Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  epirron Structured version   Visualization version   GIF version

Theorem epirron 43227
Description: The strict order on the ordinals is irreflexive. Theorem 1.9(i) of [Schloeder] p. 1. (Contributed by RP, 15-Jan-2025.)
Assertion
Ref Expression
epirron (𝐴 ∈ On → ¬ 𝐴 E 𝐴)

Proof of Theorem epirron
StepHypRef Expression
1 epweon 7715 . . 3 E We On
2 weso 5614 . . 3 ( E We On → E Or On)
3 sopo 5550 . . 3 ( E Or On → E Po On)
41, 2, 3mp2b 10 . 2 E Po On
5 poirr 5543 . 2 (( E Po On ∧ 𝐴 ∈ On) → ¬ 𝐴 E 𝐴)
64, 5mpan 690 1 (𝐴 ∈ On → ¬ 𝐴 E 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2109   class class class wbr 5095   E cep 5522   Po wpo 5529   Or wor 5530   We wwe 5575  Oncon0 6311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-tr 5203  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-ord 6314  df-on 6315
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator