MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcophtb Structured version   Visualization version   GIF version

Theorem pcophtb 23634
Description: The path homotopy equivalence relation on two paths 𝐹, 𝐺 with the same start and end point can be written in terms of the loop 𝐹𝐺 formed by concatenating 𝐹 with the inverse of 𝐺. Thus, all the homotopy information in ph𝐽 is available if we restrict our attention to closed loops, as in the definition of the fundamental group. (Contributed by Mario Carneiro, 12-Feb-2015.)
Hypotheses
Ref Expression
pcophtb.h 𝐻 = (𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥)))
pcophtb.p 𝑃 = ((0[,]1) × {(𝐹‘0)})
pcophtb.f (𝜑𝐹 ∈ (II Cn 𝐽))
pcophtb.g (𝜑𝐺 ∈ (II Cn 𝐽))
pcophtb.0 (𝜑 → (𝐹‘0) = (𝐺‘0))
pcophtb.1 (𝜑 → (𝐹‘1) = (𝐺‘1))
Assertion
Ref Expression
pcophtb (𝜑 → ((𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃𝐹( ≃ph𝐽)𝐺))
Distinct variable groups:   𝑥,𝐺   𝑥,𝐽
Allowed substitution hints:   𝜑(𝑥)   𝑃(𝑥)   𝐹(𝑥)   𝐻(𝑥)

Proof of Theorem pcophtb
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 phtpcer 23600 . . . 4 ( ≃ph𝐽) Er (II Cn 𝐽)
21a1i 11 . . 3 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → ( ≃ph𝐽) Er (II Cn 𝐽))
3 pcophtb.1 . . . . . . . 8 (𝜑 → (𝐹‘1) = (𝐺‘1))
4 pcophtb.g . . . . . . . . . 10 (𝜑𝐺 ∈ (II Cn 𝐽))
5 pcophtb.h . . . . . . . . . . 11 𝐻 = (𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥)))
65pcorevcl 23630 . . . . . . . . . 10 (𝐺 ∈ (II Cn 𝐽) → (𝐻 ∈ (II Cn 𝐽) ∧ (𝐻‘0) = (𝐺‘1) ∧ (𝐻‘1) = (𝐺‘0)))
74, 6syl 17 . . . . . . . . 9 (𝜑 → (𝐻 ∈ (II Cn 𝐽) ∧ (𝐻‘0) = (𝐺‘1) ∧ (𝐻‘1) = (𝐺‘0)))
87simp2d 1140 . . . . . . . 8 (𝜑 → (𝐻‘0) = (𝐺‘1))
93, 8eqtr4d 2836 . . . . . . 7 (𝜑 → (𝐹‘1) = (𝐻‘0))
107simp1d 1139 . . . . . . . 8 (𝜑𝐻 ∈ (II Cn 𝐽))
1110, 4pco0 23619 . . . . . . 7 (𝜑 → ((𝐻(*𝑝𝐽)𝐺)‘0) = (𝐻‘0))
129, 11eqtr4d 2836 . . . . . 6 (𝜑 → (𝐹‘1) = ((𝐻(*𝑝𝐽)𝐺)‘0))
1312adantr 484 . . . . 5 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → (𝐹‘1) = ((𝐻(*𝑝𝐽)𝐺)‘0))
14 pcophtb.f . . . . . . 7 (𝜑𝐹 ∈ (II Cn 𝐽))
1514adantr 484 . . . . . 6 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → 𝐹 ∈ (II Cn 𝐽))
162, 15erref 8292 . . . . 5 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → 𝐹( ≃ph𝐽)𝐹)
17 eqid 2798 . . . . . . . 8 ((0[,]1) × {(𝐺‘1)}) = ((0[,]1) × {(𝐺‘1)})
185, 17pcorev 23632 . . . . . . 7 (𝐺 ∈ (II Cn 𝐽) → (𝐻(*𝑝𝐽)𝐺)( ≃ph𝐽)((0[,]1) × {(𝐺‘1)}))
194, 18syl 17 . . . . . 6 (𝜑 → (𝐻(*𝑝𝐽)𝐺)( ≃ph𝐽)((0[,]1) × {(𝐺‘1)}))
2019adantr 484 . . . . 5 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → (𝐻(*𝑝𝐽)𝐺)( ≃ph𝐽)((0[,]1) × {(𝐺‘1)}))
2113, 16, 20pcohtpy 23625 . . . 4 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → (𝐹(*𝑝𝐽)(𝐻(*𝑝𝐽)𝐺))( ≃ph𝐽)(𝐹(*𝑝𝐽)((0[,]1) × {(𝐺‘1)})))
223adantr 484 . . . . 5 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → (𝐹‘1) = (𝐺‘1))
2317pcopt2 23628 . . . . 5 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = (𝐺‘1)) → (𝐹(*𝑝𝐽)((0[,]1) × {(𝐺‘1)}))( ≃ph𝐽)𝐹)
2415, 22, 23syl2anc 587 . . . 4 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → (𝐹(*𝑝𝐽)((0[,]1) × {(𝐺‘1)}))( ≃ph𝐽)𝐹)
252, 21, 24ertrd 8288 . . 3 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → (𝐹(*𝑝𝐽)(𝐻(*𝑝𝐽)𝐺))( ≃ph𝐽)𝐹)
2610adantr 484 . . . . . 6 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → 𝐻 ∈ (II Cn 𝐽))
274adantr 484 . . . . . 6 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → 𝐺 ∈ (II Cn 𝐽))
289adantr 484 . . . . . 6 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → (𝐹‘1) = (𝐻‘0))
297simp3d 1141 . . . . . . 7 (𝜑 → (𝐻‘1) = (𝐺‘0))
3029adantr 484 . . . . . 6 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → (𝐻‘1) = (𝐺‘0))
31 eqid 2798 . . . . . 6 (𝑦 ∈ (0[,]1) ↦ if(𝑦 ≤ (1 / 2), if(𝑦 ≤ (1 / 4), (2 · 𝑦), (𝑦 + (1 / 4))), ((𝑦 / 2) + (1 / 2)))) = (𝑦 ∈ (0[,]1) ↦ if(𝑦 ≤ (1 / 2), if(𝑦 ≤ (1 / 4), (2 · 𝑦), (𝑦 + (1 / 4))), ((𝑦 / 2) + (1 / 2))))
3215, 26, 27, 28, 30, 31pcoass 23629 . . . . 5 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → ((𝐹(*𝑝𝐽)𝐻)(*𝑝𝐽)𝐺)( ≃ph𝐽)(𝐹(*𝑝𝐽)(𝐻(*𝑝𝐽)𝐺)))
3314, 10pco1 23620 . . . . . . . 8 (𝜑 → ((𝐹(*𝑝𝐽)𝐻)‘1) = (𝐻‘1))
3433, 29eqtrd 2833 . . . . . . 7 (𝜑 → ((𝐹(*𝑝𝐽)𝐻)‘1) = (𝐺‘0))
3534adantr 484 . . . . . 6 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → ((𝐹(*𝑝𝐽)𝐻)‘1) = (𝐺‘0))
36 simpr 488 . . . . . 6 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃)
372, 27erref 8292 . . . . . 6 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → 𝐺( ≃ph𝐽)𝐺)
3835, 36, 37pcohtpy 23625 . . . . 5 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → ((𝐹(*𝑝𝐽)𝐻)(*𝑝𝐽)𝐺)( ≃ph𝐽)(𝑃(*𝑝𝐽)𝐺))
392, 32, 38ertr3d 8290 . . . 4 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → (𝐹(*𝑝𝐽)(𝐻(*𝑝𝐽)𝐺))( ≃ph𝐽)(𝑃(*𝑝𝐽)𝐺))
40 pcophtb.0 . . . . . . 7 (𝜑 → (𝐹‘0) = (𝐺‘0))
4140adantr 484 . . . . . 6 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → (𝐹‘0) = (𝐺‘0))
4241eqcomd 2804 . . . . 5 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → (𝐺‘0) = (𝐹‘0))
43 pcophtb.p . . . . . 6 𝑃 = ((0[,]1) × {(𝐹‘0)})
4443pcopt 23627 . . . . 5 ((𝐺 ∈ (II Cn 𝐽) ∧ (𝐺‘0) = (𝐹‘0)) → (𝑃(*𝑝𝐽)𝐺)( ≃ph𝐽)𝐺)
4527, 42, 44syl2anc 587 . . . 4 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → (𝑃(*𝑝𝐽)𝐺)( ≃ph𝐽)𝐺)
462, 39, 45ertrd 8288 . . 3 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → (𝐹(*𝑝𝐽)(𝐻(*𝑝𝐽)𝐺))( ≃ph𝐽)𝐺)
472, 25, 46ertr3d 8290 . 2 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → 𝐹( ≃ph𝐽)𝐺)
481a1i 11 . . 3 ((𝜑𝐹( ≃ph𝐽)𝐺) → ( ≃ph𝐽) Er (II Cn 𝐽))
499adantr 484 . . . 4 ((𝜑𝐹( ≃ph𝐽)𝐺) → (𝐹‘1) = (𝐻‘0))
50 simpr 488 . . . 4 ((𝜑𝐹( ≃ph𝐽)𝐺) → 𝐹( ≃ph𝐽)𝐺)
5110adantr 484 . . . . 5 ((𝜑𝐹( ≃ph𝐽)𝐺) → 𝐻 ∈ (II Cn 𝐽))
5248, 51erref 8292 . . . 4 ((𝜑𝐹( ≃ph𝐽)𝐺) → 𝐻( ≃ph𝐽)𝐻)
5349, 50, 52pcohtpy 23625 . . 3 ((𝜑𝐹( ≃ph𝐽)𝐺) → (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)(𝐺(*𝑝𝐽)𝐻))
54 eqid 2798 . . . . . . 7 ((0[,]1) × {(𝐺‘0)}) = ((0[,]1) × {(𝐺‘0)})
555, 54pcorev2 23633 . . . . . 6 (𝐺 ∈ (II Cn 𝐽) → (𝐺(*𝑝𝐽)𝐻)( ≃ph𝐽)((0[,]1) × {(𝐺‘0)}))
564, 55syl 17 . . . . 5 (𝜑 → (𝐺(*𝑝𝐽)𝐻)( ≃ph𝐽)((0[,]1) × {(𝐺‘0)}))
5740sneqd 4537 . . . . . . 7 (𝜑 → {(𝐹‘0)} = {(𝐺‘0)})
5857xpeq2d 5549 . . . . . 6 (𝜑 → ((0[,]1) × {(𝐹‘0)}) = ((0[,]1) × {(𝐺‘0)}))
5943, 58syl5eq 2845 . . . . 5 (𝜑𝑃 = ((0[,]1) × {(𝐺‘0)}))
6056, 59breqtrrd 5058 . . . 4 (𝜑 → (𝐺(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃)
6160adantr 484 . . 3 ((𝜑𝐹( ≃ph𝐽)𝐺) → (𝐺(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃)
6248, 53, 61ertrd 8288 . 2 ((𝜑𝐹( ≃ph𝐽)𝐺) → (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃)
6347, 62impbida 800 1 (𝜑 → ((𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃𝐹( ≃ph𝐽)𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  ifcif 4425  {csn 4525   class class class wbr 5030  cmpt 5110   × cxp 5517  cfv 6324  (class class class)co 7135   Er wer 8269  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531  cle 10665  cmin 10859   / cdiv 11286  2c2 11680  4c4 11682  [,]cicc 12729   Cn ccn 21829  IIcii 23480  phcphtpc 23574  *𝑝cpco 23605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-icc 12733  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-cn 21832  df-cnp 21833  df-tx 22167  df-hmeo 22360  df-xms 22927  df-ms 22928  df-tms 22929  df-ii 23482  df-htpy 23575  df-phtpy 23576  df-phtpc 23597  df-pco 23610
This theorem is referenced by:  sconnpht2  32598
  Copyright terms: Public domain W3C validator