × { 0 }) ↔ (𝐹 ∈ (𝐽‘𝑋) ∧ 𝑆 ∈ { 0 })) | |
| 10 | 3 | fvexi 6831 | . . . . . . 7 ⊢ 𝑇 ∈ V |
| 11 | 10 | mptex 7152 | . . . . . 6 ⊢ (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) ∈ V |
| 12 | 4, 11 | eqeltri 2825 | . . . . 5 ⊢ 0 ∈ V |
| 13 | 12 | elsn2 4616 | . . . 4 ⊢ (𝑆 ∈ { 0 } ↔ 𝑆 = 0 ) |
| 14 | 13 | anbi2i 623 | . . 3 ⊢ ((𝐹 ∈ (𝐽‘𝑋) ∧ 𝑆 ∈ { 0 }) ↔ (𝐹 ∈ (𝐽‘𝑋) ∧ 𝑆 = 0 )) |
| 15 | 9, 14 | bitri 275 | . 2 ⊢ (〈𝐹, 𝑆〉 ∈ ((𝐽‘𝑋) × { 0 }) ↔ (𝐹 ∈ (𝐽‘𝑋) ∧ 𝑆 = 0 )) |
| 16 | 8, 15 | bitrdi 287 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐽) → (〈𝐹, 𝑆〉 ∈ (𝐼‘𝑋) ↔ (𝐹 ∈ (𝐽‘𝑋) ∧ 𝑆 = 0 ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2110 Vcvv 3434 {csn 4574 〈cop 4580 ↦ cmpt 5170 I cid 5508 × cxp 5612 dom cdm 5614 ↾ cres 5616 ‘cfv 6477 Basecbs 17112 LHypclh 40002 LTrncltrn 40119 DIsoAcdia 41046 DIsoBcdib 41156 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-dib 41157 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |