| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > epirron | Structured version Visualization version GIF version | ||
| Description: The strict order on the ordinals is irreflexive. Theorem 1.9(i) of [Schloeder] p. 1. (Contributed by RP, 15-Jan-2025.) |
| Ref | Expression |
|---|---|
| epirron | ⊢ (𝐴 ∈ On → ¬ 𝐴 E 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | epweon 7708 | . . 3 ⊢ E We On | |
| 2 | weso 5607 | . . 3 ⊢ ( E We On → E Or On) | |
| 3 | sopo 5543 | . . 3 ⊢ ( E Or On → E Po On) | |
| 4 | 1, 2, 3 | mp2b 10 | . 2 ⊢ E Po On |
| 5 | poirr 5536 | . 2 ⊢ (( E Po On ∧ 𝐴 ∈ On) → ¬ 𝐴 E 𝐴) | |
| 6 | 4, 5 | mpan 690 | 1 ⊢ (𝐴 ∈ On → ¬ 𝐴 E 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2111 class class class wbr 5091 E cep 5515 Po wpo 5522 Or wor 5523 We wwe 5568 Oncon0 6306 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-tr 5199 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-ord 6309 df-on 6310 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |