| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > epirron | Structured version Visualization version GIF version | ||
| Description: The strict order on the ordinals is irreflexive. Theorem 1.9(i) of [Schloeder] p. 1. (Contributed by RP, 15-Jan-2025.) |
| Ref | Expression |
|---|---|
| epirron | ⊢ (𝐴 ∈ On → ¬ 𝐴 E 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | epweon 7796 | . . 3 ⊢ E We On | |
| 2 | weso 5675 | . . 3 ⊢ ( E We On → E Or On) | |
| 3 | sopo 5610 | . . 3 ⊢ ( E Or On → E Po On) | |
| 4 | 1, 2, 3 | mp2b 10 | . 2 ⊢ E Po On |
| 5 | poirr 5603 | . 2 ⊢ (( E Po On ∧ 𝐴 ∈ On) → ¬ 𝐴 E 𝐴) | |
| 6 | 4, 5 | mpan 690 | 1 ⊢ (𝐴 ∈ On → ¬ 𝐴 E 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2107 class class class wbr 5142 E cep 5582 Po wpo 5589 Or wor 5590 We wwe 5635 Oncon0 6383 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-tr 5259 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-ord 6386 df-on 6387 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |