Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcophtb Structured version   Visualization version   GIF version

Theorem pcophtb 23640
 Description: The path homotopy equivalence relation on two paths 𝐹, 𝐺 with the same start and end point can be written in terms of the loop 𝐹 − 𝐺 formed by concatenating 𝐹 with the inverse of 𝐺. Thus, all the homotopy information in ≃ph‘𝐽 is available if we restrict our attention to closed loops, as in the definition of the fundamental group. (Contributed by Mario Carneiro, 12-Feb-2015.)
Hypotheses
Ref Expression
pcophtb.h 𝐻 = (𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥)))
pcophtb.p 𝑃 = ((0[,]1) × {(𝐹‘0)})
pcophtb.f (𝜑𝐹 ∈ (II Cn 𝐽))
pcophtb.g (𝜑𝐺 ∈ (II Cn 𝐽))
pcophtb.0 (𝜑 → (𝐹‘0) = (𝐺‘0))
pcophtb.1 (𝜑 → (𝐹‘1) = (𝐺‘1))
Assertion
Ref Expression
pcophtb (𝜑 → ((𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃𝐹( ≃ph𝐽)𝐺))
Distinct variable groups:   𝑥,𝐺   𝑥,𝐽
Allowed substitution hints:   𝜑(𝑥)   𝑃(𝑥)   𝐹(𝑥)   𝐻(𝑥)

Proof of Theorem pcophtb
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 phtpcer 23606 . . . 4 ( ≃ph𝐽) Er (II Cn 𝐽)
21a1i 11 . . 3 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → ( ≃ph𝐽) Er (II Cn 𝐽))
3 pcophtb.1 . . . . . . . 8 (𝜑 → (𝐹‘1) = (𝐺‘1))
4 pcophtb.g . . . . . . . . . 10 (𝜑𝐺 ∈ (II Cn 𝐽))
5 pcophtb.h . . . . . . . . . . 11 𝐻 = (𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥)))
65pcorevcl 23636 . . . . . . . . . 10 (𝐺 ∈ (II Cn 𝐽) → (𝐻 ∈ (II Cn 𝐽) ∧ (𝐻‘0) = (𝐺‘1) ∧ (𝐻‘1) = (𝐺‘0)))
74, 6syl 17 . . . . . . . . 9 (𝜑 → (𝐻 ∈ (II Cn 𝐽) ∧ (𝐻‘0) = (𝐺‘1) ∧ (𝐻‘1) = (𝐺‘0)))
87simp2d 1140 . . . . . . . 8 (𝜑 → (𝐻‘0) = (𝐺‘1))
93, 8eqtr4d 2862 . . . . . . 7 (𝜑 → (𝐹‘1) = (𝐻‘0))
107simp1d 1139 . . . . . . . 8 (𝜑𝐻 ∈ (II Cn 𝐽))
1110, 4pco0 23625 . . . . . . 7 (𝜑 → ((𝐻(*𝑝𝐽)𝐺)‘0) = (𝐻‘0))
129, 11eqtr4d 2862 . . . . . 6 (𝜑 → (𝐹‘1) = ((𝐻(*𝑝𝐽)𝐺)‘0))
1312adantr 484 . . . . 5 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → (𝐹‘1) = ((𝐻(*𝑝𝐽)𝐺)‘0))
14 pcophtb.f . . . . . . 7 (𝜑𝐹 ∈ (II Cn 𝐽))
1514adantr 484 . . . . . 6 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → 𝐹 ∈ (II Cn 𝐽))
162, 15erref 8306 . . . . 5 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → 𝐹( ≃ph𝐽)𝐹)
17 eqid 2824 . . . . . . . 8 ((0[,]1) × {(𝐺‘1)}) = ((0[,]1) × {(𝐺‘1)})
185, 17pcorev 23638 . . . . . . 7 (𝐺 ∈ (II Cn 𝐽) → (𝐻(*𝑝𝐽)𝐺)( ≃ph𝐽)((0[,]1) × {(𝐺‘1)}))
194, 18syl 17 . . . . . 6 (𝜑 → (𝐻(*𝑝𝐽)𝐺)( ≃ph𝐽)((0[,]1) × {(𝐺‘1)}))
2019adantr 484 . . . . 5 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → (𝐻(*𝑝𝐽)𝐺)( ≃ph𝐽)((0[,]1) × {(𝐺‘1)}))
2113, 16, 20pcohtpy 23631 . . . 4 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → (𝐹(*𝑝𝐽)(𝐻(*𝑝𝐽)𝐺))( ≃ph𝐽)(𝐹(*𝑝𝐽)((0[,]1) × {(𝐺‘1)})))
223adantr 484 . . . . 5 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → (𝐹‘1) = (𝐺‘1))
2317pcopt2 23634 . . . . 5 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = (𝐺‘1)) → (𝐹(*𝑝𝐽)((0[,]1) × {(𝐺‘1)}))( ≃ph𝐽)𝐹)
2415, 22, 23syl2anc 587 . . . 4 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → (𝐹(*𝑝𝐽)((0[,]1) × {(𝐺‘1)}))( ≃ph𝐽)𝐹)
252, 21, 24ertrd 8302 . . 3 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → (𝐹(*𝑝𝐽)(𝐻(*𝑝𝐽)𝐺))( ≃ph𝐽)𝐹)
2610adantr 484 . . . . . 6 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → 𝐻 ∈ (II Cn 𝐽))
274adantr 484 . . . . . 6 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → 𝐺 ∈ (II Cn 𝐽))
289adantr 484 . . . . . 6 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → (𝐹‘1) = (𝐻‘0))
297simp3d 1141 . . . . . . 7 (𝜑 → (𝐻‘1) = (𝐺‘0))
3029adantr 484 . . . . . 6 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → (𝐻‘1) = (𝐺‘0))
31 eqid 2824 . . . . . 6 (𝑦 ∈ (0[,]1) ↦ if(𝑦 ≤ (1 / 2), if(𝑦 ≤ (1 / 4), (2 · 𝑦), (𝑦 + (1 / 4))), ((𝑦 / 2) + (1 / 2)))) = (𝑦 ∈ (0[,]1) ↦ if(𝑦 ≤ (1 / 2), if(𝑦 ≤ (1 / 4), (2 · 𝑦), (𝑦 + (1 / 4))), ((𝑦 / 2) + (1 / 2))))
3215, 26, 27, 28, 30, 31pcoass 23635 . . . . 5 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → ((𝐹(*𝑝𝐽)𝐻)(*𝑝𝐽)𝐺)( ≃ph𝐽)(𝐹(*𝑝𝐽)(𝐻(*𝑝𝐽)𝐺)))
3314, 10pco1 23626 . . . . . . . 8 (𝜑 → ((𝐹(*𝑝𝐽)𝐻)‘1) = (𝐻‘1))
3433, 29eqtrd 2859 . . . . . . 7 (𝜑 → ((𝐹(*𝑝𝐽)𝐻)‘1) = (𝐺‘0))
3534adantr 484 . . . . . 6 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → ((𝐹(*𝑝𝐽)𝐻)‘1) = (𝐺‘0))
36 simpr 488 . . . . . 6 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃)
372, 27erref 8306 . . . . . 6 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → 𝐺( ≃ph𝐽)𝐺)
3835, 36, 37pcohtpy 23631 . . . . 5 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → ((𝐹(*𝑝𝐽)𝐻)(*𝑝𝐽)𝐺)( ≃ph𝐽)(𝑃(*𝑝𝐽)𝐺))
392, 32, 38ertr3d 8304 . . . 4 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → (𝐹(*𝑝𝐽)(𝐻(*𝑝𝐽)𝐺))( ≃ph𝐽)(𝑃(*𝑝𝐽)𝐺))
40 pcophtb.0 . . . . . . 7 (𝜑 → (𝐹‘0) = (𝐺‘0))
4140adantr 484 . . . . . 6 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → (𝐹‘0) = (𝐺‘0))
4241eqcomd 2830 . . . . 5 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → (𝐺‘0) = (𝐹‘0))
43 pcophtb.p . . . . . 6 𝑃 = ((0[,]1) × {(𝐹‘0)})
4443pcopt 23633 . . . . 5 ((𝐺 ∈ (II Cn 𝐽) ∧ (𝐺‘0) = (𝐹‘0)) → (𝑃(*𝑝𝐽)𝐺)( ≃ph𝐽)𝐺)
4527, 42, 44syl2anc 587 . . . 4 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → (𝑃(*𝑝𝐽)𝐺)( ≃ph𝐽)𝐺)
462, 39, 45ertrd 8302 . . 3 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → (𝐹(*𝑝𝐽)(𝐻(*𝑝𝐽)𝐺))( ≃ph𝐽)𝐺)
472, 25, 46ertr3d 8304 . 2 ((𝜑 ∧ (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃) → 𝐹( ≃ph𝐽)𝐺)
481a1i 11 . . 3 ((𝜑𝐹( ≃ph𝐽)𝐺) → ( ≃ph𝐽) Er (II Cn 𝐽))
499adantr 484 . . . 4 ((𝜑𝐹( ≃ph𝐽)𝐺) → (𝐹‘1) = (𝐻‘0))
50 simpr 488 . . . 4 ((𝜑𝐹( ≃ph𝐽)𝐺) → 𝐹( ≃ph𝐽)𝐺)
5110adantr 484 . . . . 5 ((𝜑𝐹( ≃ph𝐽)𝐺) → 𝐻 ∈ (II Cn 𝐽))
5248, 51erref 8306 . . . 4 ((𝜑𝐹( ≃ph𝐽)𝐺) → 𝐻( ≃ph𝐽)𝐻)
5349, 50, 52pcohtpy 23631 . . 3 ((𝜑𝐹( ≃ph𝐽)𝐺) → (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)(𝐺(*𝑝𝐽)𝐻))
54 eqid 2824 . . . . . . 7 ((0[,]1) × {(𝐺‘0)}) = ((0[,]1) × {(𝐺‘0)})
555, 54pcorev2 23639 . . . . . 6 (𝐺 ∈ (II Cn 𝐽) → (𝐺(*𝑝𝐽)𝐻)( ≃ph𝐽)((0[,]1) × {(𝐺‘0)}))
564, 55syl 17 . . . . 5 (𝜑 → (𝐺(*𝑝𝐽)𝐻)( ≃ph𝐽)((0[,]1) × {(𝐺‘0)}))
5740sneqd 4563 . . . . . . 7 (𝜑 → {(𝐹‘0)} = {(𝐺‘0)})
5857xpeq2d 5573 . . . . . 6 (𝜑 → ((0[,]1) × {(𝐹‘0)}) = ((0[,]1) × {(𝐺‘0)}))
5943, 58syl5eq 2871 . . . . 5 (𝜑𝑃 = ((0[,]1) × {(𝐺‘0)}))
6056, 59breqtrrd 5081 . . . 4 (𝜑 → (𝐺(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃)
6160adantr 484 . . 3 ((𝜑𝐹( ≃ph𝐽)𝐺) → (𝐺(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃)
6248, 53, 61ertrd 8302 . 2 ((𝜑𝐹( ≃ph𝐽)𝐺) → (𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃)
6347, 62impbida 800 1 (𝜑 → ((𝐹(*𝑝𝐽)𝐻)( ≃ph𝐽)𝑃𝐹( ≃ph𝐽)𝐺))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2115  ifcif 4451  {csn 4551   class class class wbr 5053   ↦ cmpt 5133   × cxp 5541  ‘cfv 6344  (class class class)co 7150   Er wer 8283  0cc0 10536  1c1 10537   + caddc 10539   · cmul 10541   ≤ cle 10675   − cmin 10869   / cdiv 11296  2c2 11692  4c4 11694  [,]cicc 12741   Cn ccn 21835  IIcii 23486   ≃phcphtpc 23580  *𝑝cpco 23611 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7456  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614  ax-addf 10615  ax-mulf 10616 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3483  df-sbc 3760  df-csb 3868  df-dif 3923  df-un 3925  df-in 3927  df-ss 3937  df-pss 3939  df-nul 4278  df-if 4452  df-pw 4525  df-sn 4552  df-pr 4554  df-tp 4556  df-op 4558  df-uni 4826  df-int 4864  df-iun 4908  df-iin 4909  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-se 5503  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6136  df-ord 6182  df-on 6183  df-lim 6184  df-suc 6185  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-isom 6353  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7404  df-om 7576  df-1st 7685  df-2nd 7686  df-supp 7828  df-wrecs 7944  df-recs 8005  df-rdg 8043  df-1o 8099  df-2o 8100  df-oadd 8103  df-er 8286  df-map 8405  df-ixp 8459  df-en 8507  df-dom 8508  df-sdom 8509  df-fin 8510  df-fsupp 8832  df-fi 8873  df-sup 8904  df-inf 8905  df-oi 8972  df-card 9366  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11700  df-3 11701  df-4 11702  df-5 11703  df-6 11704  df-7 11705  df-8 11706  df-9 11707  df-n0 11898  df-z 11982  df-dec 12099  df-uz 12244  df-q 12349  df-rp 12390  df-xneg 12507  df-xadd 12508  df-xmul 12509  df-ioo 12742  df-icc 12745  df-fz 12898  df-fzo 13041  df-seq 13377  df-exp 13438  df-hash 13699  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-struct 16488  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-mulr 16582  df-starv 16583  df-sca 16584  df-vsca 16585  df-ip 16586  df-tset 16587  df-ple 16588  df-ds 16590  df-unif 16591  df-hom 16592  df-cco 16593  df-rest 16699  df-topn 16700  df-0g 16718  df-gsum 16719  df-topgen 16720  df-pt 16721  df-prds 16724  df-xrs 16778  df-qtop 16783  df-imas 16784  df-xps 16786  df-mre 16860  df-mrc 16861  df-acs 16863  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-submnd 17960  df-mulg 18228  df-cntz 18450  df-cmn 18911  df-psmet 20540  df-xmet 20541  df-met 20542  df-bl 20543  df-mopn 20544  df-cnfld 20549  df-top 21505  df-topon 21522  df-topsp 21544  df-bases 21557  df-cld 21630  df-cn 21838  df-cnp 21839  df-tx 22173  df-hmeo 22366  df-xms 22933  df-ms 22934  df-tms 22935  df-ii 23488  df-htpy 23581  df-phtpy 23582  df-phtpc 23603  df-pco 23616 This theorem is referenced by:  sconnpht2  32545
 Copyright terms: Public domain W3C validator