Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibopelval2 Structured version   Visualization version   GIF version

Theorem dibopelval2 41139
Description: Member of the partial isomorphism B. (Contributed by NM, 3-Mar-2014.) (Revised by Mario Carneiro, 6-May-2015.)
Hypotheses
Ref Expression
dibval2.b 𝐵 = (Base‘𝐾)
dibval2.l = (le‘𝐾)
dibval2.h 𝐻 = (LHyp‘𝐾)
dibval2.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dibval2.o 0 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
dibval2.j 𝐽 = ((DIsoA‘𝐾)‘𝑊)
dibval2.i 𝐼 = ((DIsoB‘𝐾)‘𝑊)
Assertion
Ref Expression
dibopelval2 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (⟨𝐹, 𝑆⟩ ∈ (𝐼𝑋) ↔ (𝐹 ∈ (𝐽𝑋) ∧ 𝑆 = 0 )))
Distinct variable groups:   𝑓,𝐾   𝑓,𝑊   𝑇,𝑓
Allowed substitution hints:   𝐵(𝑓)   𝑆(𝑓)   𝐹(𝑓)   𝐻(𝑓)   𝐼(𝑓)   𝐽(𝑓)   (𝑓)   𝑉(𝑓)   𝑋(𝑓)   0 (𝑓)

Proof of Theorem dibopelval2
StepHypRef Expression
1 dibval2.b . . . 4 𝐵 = (Base‘𝐾)
2 dibval2.l . . . 4 = (le‘𝐾)
3 dibval2.h . . . 4 𝐻 = (LHyp‘𝐾)
4 dibval2.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
5 dibval2.o . . . 4 0 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
6 dibval2.j . . . 4 𝐽 = ((DIsoA‘𝐾)‘𝑊)
7 dibval2.i . . . 4 𝐼 = ((DIsoB‘𝐾)‘𝑊)
81, 2, 3, 4, 5, 6, 7dibval2 41138 . . 3 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) = ((𝐽𝑋) × { 0 }))
98eleq2d 2814 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (⟨𝐹, 𝑆⟩ ∈ (𝐼𝑋) ↔ ⟨𝐹, 𝑆⟩ ∈ ((𝐽𝑋) × { 0 })))
10 opelxp 5674 . . 3 (⟨𝐹, 𝑆⟩ ∈ ((𝐽𝑋) × { 0 }) ↔ (𝐹 ∈ (𝐽𝑋) ∧ 𝑆 ∈ { 0 }))
114fvexi 6872 . . . . . . 7 𝑇 ∈ V
1211mptex 7197 . . . . . 6 (𝑓𝑇 ↦ ( I ↾ 𝐵)) ∈ V
135, 12eqeltri 2824 . . . . 5 0 ∈ V
1413elsn2 4629 . . . 4 (𝑆 ∈ { 0 } ↔ 𝑆 = 0 )
1514anbi2i 623 . . 3 ((𝐹 ∈ (𝐽𝑋) ∧ 𝑆 ∈ { 0 }) ↔ (𝐹 ∈ (𝐽𝑋) ∧ 𝑆 = 0 ))
1610, 15bitri 275 . 2 (⟨𝐹, 𝑆⟩ ∈ ((𝐽𝑋) × { 0 }) ↔ (𝐹 ∈ (𝐽𝑋) ∧ 𝑆 = 0 ))
179, 16bitrdi 287 1 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (⟨𝐹, 𝑆⟩ ∈ (𝐼𝑋) ↔ (𝐹 ∈ (𝐽𝑋) ∧ 𝑆 = 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  {csn 4589  cop 4595   class class class wbr 5107  cmpt 5188   I cid 5532   × cxp 5636  cres 5640  cfv 6511  Basecbs 17179  lecple 17227  LHypclh 39978  LTrncltrn 40095  DIsoAcdia 41022  DIsoBcdib 41132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-disoa 41023  df-dib 41133
This theorem is referenced by:  dibopelval3  41142  dibglbN  41160  diblsmopel  41165  dib2dim  41237  dih2dimbALTN  41239  dihord6apre  41250
  Copyright terms: Public domain W3C validator