Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibopelval2 Structured version   Visualization version   GIF version

Theorem dibopelval2 41128
Description: Member of the partial isomorphism B. (Contributed by NM, 3-Mar-2014.) (Revised by Mario Carneiro, 6-May-2015.)
Hypotheses
Ref Expression
dibval2.b 𝐵 = (Base‘𝐾)
dibval2.l = (le‘𝐾)
dibval2.h 𝐻 = (LHyp‘𝐾)
dibval2.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dibval2.o 0 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
dibval2.j 𝐽 = ((DIsoA‘𝐾)‘𝑊)
dibval2.i 𝐼 = ((DIsoB‘𝐾)‘𝑊)
Assertion
Ref Expression
dibopelval2 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (⟨𝐹, 𝑆⟩ ∈ (𝐼𝑋) ↔ (𝐹 ∈ (𝐽𝑋) ∧ 𝑆 = 0 )))
Distinct variable groups:   𝑓,𝐾   𝑓,𝑊   𝑇,𝑓
Allowed substitution hints:   𝐵(𝑓)   𝑆(𝑓)   𝐹(𝑓)   𝐻(𝑓)   𝐼(𝑓)   𝐽(𝑓)   (𝑓)   𝑉(𝑓)   𝑋(𝑓)   0 (𝑓)

Proof of Theorem dibopelval2
StepHypRef Expression
1 dibval2.b . . . 4 𝐵 = (Base‘𝐾)
2 dibval2.l . . . 4 = (le‘𝐾)
3 dibval2.h . . . 4 𝐻 = (LHyp‘𝐾)
4 dibval2.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
5 dibval2.o . . . 4 0 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
6 dibval2.j . . . 4 𝐽 = ((DIsoA‘𝐾)‘𝑊)
7 dibval2.i . . . 4 𝐼 = ((DIsoB‘𝐾)‘𝑊)
81, 2, 3, 4, 5, 6, 7dibval2 41127 . . 3 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) = ((𝐽𝑋) × { 0 }))
98eleq2d 2825 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (⟨𝐹, 𝑆⟩ ∈ (𝐼𝑋) ↔ ⟨𝐹, 𝑆⟩ ∈ ((𝐽𝑋) × { 0 })))
10 opelxp 5725 . . 3 (⟨𝐹, 𝑆⟩ ∈ ((𝐽𝑋) × { 0 }) ↔ (𝐹 ∈ (𝐽𝑋) ∧ 𝑆 ∈ { 0 }))
114fvexi 6921 . . . . . . 7 𝑇 ∈ V
1211mptex 7243 . . . . . 6 (𝑓𝑇 ↦ ( I ↾ 𝐵)) ∈ V
135, 12eqeltri 2835 . . . . 5 0 ∈ V
1413elsn2 4670 . . . 4 (𝑆 ∈ { 0 } ↔ 𝑆 = 0 )
1514anbi2i 623 . . 3 ((𝐹 ∈ (𝐽𝑋) ∧ 𝑆 ∈ { 0 }) ↔ (𝐹 ∈ (𝐽𝑋) ∧ 𝑆 = 0 ))
1610, 15bitri 275 . 2 (⟨𝐹, 𝑆⟩ ∈ ((𝐽𝑋) × { 0 }) ↔ (𝐹 ∈ (𝐽𝑋) ∧ 𝑆 = 0 ))
179, 16bitrdi 287 1 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (⟨𝐹, 𝑆⟩ ∈ (𝐼𝑋) ↔ (𝐹 ∈ (𝐽𝑋) ∧ 𝑆 = 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  Vcvv 3478  {csn 4631  cop 4637   class class class wbr 5148  cmpt 5231   I cid 5582   × cxp 5687  cres 5691  cfv 6563  Basecbs 17245  lecple 17305  LHypclh 39967  LTrncltrn 40084  DIsoAcdia 41011  DIsoBcdib 41121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-disoa 41012  df-dib 41122
This theorem is referenced by:  dibopelval3  41131  dibglbN  41149  diblsmopel  41154  dib2dim  41226  dih2dimbALTN  41228  dihord6apre  41239
  Copyright terms: Public domain W3C validator