Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  epsoon Structured version   Visualization version   GIF version

Theorem epsoon 43210
Description: The ordinals are strictly and completely (linearly) ordered. Theorem 1.9 of [Schloeder] p. 1. Based on epweon 7778 and weso 5658. (Contributed by RP, 15-Jan-2025.)
Assertion
Ref Expression
epsoon E Or On

Proof of Theorem epsoon
StepHypRef Expression
1 epweon 7778 . 2 E We On
2 weso 5658 . 2 ( E We On → E Or On)
31, 2ax-mp 5 1 E Or On
Colors of variables: wff setvar class
Syntax hints:   E cep 5565   Or wor 5573   We wwe 5618  Oncon0 6365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pr 5414
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3421  df-v 3466  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-br 5126  df-opab 5188  df-tr 5242  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-we 5621  df-ord 6368  df-on 6369
This theorem is referenced by:  oneptri  43214
  Copyright terms: Public domain W3C validator