![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > epirron | Structured version Visualization version GIF version |
Description: The strict order on the ordinals is irreflexive. Theorem 1.9(i) of [Schloeder] p. 1. (Contributed by RP, 15-Jan-2025.) |
Ref | Expression |
---|---|
epirron | ⊢ (𝐴 ∈ On → ¬ 𝐴 E 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | epweon 7778 | . . 3 ⊢ E We On | |
2 | weso 5669 | . . 3 ⊢ ( E We On → E Or On) | |
3 | sopo 5609 | . . 3 ⊢ ( E Or On → E Po On) | |
4 | 1, 2, 3 | mp2b 10 | . 2 ⊢ E Po On |
5 | poirr 5602 | . 2 ⊢ (( E Po On ∧ 𝐴 ∈ On) → ¬ 𝐴 E 𝐴) | |
6 | 4, 5 | mpan 688 | 1 ⊢ (𝐴 ∈ On → ¬ 𝐴 E 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2098 class class class wbr 5149 E cep 5581 Po wpo 5588 Or wor 5589 We wwe 5632 Oncon0 6371 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ne 2930 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-tr 5267 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-ord 6374 df-on 6375 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |