MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcophtb Structured version   Visualization version   GIF version

Theorem pcophtb 25062
Description: The path homotopy equivalence relation on two paths 𝐹, 𝐺 with the same start and end point can be written in terms of the loop 𝐹𝐺 formed by concatenating 𝐹 with the inverse of 𝐺. Thus, all the homotopy information in ph𝐽 is available if we restrict our attention to closed loops, as in the definition of the fundamental group. (Contributed by Mario Carneiro, 12-Feb-2015.)
Hypotheses
Ref Expression
pcophtb.h 𝐻 = (𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥)))
pcophtb.p 𝑃 = ((0[,]1) × {(𝐹‘0)})
pcophtb.f (𝜑𝐹 ∈ (II Cn 𝐽))
pcophtb.g (𝜑𝐺 ∈ (II Cn 𝐽))
pcophtb.0 (𝜑 → (𝐹‘0) = (𝐺‘0))
pcophtb.1 (𝜑 → (𝐹‘1) = (𝐺‘1))
Assertion
Ref Expression
pcophtb (𝜑 → ((𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃𝐹( ≃ph𝐽)𝐺))
Distinct variable groups:   𝑥,𝐺   𝑥,𝐽
Allowed substitution hints:   𝜑(𝑥)   𝑃(𝑥)   𝐹(𝑥)   𝐻(𝑥)

Proof of Theorem pcophtb
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 phtpcer 25027 . . . 4 ( ≃ph𝐽) Er (II Cn 𝐽)
21a1i 11 . . 3 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → ( ≃ph𝐽) Er (II Cn 𝐽))
3 pcophtb.1 . . . . . . . 8 (𝜑 → (𝐹‘1) = (𝐺‘1))
4 pcophtb.g . . . . . . . . . 10 (𝜑𝐺 ∈ (II Cn 𝐽))
5 pcophtb.h . . . . . . . . . . 11 𝐻 = (𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥)))
65pcorevcl 25058 . . . . . . . . . 10 (𝐺 ∈ (II Cn 𝐽) → (𝐻 ∈ (II Cn 𝐽) ∧ (𝐻‘0) = (𝐺‘1) ∧ (𝐻‘1) = (𝐺‘0)))
74, 6syl 17 . . . . . . . . 9 (𝜑 → (𝐻 ∈ (II Cn 𝐽) ∧ (𝐻‘0) = (𝐺‘1) ∧ (𝐻‘1) = (𝐺‘0)))
87simp2d 1144 . . . . . . . 8 (𝜑 → (𝐻‘0) = (𝐺‘1))
93, 8eqtr4d 2780 . . . . . . 7 (𝜑 → (𝐹‘1) = (𝐻‘0))
107simp1d 1143 . . . . . . . 8 (𝜑𝐻 ∈ (II Cn 𝐽))
1110, 4pco0 25047 . . . . . . 7 (𝜑 → ((𝐻(*𝑝𝐽)𝐺)‘0) = (𝐻‘0))
129, 11eqtr4d 2780 . . . . . 6 (𝜑 → (𝐹‘1) = ((𝐻(*𝑝𝐽)𝐺)‘0))
1312adantr 480 . . . . 5 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → (𝐹‘1) = ((𝐻(*𝑝𝐽)𝐺)‘0))
14 pcophtb.f . . . . . . 7 (𝜑𝐹 ∈ (II Cn 𝐽))
1514adantr 480 . . . . . 6 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → 𝐹 ∈ (II Cn 𝐽))
162, 15erref 8765 . . . . 5 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → 𝐹( ≃ph𝐽)𝐹)
17 eqid 2737 . . . . . . . 8 ((0[,]1) × {(𝐺‘1)}) = ((0[,]1) × {(𝐺‘1)})
185, 17pcorev 25060 . . . . . . 7 (𝐺 ∈ (II Cn 𝐽) → (𝐻(*𝑝𝐽)𝐺)( ≃ph𝐽)((0[,]1) × {(𝐺‘1)}))
194, 18syl 17 . . . . . 6 (𝜑 → (𝐻(*𝑝𝐽)𝐺)( ≃ph𝐽)((0[,]1) × {(𝐺‘1)}))
2019adantr 480 . . . . 5 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → (𝐻(*𝑝𝐽)𝐺)( ≃ph𝐽)((0[,]1) × {(𝐺‘1)}))
2113, 16, 20pcohtpy 25053 . . . 4 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → (𝐹(*𝑝𝐽)(𝐻(*𝑝𝐽)𝐺))( ≃ph𝐽)(𝐹(*𝑝𝐽)((0[,]1) × {(𝐺‘1)})))
223adantr 480 . . . . 5 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → (𝐹‘1) = (𝐺‘1))
2317pcopt2 25056 . . . . 5 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = (𝐺‘1)) → (𝐹(*𝑝𝐽)((0[,]1) × {(𝐺‘1)}))( ≃ph𝐽)𝐹)
2415, 22, 23syl2anc 584 . . . 4 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → (𝐹(*𝑝𝐽)((0[,]1) × {(𝐺‘1)}))( ≃ph𝐽)𝐹)
252, 21, 24ertrd 8761 . . 3 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → (𝐹(*𝑝𝐽)(𝐻(*𝑝𝐽)𝐺))( ≃ph𝐽)𝐹)
2610adantr 480 . . . . . 6 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → 𝐻 ∈ (II Cn 𝐽))
274adantr 480 . . . . . 6 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → 𝐺 ∈ (II Cn 𝐽))
289adantr 480 . . . . . 6 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → (𝐹‘1) = (𝐻‘0))
297simp3d 1145 . . . . . . 7 (𝜑 → (𝐻‘1) = (𝐺‘0))
3029adantr 480 . . . . . 6 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → (𝐻‘1) = (𝐺‘0))
31 eqid 2737 . . . . . 6 (𝑦 ∈ (0[,]1) ↦ if(𝑦 ≤ (1 / 2), if(𝑦 ≤ (1 / 4), (2 · 𝑦), (𝑦 + (1 / 4))), ((𝑦 / 2) + (1 / 2)))) = (𝑦 ∈ (0[,]1) ↦ if(𝑦 ≤ (1 / 2), if(𝑦 ≤ (1 / 4), (2 · 𝑦), (𝑦 + (1 / 4))), ((𝑦 / 2) + (1 / 2))))
3215, 26, 27, 28, 30, 31pcoass 25057 . . . . 5 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → ((𝐹(*𝑝𝐽)𝐻)(*𝑝𝐽)𝐺)( ≃ph𝐽)(𝐹(*𝑝𝐽)(𝐻(*𝑝𝐽)𝐺)))
3314, 10pco1 25048 . . . . . . . 8 (𝜑 → ((𝐹(*𝑝𝐽)𝐻)‘1) = (𝐻‘1))
3433, 29eqtrd 2777 . . . . . . 7 (𝜑 → ((𝐹(*𝑝𝐽)𝐻)‘1) = (𝐺‘0))
3534adantr 480 . . . . . 6 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → ((𝐹(*𝑝𝐽)𝐻)‘1) = (𝐺‘0))
36 simpr 484 . . . . . 6 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃)
372, 27erref 8765 . . . . . 6 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → 𝐺( ≃ph𝐽)𝐺)
3835, 36, 37pcohtpy 25053 . . . . 5 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → ((𝐹(*𝑝𝐽)𝐻)(*𝑝𝐽)𝐺)( ≃ph𝐽)(𝑃(*𝑝𝐽)𝐺))
392, 32, 38ertr3d 8763 . . . 4 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → (𝐹(*𝑝𝐽)(𝐻(*𝑝𝐽)𝐺))( ≃ph𝐽)(𝑃(*𝑝𝐽)𝐺))
40 pcophtb.0 . . . . . . 7 (𝜑 → (𝐹‘0) = (𝐺‘0))
4140adantr 480 . . . . . 6 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → (𝐹‘0) = (𝐺‘0))
4241eqcomd 2743 . . . . 5 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → (𝐺‘0) = (𝐹‘0))
43 pcophtb.p . . . . . 6 𝑃 = ((0[,]1) × {(𝐹‘0)})
4443pcopt 25055 . . . . 5 ((𝐺 ∈ (II Cn 𝐽) ∧ (𝐺‘0) = (𝐹‘0)) → (𝑃(*𝑝𝐽)𝐺)( ≃ph𝐽)𝐺)
4527, 42, 44syl2anc 584 . . . 4 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → (𝑃(*𝑝𝐽)𝐺)( ≃ph𝐽)𝐺)
462, 39, 45ertrd 8761 . . 3 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → (𝐹(*𝑝𝐽)(𝐻(*𝑝𝐽)𝐺))( ≃ph𝐽)𝐺)
472, 25, 46ertr3d 8763 . 2 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → 𝐹( ≃ph𝐽)𝐺)
481a1i 11 . . 3 ((𝜑𝐹( ≃ph𝐽)𝐺) → ( ≃ph𝐽) Er (II Cn 𝐽))
499adantr 480 . . . 4 ((𝜑𝐹( ≃ph𝐽)𝐺) → (𝐹‘1) = (𝐻‘0))
50 simpr 484 . . . 4 ((𝜑𝐹( ≃ph𝐽)𝐺) → 𝐹( ≃ph𝐽)𝐺)
5110adantr 480 . . . . 5 ((𝜑𝐹( ≃ph𝐽)𝐺) → 𝐻 ∈ (II Cn 𝐽))
5248, 51erref 8765 . . . 4 ((𝜑𝐹( ≃ph𝐽)𝐺) → 𝐻( ≃ph𝐽)𝐻)
5349, 50, 52pcohtpy 25053 . . 3 ((𝜑𝐹( ≃ph𝐽)𝐺) → (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)(𝐺(*𝑝𝐽)𝐻))
54 eqid 2737 . . . . . . 7 ((0[,]1) × {(𝐺‘0)}) = ((0[,]1) × {(𝐺‘0)})
555, 54pcorev2 25061 . . . . . 6 (𝐺 ∈ (II Cn 𝐽) → (𝐺(*𝑝𝐽)𝐻)( ≃ph𝐽)((0[,]1) × {(𝐺‘0)}))
564, 55syl 17 . . . . 5 (𝜑 → (𝐺(*𝑝𝐽)𝐻)( ≃ph𝐽)((0[,]1) × {(𝐺‘0)}))
5740sneqd 4638 . . . . . . 7 (𝜑 → {(𝐹‘0)} = {(𝐺‘0)})
5857xpeq2d 5715 . . . . . 6 (𝜑 → ((0[,]1) × {(𝐹‘0)}) = ((0[,]1) × {(𝐺‘0)}))
5943, 58eqtrid 2789 . . . . 5 (𝜑𝑃 = ((0[,]1) × {(𝐺‘0)}))
6056, 59breqtrrd 5171 . . . 4 (𝜑 → (𝐺(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃)
6160adantr 480 . . 3 ((𝜑𝐹( ≃ph𝐽)𝐺) → (𝐺(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃)
6248, 53, 61ertrd 8761 . 2 ((𝜑𝐹( ≃ph𝐽)𝐺) → (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃)
6347, 62impbida 801 1 (𝜑 → ((𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃𝐹( ≃ph𝐽)𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  ifcif 4525  {csn 4626   class class class wbr 5143  cmpt 5225   × cxp 5683  cfv 6561  (class class class)co 7431   Er wer 8742  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160  cle 11296  cmin 11492   / cdiv 11920  2c2 12321  4c4 12323  [,]cicc 13390   Cn ccn 23232  IIcii 24901  phcphtpc 25001  *𝑝cpco 25033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-icc 13394  df-fz 13548  df-fzo 13695  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-cn 23235  df-cnp 23236  df-tx 23570  df-hmeo 23763  df-xms 24330  df-ms 24331  df-tms 24332  df-ii 24903  df-htpy 25002  df-phtpy 25003  df-phtpc 25024  df-pco 25038
This theorem is referenced by:  sconnpht2  35243
  Copyright terms: Public domain W3C validator