![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dibopelval2 | Structured version Visualization version GIF version |
Description: Member of the partial isomorphism B. (Contributed by NM, 3-Mar-2014.) (Revised by Mario Carneiro, 6-May-2015.) |
Ref | Expression |
---|---|
dibval2.b | ⊢ 𝐵 = (Base‘𝐾) |
dibval2.l | ⊢ ≤ = (le‘𝐾) |
dibval2.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dibval2.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
dibval2.o | ⊢ 0 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
dibval2.j | ⊢ 𝐽 = ((DIsoA‘𝐾)‘𝑊) |
dibval2.i | ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
dibopelval2 | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (〈𝐹, 𝑆〉 ∈ (𝐼‘𝑋) ↔ (𝐹 ∈ (𝐽‘𝑋) ∧ 𝑆 = 0 ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dibval2.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | dibval2.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
3 | dibval2.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | dibval2.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
5 | dibval2.o | . . . 4 ⊢ 0 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
6 | dibval2.j | . . . 4 ⊢ 𝐽 = ((DIsoA‘𝐾)‘𝑊) | |
7 | dibval2.i | . . . 4 ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) | |
8 | 1, 2, 3, 4, 5, 6, 7 | dibval2 41127 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) = ((𝐽‘𝑋) × { 0 })) |
9 | 8 | eleq2d 2825 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (〈𝐹, 𝑆〉 ∈ (𝐼‘𝑋) ↔ 〈𝐹, 𝑆〉 ∈ ((𝐽‘𝑋) × { 0 }))) |
10 | opelxp 5725 | . . 3 ⊢ (〈𝐹, 𝑆〉 ∈ ((𝐽‘𝑋) × { 0 }) ↔ (𝐹 ∈ (𝐽‘𝑋) ∧ 𝑆 ∈ { 0 })) | |
11 | 4 | fvexi 6921 | . . . . . . 7 ⊢ 𝑇 ∈ V |
12 | 11 | mptex 7243 | . . . . . 6 ⊢ (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) ∈ V |
13 | 5, 12 | eqeltri 2835 | . . . . 5 ⊢ 0 ∈ V |
14 | 13 | elsn2 4670 | . . . 4 ⊢ (𝑆 ∈ { 0 } ↔ 𝑆 = 0 ) |
15 | 14 | anbi2i 623 | . . 3 ⊢ ((𝐹 ∈ (𝐽‘𝑋) ∧ 𝑆 ∈ { 0 }) ↔ (𝐹 ∈ (𝐽‘𝑋) ∧ 𝑆 = 0 )) |
16 | 10, 15 | bitri 275 | . 2 ⊢ (〈𝐹, 𝑆〉 ∈ ((𝐽‘𝑋) × { 0 }) ↔ (𝐹 ∈ (𝐽‘𝑋) ∧ 𝑆 = 0 )) |
17 | 9, 16 | bitrdi 287 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (〈𝐹, 𝑆〉 ∈ (𝐼‘𝑋) ↔ (𝐹 ∈ (𝐽‘𝑋) ∧ 𝑆 = 0 ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 Vcvv 3478 {csn 4631 〈cop 4637 class class class wbr 5148 ↦ cmpt 5231 I cid 5582 × cxp 5687 ↾ cres 5691 ‘cfv 6563 Basecbs 17245 lecple 17305 LHypclh 39967 LTrncltrn 40084 DIsoAcdia 41011 DIsoBcdib 41121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-disoa 41012 df-dib 41122 |
This theorem is referenced by: dibopelval3 41131 dibglbN 41149 diblsmopel 41154 dib2dim 41226 dih2dimbALTN 41228 dihord6apre 41239 |
Copyright terms: Public domain | W3C validator |