Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibopelval2 Structured version   Visualization version   GIF version

Theorem dibopelval2 38896
Description: Member of the partial isomorphism B. (Contributed by NM, 3-Mar-2014.) (Revised by Mario Carneiro, 6-May-2015.)
Hypotheses
Ref Expression
dibval2.b 𝐵 = (Base‘𝐾)
dibval2.l = (le‘𝐾)
dibval2.h 𝐻 = (LHyp‘𝐾)
dibval2.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dibval2.o 0 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
dibval2.j 𝐽 = ((DIsoA‘𝐾)‘𝑊)
dibval2.i 𝐼 = ((DIsoB‘𝐾)‘𝑊)
Assertion
Ref Expression
dibopelval2 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (⟨𝐹, 𝑆⟩ ∈ (𝐼𝑋) ↔ (𝐹 ∈ (𝐽𝑋) ∧ 𝑆 = 0 )))
Distinct variable groups:   𝑓,𝐾   𝑓,𝑊   𝑇,𝑓
Allowed substitution hints:   𝐵(𝑓)   𝑆(𝑓)   𝐹(𝑓)   𝐻(𝑓)   𝐼(𝑓)   𝐽(𝑓)   (𝑓)   𝑉(𝑓)   𝑋(𝑓)   0 (𝑓)

Proof of Theorem dibopelval2
StepHypRef Expression
1 dibval2.b . . . 4 𝐵 = (Base‘𝐾)
2 dibval2.l . . . 4 = (le‘𝐾)
3 dibval2.h . . . 4 𝐻 = (LHyp‘𝐾)
4 dibval2.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
5 dibval2.o . . . 4 0 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
6 dibval2.j . . . 4 𝐽 = ((DIsoA‘𝐾)‘𝑊)
7 dibval2.i . . . 4 𝐼 = ((DIsoB‘𝐾)‘𝑊)
81, 2, 3, 4, 5, 6, 7dibval2 38895 . . 3 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) = ((𝐽𝑋) × { 0 }))
98eleq2d 2823 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (⟨𝐹, 𝑆⟩ ∈ (𝐼𝑋) ↔ ⟨𝐹, 𝑆⟩ ∈ ((𝐽𝑋) × { 0 })))
10 opelxp 5587 . . 3 (⟨𝐹, 𝑆⟩ ∈ ((𝐽𝑋) × { 0 }) ↔ (𝐹 ∈ (𝐽𝑋) ∧ 𝑆 ∈ { 0 }))
114fvexi 6731 . . . . . . 7 𝑇 ∈ V
1211mptex 7039 . . . . . 6 (𝑓𝑇 ↦ ( I ↾ 𝐵)) ∈ V
135, 12eqeltri 2834 . . . . 5 0 ∈ V
1413elsn2 4580 . . . 4 (𝑆 ∈ { 0 } ↔ 𝑆 = 0 )
1514anbi2i 626 . . 3 ((𝐹 ∈ (𝐽𝑋) ∧ 𝑆 ∈ { 0 }) ↔ (𝐹 ∈ (𝐽𝑋) ∧ 𝑆 = 0 ))
1610, 15bitri 278 . 2 (⟨𝐹, 𝑆⟩ ∈ ((𝐽𝑋) × { 0 }) ↔ (𝐹 ∈ (𝐽𝑋) ∧ 𝑆 = 0 ))
179, 16bitrdi 290 1 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (⟨𝐹, 𝑆⟩ ∈ (𝐼𝑋) ↔ (𝐹 ∈ (𝐽𝑋) ∧ 𝑆 = 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  Vcvv 3408  {csn 4541  cop 4547   class class class wbr 5053  cmpt 5135   I cid 5454   × cxp 5549  cres 5553  cfv 6380  Basecbs 16760  lecple 16809  LHypclh 37735  LTrncltrn 37852  DIsoAcdia 38779  DIsoBcdib 38889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-disoa 38780  df-dib 38890
This theorem is referenced by:  dibopelval3  38899  dibglbN  38917  diblsmopel  38922  dib2dim  38994  dih2dimbALTN  38996  dihord6apre  39007
  Copyright terms: Public domain W3C validator