![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > epirron | Structured version Visualization version GIF version |
Description: The strict order on the ordinals is irreflexive. Theorem 1.9(i) of [Schloeder] p. 1. (Contributed by RP, 15-Jan-2025.) |
Ref | Expression |
---|---|
epirron | ⊢ (𝐴 ∈ On → ¬ 𝐴 E 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | epweon 7794 | . . 3 ⊢ E We On | |
2 | weso 5680 | . . 3 ⊢ ( E We On → E Or On) | |
3 | sopo 5616 | . . 3 ⊢ ( E Or On → E Po On) | |
4 | 1, 2, 3 | mp2b 10 | . 2 ⊢ E Po On |
5 | poirr 5609 | . 2 ⊢ (( E Po On ∧ 𝐴 ∈ On) → ¬ 𝐴 E 𝐴) | |
6 | 4, 5 | mpan 690 | 1 ⊢ (𝐴 ∈ On → ¬ 𝐴 E 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2106 class class class wbr 5148 E cep 5588 Po wpo 5595 Or wor 5596 We wwe 5640 Oncon0 6386 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-tr 5266 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-ord 6389 df-on 6390 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |