Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  epirron Structured version   Visualization version   GIF version

Theorem epirron 43371
Description: The strict order on the ordinals is irreflexive. Theorem 1.9(i) of [Schloeder] p. 1. (Contributed by RP, 15-Jan-2025.)
Assertion
Ref Expression
epirron (𝐴 ∈ On → ¬ 𝐴 E 𝐴)

Proof of Theorem epirron
StepHypRef Expression
1 epweon 7714 . . 3 E We On
2 weso 5610 . . 3 ( E We On → E Or On)
3 sopo 5546 . . 3 ( E Or On → E Po On)
41, 2, 3mp2b 10 . 2 E Po On
5 poirr 5539 . 2 (( E Po On ∧ 𝐴 ∈ On) → ¬ 𝐴 E 𝐴)
64, 5mpan 690 1 (𝐴 ∈ On → ¬ 𝐴 E 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2113   class class class wbr 5093   E cep 5518   Po wpo 5525   Or wor 5526   We wwe 5571  Oncon0 6311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-tr 5201  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-ord 6314  df-on 6315
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator