MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcophtb Structured version   Visualization version   GIF version

Theorem pcophtb 24390
Description: The path homotopy equivalence relation on two paths 𝐹, 𝐺 with the same start and end point can be written in terms of the loop 𝐹𝐺 formed by concatenating 𝐹 with the inverse of 𝐺. Thus, all the homotopy information in ph𝐽 is available if we restrict our attention to closed loops, as in the definition of the fundamental group. (Contributed by Mario Carneiro, 12-Feb-2015.)
Hypotheses
Ref Expression
pcophtb.h 𝐻 = (𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥)))
pcophtb.p 𝑃 = ((0[,]1) × {(𝐹‘0)})
pcophtb.f (𝜑𝐹 ∈ (II Cn 𝐽))
pcophtb.g (𝜑𝐺 ∈ (II Cn 𝐽))
pcophtb.0 (𝜑 → (𝐹‘0) = (𝐺‘0))
pcophtb.1 (𝜑 → (𝐹‘1) = (𝐺‘1))
Assertion
Ref Expression
pcophtb (𝜑 → ((𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃𝐹( ≃ph𝐽)𝐺))
Distinct variable groups:   𝑥,𝐺   𝑥,𝐽
Allowed substitution hints:   𝜑(𝑥)   𝑃(𝑥)   𝐹(𝑥)   𝐻(𝑥)

Proof of Theorem pcophtb
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 phtpcer 24356 . . . 4 ( ≃ph𝐽) Er (II Cn 𝐽)
21a1i 11 . . 3 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → ( ≃ph𝐽) Er (II Cn 𝐽))
3 pcophtb.1 . . . . . . . 8 (𝜑 → (𝐹‘1) = (𝐺‘1))
4 pcophtb.g . . . . . . . . . 10 (𝜑𝐺 ∈ (II Cn 𝐽))
5 pcophtb.h . . . . . . . . . . 11 𝐻 = (𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥)))
65pcorevcl 24386 . . . . . . . . . 10 (𝐺 ∈ (II Cn 𝐽) → (𝐻 ∈ (II Cn 𝐽) ∧ (𝐻‘0) = (𝐺‘1) ∧ (𝐻‘1) = (𝐺‘0)))
74, 6syl 17 . . . . . . . . 9 (𝜑 → (𝐻 ∈ (II Cn 𝐽) ∧ (𝐻‘0) = (𝐺‘1) ∧ (𝐻‘1) = (𝐺‘0)))
87simp2d 1143 . . . . . . . 8 (𝜑 → (𝐻‘0) = (𝐺‘1))
93, 8eqtr4d 2779 . . . . . . 7 (𝜑 → (𝐹‘1) = (𝐻‘0))
107simp1d 1142 . . . . . . . 8 (𝜑𝐻 ∈ (II Cn 𝐽))
1110, 4pco0 24375 . . . . . . 7 (𝜑 → ((𝐻(*𝑝𝐽)𝐺)‘0) = (𝐻‘0))
129, 11eqtr4d 2779 . . . . . 6 (𝜑 → (𝐹‘1) = ((𝐻(*𝑝𝐽)𝐺)‘0))
1312adantr 481 . . . . 5 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → (𝐹‘1) = ((𝐻(*𝑝𝐽)𝐺)‘0))
14 pcophtb.f . . . . . . 7 (𝜑𝐹 ∈ (II Cn 𝐽))
1514adantr 481 . . . . . 6 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → 𝐹 ∈ (II Cn 𝐽))
162, 15erref 8667 . . . . 5 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → 𝐹( ≃ph𝐽)𝐹)
17 eqid 2736 . . . . . . . 8 ((0[,]1) × {(𝐺‘1)}) = ((0[,]1) × {(𝐺‘1)})
185, 17pcorev 24388 . . . . . . 7 (𝐺 ∈ (II Cn 𝐽) → (𝐻(*𝑝𝐽)𝐺)( ≃ph𝐽)((0[,]1) × {(𝐺‘1)}))
194, 18syl 17 . . . . . 6 (𝜑 → (𝐻(*𝑝𝐽)𝐺)( ≃ph𝐽)((0[,]1) × {(𝐺‘1)}))
2019adantr 481 . . . . 5 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → (𝐻(*𝑝𝐽)𝐺)( ≃ph𝐽)((0[,]1) × {(𝐺‘1)}))
2113, 16, 20pcohtpy 24381 . . . 4 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → (𝐹(*𝑝𝐽)(𝐻(*𝑝𝐽)𝐺))( ≃ph𝐽)(𝐹(*𝑝𝐽)((0[,]1) × {(𝐺‘1)})))
223adantr 481 . . . . 5 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → (𝐹‘1) = (𝐺‘1))
2317pcopt2 24384 . . . . 5 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = (𝐺‘1)) → (𝐹(*𝑝𝐽)((0[,]1) × {(𝐺‘1)}))( ≃ph𝐽)𝐹)
2415, 22, 23syl2anc 584 . . . 4 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → (𝐹(*𝑝𝐽)((0[,]1) × {(𝐺‘1)}))( ≃ph𝐽)𝐹)
252, 21, 24ertrd 8663 . . 3 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → (𝐹(*𝑝𝐽)(𝐻(*𝑝𝐽)𝐺))( ≃ph𝐽)𝐹)
2610adantr 481 . . . . . 6 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → 𝐻 ∈ (II Cn 𝐽))
274adantr 481 . . . . . 6 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → 𝐺 ∈ (II Cn 𝐽))
289adantr 481 . . . . . 6 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → (𝐹‘1) = (𝐻‘0))
297simp3d 1144 . . . . . . 7 (𝜑 → (𝐻‘1) = (𝐺‘0))
3029adantr 481 . . . . . 6 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → (𝐻‘1) = (𝐺‘0))
31 eqid 2736 . . . . . 6 (𝑦 ∈ (0[,]1) ↦ if(𝑦 ≤ (1 / 2), if(𝑦 ≤ (1 / 4), (2 · 𝑦), (𝑦 + (1 / 4))), ((𝑦 / 2) + (1 / 2)))) = (𝑦 ∈ (0[,]1) ↦ if(𝑦 ≤ (1 / 2), if(𝑦 ≤ (1 / 4), (2 · 𝑦), (𝑦 + (1 / 4))), ((𝑦 / 2) + (1 / 2))))
3215, 26, 27, 28, 30, 31pcoass 24385 . . . . 5 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → ((𝐹(*𝑝𝐽)𝐻)(*𝑝𝐽)𝐺)( ≃ph𝐽)(𝐹(*𝑝𝐽)(𝐻(*𝑝𝐽)𝐺)))
3314, 10pco1 24376 . . . . . . . 8 (𝜑 → ((𝐹(*𝑝𝐽)𝐻)‘1) = (𝐻‘1))
3433, 29eqtrd 2776 . . . . . . 7 (𝜑 → ((𝐹(*𝑝𝐽)𝐻)‘1) = (𝐺‘0))
3534adantr 481 . . . . . 6 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → ((𝐹(*𝑝𝐽)𝐻)‘1) = (𝐺‘0))
36 simpr 485 . . . . . 6 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃)
372, 27erref 8667 . . . . . 6 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → 𝐺( ≃ph𝐽)𝐺)
3835, 36, 37pcohtpy 24381 . . . . 5 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → ((𝐹(*𝑝𝐽)𝐻)(*𝑝𝐽)𝐺)( ≃ph𝐽)(𝑃(*𝑝𝐽)𝐺))
392, 32, 38ertr3d 8665 . . . 4 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → (𝐹(*𝑝𝐽)(𝐻(*𝑝𝐽)𝐺))( ≃ph𝐽)(𝑃(*𝑝𝐽)𝐺))
40 pcophtb.0 . . . . . . 7 (𝜑 → (𝐹‘0) = (𝐺‘0))
4140adantr 481 . . . . . 6 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → (𝐹‘0) = (𝐺‘0))
4241eqcomd 2742 . . . . 5 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → (𝐺‘0) = (𝐹‘0))
43 pcophtb.p . . . . . 6 𝑃 = ((0[,]1) × {(𝐹‘0)})
4443pcopt 24383 . . . . 5 ((𝐺 ∈ (II Cn 𝐽) ∧ (𝐺‘0) = (𝐹‘0)) → (𝑃(*𝑝𝐽)𝐺)( ≃ph𝐽)𝐺)
4527, 42, 44syl2anc 584 . . . 4 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → (𝑃(*𝑝𝐽)𝐺)( ≃ph𝐽)𝐺)
462, 39, 45ertrd 8663 . . 3 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → (𝐹(*𝑝𝐽)(𝐻(*𝑝𝐽)𝐺))( ≃ph𝐽)𝐺)
472, 25, 46ertr3d 8665 . 2 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → 𝐹( ≃ph𝐽)𝐺)
481a1i 11 . . 3 ((𝜑𝐹( ≃ph𝐽)𝐺) → ( ≃ph𝐽) Er (II Cn 𝐽))
499adantr 481 . . . 4 ((𝜑𝐹( ≃ph𝐽)𝐺) → (𝐹‘1) = (𝐻‘0))
50 simpr 485 . . . 4 ((𝜑𝐹( ≃ph𝐽)𝐺) → 𝐹( ≃ph𝐽)𝐺)
5110adantr 481 . . . . 5 ((𝜑𝐹( ≃ph𝐽)𝐺) → 𝐻 ∈ (II Cn 𝐽))
5248, 51erref 8667 . . . 4 ((𝜑𝐹( ≃ph𝐽)𝐺) → 𝐻( ≃ph𝐽)𝐻)
5349, 50, 52pcohtpy 24381 . . 3 ((𝜑𝐹( ≃ph𝐽)𝐺) → (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)(𝐺(*𝑝𝐽)𝐻))
54 eqid 2736 . . . . . . 7 ((0[,]1) × {(𝐺‘0)}) = ((0[,]1) × {(𝐺‘0)})
555, 54pcorev2 24389 . . . . . 6 (𝐺 ∈ (II Cn 𝐽) → (𝐺(*𝑝𝐽)𝐻)( ≃ph𝐽)((0[,]1) × {(𝐺‘0)}))
564, 55syl 17 . . . . 5 (𝜑 → (𝐺(*𝑝𝐽)𝐻)( ≃ph𝐽)((0[,]1) × {(𝐺‘0)}))
5740sneqd 4598 . . . . . . 7 (𝜑 → {(𝐹‘0)} = {(𝐺‘0)})
5857xpeq2d 5663 . . . . . 6 (𝜑 → ((0[,]1) × {(𝐹‘0)}) = ((0[,]1) × {(𝐺‘0)}))
5943, 58eqtrid 2788 . . . . 5 (𝜑𝑃 = ((0[,]1) × {(𝐺‘0)}))
6056, 59breqtrrd 5133 . . . 4 (𝜑 → (𝐺(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃)
6160adantr 481 . . 3 ((𝜑𝐹( ≃ph𝐽)𝐺) → (𝐺(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃)
6248, 53, 61ertrd 8663 . 2 ((𝜑𝐹( ≃ph𝐽)𝐺) → (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃)
6347, 62impbida 799 1 (𝜑 → ((𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃𝐹( ≃ph𝐽)𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  ifcif 4486  {csn 4586   class class class wbr 5105  cmpt 5188   × cxp 5631  cfv 6496  (class class class)co 7356   Er wer 8644  0cc0 11050  1c1 11051   + caddc 11053   · cmul 11055  cle 11189  cmin 11384   / cdiv 11811  2c2 12207  4c4 12209  [,]cicc 13266   Cn ccn 22573  IIcii 24236  phcphtpc 24330  *𝑝cpco 24361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7671  ax-cnex 11106  ax-resscn 11107  ax-1cn 11108  ax-icn 11109  ax-addcl 11110  ax-addrcl 11111  ax-mulcl 11112  ax-mulrcl 11113  ax-mulcom 11114  ax-addass 11115  ax-mulass 11116  ax-distr 11117  ax-i2m1 11118  ax-1ne0 11119  ax-1rid 11120  ax-rnegex 11121  ax-rrecex 11122  ax-cnre 11123  ax-pre-lttri 11124  ax-pre-lttrn 11125  ax-pre-ltadd 11126  ax-pre-mulgt0 11127  ax-pre-sup 11128  ax-addf 11129  ax-mulf 11130
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7312  df-ov 7359  df-oprab 7360  df-mpo 7361  df-of 7616  df-om 7802  df-1st 7920  df-2nd 7921  df-supp 8092  df-frecs 8211  df-wrecs 8242  df-recs 8316  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8647  df-map 8766  df-ixp 8835  df-en 8883  df-dom 8884  df-sdom 8885  df-fin 8886  df-fsupp 9305  df-fi 9346  df-sup 9377  df-inf 9378  df-oi 9445  df-card 9874  df-pnf 11190  df-mnf 11191  df-xr 11192  df-ltxr 11193  df-le 11194  df-sub 11386  df-neg 11387  df-div 11812  df-nn 12153  df-2 12215  df-3 12216  df-4 12217  df-5 12218  df-6 12219  df-7 12220  df-8 12221  df-9 12222  df-n0 12413  df-z 12499  df-dec 12618  df-uz 12763  df-q 12873  df-rp 12915  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-ioo 13267  df-icc 13270  df-fz 13424  df-fzo 13567  df-seq 13906  df-exp 13967  df-hash 14230  df-cj 14983  df-re 14984  df-im 14985  df-sqrt 15119  df-abs 15120  df-struct 17018  df-sets 17035  df-slot 17053  df-ndx 17065  df-base 17083  df-ress 17112  df-plusg 17145  df-mulr 17146  df-starv 17147  df-sca 17148  df-vsca 17149  df-ip 17150  df-tset 17151  df-ple 17152  df-ds 17154  df-unif 17155  df-hom 17156  df-cco 17157  df-rest 17303  df-topn 17304  df-0g 17322  df-gsum 17323  df-topgen 17324  df-pt 17325  df-prds 17328  df-xrs 17383  df-qtop 17388  df-imas 17389  df-xps 17391  df-mre 17465  df-mrc 17466  df-acs 17468  df-mgm 18496  df-sgrp 18545  df-mnd 18556  df-submnd 18601  df-mulg 18871  df-cntz 19095  df-cmn 19562  df-psmet 20786  df-xmet 20787  df-met 20788  df-bl 20789  df-mopn 20790  df-cnfld 20795  df-top 22241  df-topon 22258  df-topsp 22280  df-bases 22294  df-cld 22368  df-cn 22576  df-cnp 22577  df-tx 22911  df-hmeo 23104  df-xms 23671  df-ms 23672  df-tms 23673  df-ii 24238  df-htpy 24331  df-phtpy 24332  df-phtpc 24353  df-pco 24366
This theorem is referenced by:  sconnpht2  33823
  Copyright terms: Public domain W3C validator