MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmetresbl Structured version   Visualization version   GIF version

Theorem xmetresbl 23590
Description: An extended metric restricted to any ball (in particular the infinity ball) is a proper metric. Together with xmetec 23587, this shows that any extended metric space can be "factored" into the disjoint union of proper metric spaces, with points in the same region measured by that region's metric, and points in different regions being distance +∞ from each other. (Contributed by Mario Carneiro, 23-Aug-2015.)
Hypothesis
Ref Expression
xmetresbl.1 𝐵 = (𝑃(ball‘𝐷)𝑅)
Assertion
Ref Expression
xmetresbl ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝐷 ↾ (𝐵 × 𝐵)) ∈ (Met‘𝐵))

Proof of Theorem xmetresbl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1135 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → 𝐷 ∈ (∞Met‘𝑋))
2 xmetresbl.1 . . . 4 𝐵 = (𝑃(ball‘𝐷)𝑅)
3 blssm 23571 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ 𝑋)
42, 3eqsstrid 3969 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → 𝐵𝑋)
5 xmetres2 23514 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵𝑋) → (𝐷 ↾ (𝐵 × 𝐵)) ∈ (∞Met‘𝐵))
61, 4, 5syl2anc 584 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝐷 ↾ (𝐵 × 𝐵)) ∈ (∞Met‘𝐵))
7 xmetf 23482 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
81, 7syl 17 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
9 xpss12 5604 . . . . . 6 ((𝐵𝑋𝐵𝑋) → (𝐵 × 𝐵) ⊆ (𝑋 × 𝑋))
104, 4, 9syl2anc 584 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝐵 × 𝐵) ⊆ (𝑋 × 𝑋))
118, 10fssresd 6641 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝐷 ↾ (𝐵 × 𝐵)):(𝐵 × 𝐵)⟶ℝ*)
1211ffnd 6601 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝐷 ↾ (𝐵 × 𝐵)) Fn (𝐵 × 𝐵))
13 ovres 7438 . . . . . 6 ((𝑥𝐵𝑦𝐵) → (𝑥(𝐷 ↾ (𝐵 × 𝐵))𝑦) = (𝑥𝐷𝑦))
1413adantl 482 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(𝐷 ↾ (𝐵 × 𝐵))𝑦) = (𝑥𝐷𝑦))
15 simpl1 1190 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ (𝑥𝐵𝑦𝐵)) → 𝐷 ∈ (∞Met‘𝑋))
16 eqid 2738 . . . . . . . . . 10 (𝐷 “ ℝ) = (𝐷 “ ℝ)
1716xmeter 23586 . . . . . . . . 9 (𝐷 ∈ (∞Met‘𝑋) → (𝐷 “ ℝ) Er 𝑋)
1815, 17syl 17 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ (𝑥𝐵𝑦𝐵)) → (𝐷 “ ℝ) Er 𝑋)
1916blssec 23588 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ [𝑃](𝐷 “ ℝ))
202, 19eqsstrid 3969 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → 𝐵 ⊆ [𝑃](𝐷 “ ℝ))
2120sselda 3921 . . . . . . . . . 10 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑥𝐵) → 𝑥 ∈ [𝑃](𝐷 “ ℝ))
2221adantrr 714 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ (𝑥𝐵𝑦𝐵)) → 𝑥 ∈ [𝑃](𝐷 “ ℝ))
23 simpl2 1191 . . . . . . . . . 10 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ (𝑥𝐵𝑦𝐵)) → 𝑃𝑋)
24 elecg 8541 . . . . . . . . . 10 ((𝑥 ∈ [𝑃](𝐷 “ ℝ) ∧ 𝑃𝑋) → (𝑥 ∈ [𝑃](𝐷 “ ℝ) ↔ 𝑃(𝐷 “ ℝ)𝑥))
2522, 23, 24syl2anc 584 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 ∈ [𝑃](𝐷 “ ℝ) ↔ 𝑃(𝐷 “ ℝ)𝑥))
2622, 25mpbid 231 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ (𝑥𝐵𝑦𝐵)) → 𝑃(𝐷 “ ℝ)𝑥)
2720sselda 3921 . . . . . . . . . 10 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦𝐵) → 𝑦 ∈ [𝑃](𝐷 “ ℝ))
2827adantrl 713 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ (𝑥𝐵𝑦𝐵)) → 𝑦 ∈ [𝑃](𝐷 “ ℝ))
29 elecg 8541 . . . . . . . . . 10 ((𝑦 ∈ [𝑃](𝐷 “ ℝ) ∧ 𝑃𝑋) → (𝑦 ∈ [𝑃](𝐷 “ ℝ) ↔ 𝑃(𝐷 “ ℝ)𝑦))
3028, 23, 29syl2anc 584 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ (𝑥𝐵𝑦𝐵)) → (𝑦 ∈ [𝑃](𝐷 “ ℝ) ↔ 𝑃(𝐷 “ ℝ)𝑦))
3128, 30mpbid 231 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ (𝑥𝐵𝑦𝐵)) → 𝑃(𝐷 “ ℝ)𝑦)
3218, 26, 31ertr3d 8516 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ (𝑥𝐵𝑦𝐵)) → 𝑥(𝐷 “ ℝ)𝑦)
3316xmeterval 23585 . . . . . . . 8 (𝐷 ∈ (∞Met‘𝑋) → (𝑥(𝐷 “ ℝ)𝑦 ↔ (𝑥𝑋𝑦𝑋 ∧ (𝑥𝐷𝑦) ∈ ℝ)))
3415, 33syl 17 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(𝐷 “ ℝ)𝑦 ↔ (𝑥𝑋𝑦𝑋 ∧ (𝑥𝐷𝑦) ∈ ℝ)))
3532, 34mpbid 231 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥𝑋𝑦𝑋 ∧ (𝑥𝐷𝑦) ∈ ℝ))
3635simp3d 1143 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥𝐷𝑦) ∈ ℝ)
3714, 36eqeltrd 2839 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(𝐷 ↾ (𝐵 × 𝐵))𝑦) ∈ ℝ)
3837ralrimivva 3123 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → ∀𝑥𝐵𝑦𝐵 (𝑥(𝐷 ↾ (𝐵 × 𝐵))𝑦) ∈ ℝ)
39 ffnov 7401 . . 3 ((𝐷 ↾ (𝐵 × 𝐵)):(𝐵 × 𝐵)⟶ℝ ↔ ((𝐷 ↾ (𝐵 × 𝐵)) Fn (𝐵 × 𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(𝐷 ↾ (𝐵 × 𝐵))𝑦) ∈ ℝ))
4012, 38, 39sylanbrc 583 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝐷 ↾ (𝐵 × 𝐵)):(𝐵 × 𝐵)⟶ℝ)
41 ismet2 23486 . 2 ((𝐷 ↾ (𝐵 × 𝐵)) ∈ (Met‘𝐵) ↔ ((𝐷 ↾ (𝐵 × 𝐵)) ∈ (∞Met‘𝐵) ∧ (𝐷 ↾ (𝐵 × 𝐵)):(𝐵 × 𝐵)⟶ℝ))
426, 40, 41sylanbrc 583 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝐷 ↾ (𝐵 × 𝐵)) ∈ (Met‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  wss 3887   class class class wbr 5074   × cxp 5587  ccnv 5588  cres 5591  cima 5592   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275   Er wer 8495  [cec 8496  cr 10870  *cxr 11008  ∞Metcxmet 20582  Metcmet 20583  ballcbl 20584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-er 8498  df-ec 8500  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-2 12036  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator