MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcophtb Structured version   Visualization version   GIF version

Theorem pcophtb 25081
Description: The path homotopy equivalence relation on two paths 𝐹, 𝐺 with the same start and end point can be written in terms of the loop 𝐹𝐺 formed by concatenating 𝐹 with the inverse of 𝐺. Thus, all the homotopy information in ph𝐽 is available if we restrict our attention to closed loops, as in the definition of the fundamental group. (Contributed by Mario Carneiro, 12-Feb-2015.)
Hypotheses
Ref Expression
pcophtb.h 𝐻 = (𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥)))
pcophtb.p 𝑃 = ((0[,]1) × {(𝐹‘0)})
pcophtb.f (𝜑𝐹 ∈ (II Cn 𝐽))
pcophtb.g (𝜑𝐺 ∈ (II Cn 𝐽))
pcophtb.0 (𝜑 → (𝐹‘0) = (𝐺‘0))
pcophtb.1 (𝜑 → (𝐹‘1) = (𝐺‘1))
Assertion
Ref Expression
pcophtb (𝜑 → ((𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃𝐹( ≃ph𝐽)𝐺))
Distinct variable groups:   𝑥,𝐺   𝑥,𝐽
Allowed substitution hints:   𝜑(𝑥)   𝑃(𝑥)   𝐹(𝑥)   𝐻(𝑥)

Proof of Theorem pcophtb
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 phtpcer 25046 . . . 4 ( ≃ph𝐽) Er (II Cn 𝐽)
21a1i 11 . . 3 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → ( ≃ph𝐽) Er (II Cn 𝐽))
3 pcophtb.1 . . . . . . . 8 (𝜑 → (𝐹‘1) = (𝐺‘1))
4 pcophtb.g . . . . . . . . . 10 (𝜑𝐺 ∈ (II Cn 𝐽))
5 pcophtb.h . . . . . . . . . . 11 𝐻 = (𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥)))
65pcorevcl 25077 . . . . . . . . . 10 (𝐺 ∈ (II Cn 𝐽) → (𝐻 ∈ (II Cn 𝐽) ∧ (𝐻‘0) = (𝐺‘1) ∧ (𝐻‘1) = (𝐺‘0)))
74, 6syl 17 . . . . . . . . 9 (𝜑 → (𝐻 ∈ (II Cn 𝐽) ∧ (𝐻‘0) = (𝐺‘1) ∧ (𝐻‘1) = (𝐺‘0)))
87simp2d 1143 . . . . . . . 8 (𝜑 → (𝐻‘0) = (𝐺‘1))
93, 8eqtr4d 2783 . . . . . . 7 (𝜑 → (𝐹‘1) = (𝐻‘0))
107simp1d 1142 . . . . . . . 8 (𝜑𝐻 ∈ (II Cn 𝐽))
1110, 4pco0 25066 . . . . . . 7 (𝜑 → ((𝐻(*𝑝𝐽)𝐺)‘0) = (𝐻‘0))
129, 11eqtr4d 2783 . . . . . 6 (𝜑 → (𝐹‘1) = ((𝐻(*𝑝𝐽)𝐺)‘0))
1312adantr 480 . . . . 5 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → (𝐹‘1) = ((𝐻(*𝑝𝐽)𝐺)‘0))
14 pcophtb.f . . . . . . 7 (𝜑𝐹 ∈ (II Cn 𝐽))
1514adantr 480 . . . . . 6 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → 𝐹 ∈ (II Cn 𝐽))
162, 15erref 8783 . . . . 5 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → 𝐹( ≃ph𝐽)𝐹)
17 eqid 2740 . . . . . . . 8 ((0[,]1) × {(𝐺‘1)}) = ((0[,]1) × {(𝐺‘1)})
185, 17pcorev 25079 . . . . . . 7 (𝐺 ∈ (II Cn 𝐽) → (𝐻(*𝑝𝐽)𝐺)( ≃ph𝐽)((0[,]1) × {(𝐺‘1)}))
194, 18syl 17 . . . . . 6 (𝜑 → (𝐻(*𝑝𝐽)𝐺)( ≃ph𝐽)((0[,]1) × {(𝐺‘1)}))
2019adantr 480 . . . . 5 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → (𝐻(*𝑝𝐽)𝐺)( ≃ph𝐽)((0[,]1) × {(𝐺‘1)}))
2113, 16, 20pcohtpy 25072 . . . 4 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → (𝐹(*𝑝𝐽)(𝐻(*𝑝𝐽)𝐺))( ≃ph𝐽)(𝐹(*𝑝𝐽)((0[,]1) × {(𝐺‘1)})))
223adantr 480 . . . . 5 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → (𝐹‘1) = (𝐺‘1))
2317pcopt2 25075 . . . . 5 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = (𝐺‘1)) → (𝐹(*𝑝𝐽)((0[,]1) × {(𝐺‘1)}))( ≃ph𝐽)𝐹)
2415, 22, 23syl2anc 583 . . . 4 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → (𝐹(*𝑝𝐽)((0[,]1) × {(𝐺‘1)}))( ≃ph𝐽)𝐹)
252, 21, 24ertrd 8779 . . 3 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → (𝐹(*𝑝𝐽)(𝐻(*𝑝𝐽)𝐺))( ≃ph𝐽)𝐹)
2610adantr 480 . . . . . 6 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → 𝐻 ∈ (II Cn 𝐽))
274adantr 480 . . . . . 6 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → 𝐺 ∈ (II Cn 𝐽))
289adantr 480 . . . . . 6 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → (𝐹‘1) = (𝐻‘0))
297simp3d 1144 . . . . . . 7 (𝜑 → (𝐻‘1) = (𝐺‘0))
3029adantr 480 . . . . . 6 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → (𝐻‘1) = (𝐺‘0))
31 eqid 2740 . . . . . 6 (𝑦 ∈ (0[,]1) ↦ if(𝑦 ≤ (1 / 2), if(𝑦 ≤ (1 / 4), (2 · 𝑦), (𝑦 + (1 / 4))), ((𝑦 / 2) + (1 / 2)))) = (𝑦 ∈ (0[,]1) ↦ if(𝑦 ≤ (1 / 2), if(𝑦 ≤ (1 / 4), (2 · 𝑦), (𝑦 + (1 / 4))), ((𝑦 / 2) + (1 / 2))))
3215, 26, 27, 28, 30, 31pcoass 25076 . . . . 5 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → ((𝐹(*𝑝𝐽)𝐻)(*𝑝𝐽)𝐺)( ≃ph𝐽)(𝐹(*𝑝𝐽)(𝐻(*𝑝𝐽)𝐺)))
3314, 10pco1 25067 . . . . . . . 8 (𝜑 → ((𝐹(*𝑝𝐽)𝐻)‘1) = (𝐻‘1))
3433, 29eqtrd 2780 . . . . . . 7 (𝜑 → ((𝐹(*𝑝𝐽)𝐻)‘1) = (𝐺‘0))
3534adantr 480 . . . . . 6 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → ((𝐹(*𝑝𝐽)𝐻)‘1) = (𝐺‘0))
36 simpr 484 . . . . . 6 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃)
372, 27erref 8783 . . . . . 6 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → 𝐺( ≃ph𝐽)𝐺)
3835, 36, 37pcohtpy 25072 . . . . 5 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → ((𝐹(*𝑝𝐽)𝐻)(*𝑝𝐽)𝐺)( ≃ph𝐽)(𝑃(*𝑝𝐽)𝐺))
392, 32, 38ertr3d 8781 . . . 4 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → (𝐹(*𝑝𝐽)(𝐻(*𝑝𝐽)𝐺))( ≃ph𝐽)(𝑃(*𝑝𝐽)𝐺))
40 pcophtb.0 . . . . . . 7 (𝜑 → (𝐹‘0) = (𝐺‘0))
4140adantr 480 . . . . . 6 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → (𝐹‘0) = (𝐺‘0))
4241eqcomd 2746 . . . . 5 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → (𝐺‘0) = (𝐹‘0))
43 pcophtb.p . . . . . 6 𝑃 = ((0[,]1) × {(𝐹‘0)})
4443pcopt 25074 . . . . 5 ((𝐺 ∈ (II Cn 𝐽) ∧ (𝐺‘0) = (𝐹‘0)) → (𝑃(*𝑝𝐽)𝐺)( ≃ph𝐽)𝐺)
4527, 42, 44syl2anc 583 . . . 4 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → (𝑃(*𝑝𝐽)𝐺)( ≃ph𝐽)𝐺)
462, 39, 45ertrd 8779 . . 3 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → (𝐹(*𝑝𝐽)(𝐻(*𝑝𝐽)𝐺))( ≃ph𝐽)𝐺)
472, 25, 46ertr3d 8781 . 2 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → 𝐹( ≃ph𝐽)𝐺)
481a1i 11 . . 3 ((𝜑𝐹( ≃ph𝐽)𝐺) → ( ≃ph𝐽) Er (II Cn 𝐽))
499adantr 480 . . . 4 ((𝜑𝐹( ≃ph𝐽)𝐺) → (𝐹‘1) = (𝐻‘0))
50 simpr 484 . . . 4 ((𝜑𝐹( ≃ph𝐽)𝐺) → 𝐹( ≃ph𝐽)𝐺)
5110adantr 480 . . . . 5 ((𝜑𝐹( ≃ph𝐽)𝐺) → 𝐻 ∈ (II Cn 𝐽))
5248, 51erref 8783 . . . 4 ((𝜑𝐹( ≃ph𝐽)𝐺) → 𝐻( ≃ph𝐽)𝐻)
5349, 50, 52pcohtpy 25072 . . 3 ((𝜑𝐹( ≃ph𝐽)𝐺) → (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)(𝐺(*𝑝𝐽)𝐻))
54 eqid 2740 . . . . . . 7 ((0[,]1) × {(𝐺‘0)}) = ((0[,]1) × {(𝐺‘0)})
555, 54pcorev2 25080 . . . . . 6 (𝐺 ∈ (II Cn 𝐽) → (𝐺(*𝑝𝐽)𝐻)( ≃ph𝐽)((0[,]1) × {(𝐺‘0)}))
564, 55syl 17 . . . . 5 (𝜑 → (𝐺(*𝑝𝐽)𝐻)( ≃ph𝐽)((0[,]1) × {(𝐺‘0)}))
5740sneqd 4660 . . . . . . 7 (𝜑 → {(𝐹‘0)} = {(𝐺‘0)})
5857xpeq2d 5730 . . . . . 6 (𝜑 → ((0[,]1) × {(𝐹‘0)}) = ((0[,]1) × {(𝐺‘0)}))
5943, 58eqtrid 2792 . . . . 5 (𝜑𝑃 = ((0[,]1) × {(𝐺‘0)}))
6056, 59breqtrrd 5194 . . . 4 (𝜑 → (𝐺(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃)
6160adantr 480 . . 3 ((𝜑𝐹( ≃ph𝐽)𝐺) → (𝐺(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃)
6248, 53, 61ertrd 8779 . 2 ((𝜑𝐹( ≃ph𝐽)𝐺) → (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃)
6347, 62impbida 800 1 (𝜑 → ((𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃𝐹( ≃ph𝐽)𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  ifcif 4548  {csn 4648   class class class wbr 5166  cmpt 5249   × cxp 5698  cfv 6573  (class class class)co 7448   Er wer 8760  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  cle 11325  cmin 11520   / cdiv 11947  2c2 12348  4c4 12350  [,]cicc 13410   Cn ccn 23253  IIcii 24920  phcphtpc 25020  *𝑝cpco 25052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-icc 13414  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-cn 23256  df-cnp 23257  df-tx 23591  df-hmeo 23784  df-xms 24351  df-ms 24352  df-tms 24353  df-ii 24922  df-htpy 25021  df-phtpy 25022  df-phtpc 25043  df-pco 25057
This theorem is referenced by:  sconnpht2  35206
  Copyright terms: Public domain W3C validator