Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  epirron Structured version   Visualization version   GIF version

Theorem epirron 43215
Description: The strict order on the ordinals is irreflexive. Theorem 1.9(i) of [Schloeder] p. 1. (Contributed by RP, 15-Jan-2025.)
Assertion
Ref Expression
epirron (𝐴 ∈ On → ¬ 𝐴 E 𝐴)

Proof of Theorem epirron
StepHypRef Expression
1 epweon 7810 . . 3 E We On
2 weso 5691 . . 3 ( E We On → E Or On)
3 sopo 5627 . . 3 ( E Or On → E Po On)
41, 2, 3mp2b 10 . 2 E Po On
5 poirr 5620 . 2 (( E Po On ∧ 𝐴 ∈ On) → ¬ 𝐴 E 𝐴)
64, 5mpan 689 1 (𝐴 ∈ On → ¬ 𝐴 E 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2108   class class class wbr 5166   E cep 5598   Po wpo 5605   Or wor 5606   We wwe 5651  Oncon0 6395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-tr 5284  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-ord 6398  df-on 6399
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator