Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  requad1 Structured version   Visualization version   GIF version

Theorem requad1 44962
Description: A condition for a quadratic equation with real coefficients to have (exactly) one real solution. (Contributed by AV, 26-Jan-2023.)
Hypotheses
Ref Expression
requad2.a (𝜑𝐴 ∈ ℝ)
requad2.z (𝜑𝐴 ≠ 0)
requad2.b (𝜑𝐵 ∈ ℝ)
requad2.c (𝜑𝐶 ∈ ℝ)
requad2.d (𝜑𝐷 = ((𝐵↑2) − (4 · (𝐴 · 𝐶))))
Assertion
Ref Expression
requad1 (𝜑 → (∃!𝑥 ∈ ℝ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ 𝐷 = 0))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷   𝜑,𝑥

Proof of Theorem requad1
StepHypRef Expression
1 requad2.a . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
21recnd 10934 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
32ad2antrr 722 . . . . . 6 (((𝜑 ∧ 0 ≤ 𝐷) ∧ 𝑥 ∈ ℝ) → 𝐴 ∈ ℂ)
4 requad2.z . . . . . . 7 (𝜑𝐴 ≠ 0)
54ad2antrr 722 . . . . . 6 (((𝜑 ∧ 0 ≤ 𝐷) ∧ 𝑥 ∈ ℝ) → 𝐴 ≠ 0)
6 requad2.b . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
76recnd 10934 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
87ad2antrr 722 . . . . . 6 (((𝜑 ∧ 0 ≤ 𝐷) ∧ 𝑥 ∈ ℝ) → 𝐵 ∈ ℂ)
9 requad2.c . . . . . . . 8 (𝜑𝐶 ∈ ℝ)
109recnd 10934 . . . . . . 7 (𝜑𝐶 ∈ ℂ)
1110ad2antrr 722 . . . . . 6 (((𝜑 ∧ 0 ≤ 𝐷) ∧ 𝑥 ∈ ℝ) → 𝐶 ∈ ℂ)
12 recn 10892 . . . . . . 7 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
1312adantl 481 . . . . . 6 (((𝜑 ∧ 0 ≤ 𝐷) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
14 requad2.d . . . . . . 7 (𝜑𝐷 = ((𝐵↑2) − (4 · (𝐴 · 𝐶))))
1514ad2antrr 722 . . . . . 6 (((𝜑 ∧ 0 ≤ 𝐷) ∧ 𝑥 ∈ ℝ) → 𝐷 = ((𝐵↑2) − (4 · (𝐴 · 𝐶))))
163, 5, 8, 11, 13, 15quad 25895 . . . . 5 (((𝜑 ∧ 0 ≤ 𝐷) ∧ 𝑥 ∈ ℝ) → (((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ (𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∨ 𝑥 = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)))))
1716reubidva 3314 . . . 4 ((𝜑 ∧ 0 ≤ 𝐷) → (∃!𝑥 ∈ ℝ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ ∃!𝑥 ∈ ℝ (𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∨ 𝑥 = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)))))
186renegcld 11332 . . . . . . . 8 (𝜑 → -𝐵 ∈ ℝ)
1918adantr 480 . . . . . . 7 ((𝜑 ∧ 0 ≤ 𝐷) → -𝐵 ∈ ℝ)
206resqcld 13893 . . . . . . . . . 10 (𝜑 → (𝐵↑2) ∈ ℝ)
21 4re 11987 . . . . . . . . . . . 12 4 ∈ ℝ
2221a1i 11 . . . . . . . . . . 11 (𝜑 → 4 ∈ ℝ)
231, 9remulcld 10936 . . . . . . . . . . 11 (𝜑 → (𝐴 · 𝐶) ∈ ℝ)
2422, 23remulcld 10936 . . . . . . . . . 10 (𝜑 → (4 · (𝐴 · 𝐶)) ∈ ℝ)
2520, 24resubcld 11333 . . . . . . . . 9 (𝜑 → ((𝐵↑2) − (4 · (𝐴 · 𝐶))) ∈ ℝ)
2614, 25eqeltrd 2839 . . . . . . . 8 (𝜑𝐷 ∈ ℝ)
27 resqrtcl 14893 . . . . . . . 8 ((𝐷 ∈ ℝ ∧ 0 ≤ 𝐷) → (√‘𝐷) ∈ ℝ)
2826, 27sylan 579 . . . . . . 7 ((𝜑 ∧ 0 ≤ 𝐷) → (√‘𝐷) ∈ ℝ)
2919, 28readdcld 10935 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝐷) → (-𝐵 + (√‘𝐷)) ∈ ℝ)
30 2re 11977 . . . . . . . . 9 2 ∈ ℝ
3130a1i 11 . . . . . . . 8 (𝜑 → 2 ∈ ℝ)
3231, 1remulcld 10936 . . . . . . 7 (𝜑 → (2 · 𝐴) ∈ ℝ)
3332adantr 480 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝐷) → (2 · 𝐴) ∈ ℝ)
34 2cnd 11981 . . . . . . . 8 (𝜑 → 2 ∈ ℂ)
35 2ne0 12007 . . . . . . . . 9 2 ≠ 0
3635a1i 11 . . . . . . . 8 (𝜑 → 2 ≠ 0)
3734, 2, 36, 4mulne0d 11557 . . . . . . 7 (𝜑 → (2 · 𝐴) ≠ 0)
3837adantr 480 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝐷) → (2 · 𝐴) ≠ 0)
3929, 33, 38redivcld 11733 . . . . 5 ((𝜑 ∧ 0 ≤ 𝐷) → ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∈ ℝ)
4019, 28resubcld 11333 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝐷) → (-𝐵 − (√‘𝐷)) ∈ ℝ)
4140, 33, 38redivcld 11733 . . . . 5 ((𝜑 ∧ 0 ≤ 𝐷) → ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) ∈ ℝ)
42 euoreqb 44488 . . . . 5 ((((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∈ ℝ ∧ ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) ∈ ℝ) → (∃!𝑥 ∈ ℝ (𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∨ 𝑥 = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴))) ↔ ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴))))
4339, 41, 42syl2anc 583 . . . 4 ((𝜑 ∧ 0 ≤ 𝐷) → (∃!𝑥 ∈ ℝ (𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∨ 𝑥 = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴))) ↔ ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴))))
447negcld 11249 . . . . . . . 8 (𝜑 → -𝐵 ∈ ℂ)
4526recnd 10934 . . . . . . . . 9 (𝜑𝐷 ∈ ℂ)
4645sqrtcld 15077 . . . . . . . 8 (𝜑 → (√‘𝐷) ∈ ℂ)
4732recnd 10934 . . . . . . . 8 (𝜑 → (2 · 𝐴) ∈ ℂ)
4844, 46, 47, 37divdird 11719 . . . . . . 7 (𝜑 → ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) = ((-𝐵 / (2 · 𝐴)) + ((√‘𝐷) / (2 · 𝐴))))
4948adantr 480 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝐷) → ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) = ((-𝐵 / (2 · 𝐴)) + ((√‘𝐷) / (2 · 𝐴))))
5044, 46, 47, 37divsubdird 11720 . . . . . . . 8 (𝜑 → ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) = ((-𝐵 / (2 · 𝐴)) − ((√‘𝐷) / (2 · 𝐴))))
5150adantr 480 . . . . . . 7 ((𝜑 ∧ 0 ≤ 𝐷) → ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) = ((-𝐵 / (2 · 𝐴)) − ((√‘𝐷) / (2 · 𝐴))))
5244, 47, 37divcld 11681 . . . . . . . . 9 (𝜑 → (-𝐵 / (2 · 𝐴)) ∈ ℂ)
5352adantr 480 . . . . . . . 8 ((𝜑 ∧ 0 ≤ 𝐷) → (-𝐵 / (2 · 𝐴)) ∈ ℂ)
5446, 47, 37divcld 11681 . . . . . . . . 9 (𝜑 → ((√‘𝐷) / (2 · 𝐴)) ∈ ℂ)
5554adantr 480 . . . . . . . 8 ((𝜑 ∧ 0 ≤ 𝐷) → ((√‘𝐷) / (2 · 𝐴)) ∈ ℂ)
5653, 55negsubd 11268 . . . . . . 7 ((𝜑 ∧ 0 ≤ 𝐷) → ((-𝐵 / (2 · 𝐴)) + -((√‘𝐷) / (2 · 𝐴))) = ((-𝐵 / (2 · 𝐴)) − ((√‘𝐷) / (2 · 𝐴))))
5746adantr 480 . . . . . . . . 9 ((𝜑 ∧ 0 ≤ 𝐷) → (√‘𝐷) ∈ ℂ)
5847adantr 480 . . . . . . . . 9 ((𝜑 ∧ 0 ≤ 𝐷) → (2 · 𝐴) ∈ ℂ)
5957, 58, 38divnegd 11694 . . . . . . . 8 ((𝜑 ∧ 0 ≤ 𝐷) → -((√‘𝐷) / (2 · 𝐴)) = (-(√‘𝐷) / (2 · 𝐴)))
6059oveq2d 7271 . . . . . . 7 ((𝜑 ∧ 0 ≤ 𝐷) → ((-𝐵 / (2 · 𝐴)) + -((√‘𝐷) / (2 · 𝐴))) = ((-𝐵 / (2 · 𝐴)) + (-(√‘𝐷) / (2 · 𝐴))))
6151, 56, 603eqtr2d 2784 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝐷) → ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) = ((-𝐵 / (2 · 𝐴)) + (-(√‘𝐷) / (2 · 𝐴))))
6249, 61eqeq12d 2754 . . . . 5 ((𝜑 ∧ 0 ≤ 𝐷) → (((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) ↔ ((-𝐵 / (2 · 𝐴)) + ((√‘𝐷) / (2 · 𝐴))) = ((-𝐵 / (2 · 𝐴)) + (-(√‘𝐷) / (2 · 𝐴)))))
6346negcld 11249 . . . . . . . . 9 (𝜑 → -(√‘𝐷) ∈ ℂ)
6463, 47, 37divcld 11681 . . . . . . . 8 (𝜑 → (-(√‘𝐷) / (2 · 𝐴)) ∈ ℂ)
6564adantr 480 . . . . . . 7 ((𝜑 ∧ 0 ≤ 𝐷) → (-(√‘𝐷) / (2 · 𝐴)) ∈ ℂ)
6653, 55, 65addcand 11108 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝐷) → (((-𝐵 / (2 · 𝐴)) + ((√‘𝐷) / (2 · 𝐴))) = ((-𝐵 / (2 · 𝐴)) + (-(√‘𝐷) / (2 · 𝐴))) ↔ ((√‘𝐷) / (2 · 𝐴)) = (-(√‘𝐷) / (2 · 𝐴))))
67 div11 11591 . . . . . . . 8 (((√‘𝐷) ∈ ℂ ∧ -(√‘𝐷) ∈ ℂ ∧ ((2 · 𝐴) ∈ ℂ ∧ (2 · 𝐴) ≠ 0)) → (((√‘𝐷) / (2 · 𝐴)) = (-(√‘𝐷) / (2 · 𝐴)) ↔ (√‘𝐷) = -(√‘𝐷)))
6846, 63, 47, 37, 67syl112anc 1372 . . . . . . 7 (𝜑 → (((√‘𝐷) / (2 · 𝐴)) = (-(√‘𝐷) / (2 · 𝐴)) ↔ (√‘𝐷) = -(√‘𝐷)))
6968adantr 480 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝐷) → (((√‘𝐷) / (2 · 𝐴)) = (-(√‘𝐷) / (2 · 𝐴)) ↔ (√‘𝐷) = -(√‘𝐷)))
7057eqnegd 11626 . . . . . . 7 ((𝜑 ∧ 0 ≤ 𝐷) → ((√‘𝐷) = -(√‘𝐷) ↔ (√‘𝐷) = 0))
71 sqrt00 14903 . . . . . . . 8 ((𝐷 ∈ ℝ ∧ 0 ≤ 𝐷) → ((√‘𝐷) = 0 ↔ 𝐷 = 0))
7226, 71sylan 579 . . . . . . 7 ((𝜑 ∧ 0 ≤ 𝐷) → ((√‘𝐷) = 0 ↔ 𝐷 = 0))
7370, 72bitrd 278 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝐷) → ((√‘𝐷) = -(√‘𝐷) ↔ 𝐷 = 0))
7466, 69, 733bitrd 304 . . . . 5 ((𝜑 ∧ 0 ≤ 𝐷) → (((-𝐵 / (2 · 𝐴)) + ((√‘𝐷) / (2 · 𝐴))) = ((-𝐵 / (2 · 𝐴)) + (-(√‘𝐷) / (2 · 𝐴))) ↔ 𝐷 = 0))
7562, 74bitrd 278 . . . 4 ((𝜑 ∧ 0 ≤ 𝐷) → (((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) ↔ 𝐷 = 0))
7617, 43, 753bitrd 304 . . 3 ((𝜑 ∧ 0 ≤ 𝐷) → (∃!𝑥 ∈ ℝ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ 𝐷 = 0))
7776expcom 413 . 2 (0 ≤ 𝐷 → (𝜑 → (∃!𝑥 ∈ ℝ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ 𝐷 = 0)))
781, 4, 6, 9, 14requad01 44961 . . . . . . . 8 (𝜑 → (∃𝑥 ∈ ℝ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ 0 ≤ 𝐷))
7978notbid 317 . . . . . . 7 (𝜑 → (¬ ∃𝑥 ∈ ℝ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ ¬ 0 ≤ 𝐷))
8079biimparc 479 . . . . . 6 ((¬ 0 ≤ 𝐷𝜑) → ¬ ∃𝑥 ∈ ℝ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0)
81 reurex 3352 . . . . . 6 (∃!𝑥 ∈ ℝ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 → ∃𝑥 ∈ ℝ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0)
8280, 81nsyl 140 . . . . 5 ((¬ 0 ≤ 𝐷𝜑) → ¬ ∃!𝑥 ∈ ℝ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0)
8382pm2.21d 121 . . . 4 ((¬ 0 ≤ 𝐷𝜑) → (∃!𝑥 ∈ ℝ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 → 𝐷 = 0))
84 0red 10909 . . . . . . . 8 (𝜑 → 0 ∈ ℝ)
8526, 84ltnled 11052 . . . . . . 7 (𝜑 → (𝐷 < 0 ↔ ¬ 0 ≤ 𝐷))
8685biimparc 479 . . . . . 6 ((¬ 0 ≤ 𝐷𝜑) → 𝐷 < 0)
8786lt0ne0d 11470 . . . . 5 ((¬ 0 ≤ 𝐷𝜑) → 𝐷 ≠ 0)
88 eqneqall 2953 . . . . 5 (𝐷 = 0 → (𝐷 ≠ 0 → ∃!𝑥 ∈ ℝ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0))
8987, 88syl5com 31 . . . 4 ((¬ 0 ≤ 𝐷𝜑) → (𝐷 = 0 → ∃!𝑥 ∈ ℝ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0))
9083, 89impbid 211 . . 3 ((¬ 0 ≤ 𝐷𝜑) → (∃!𝑥 ∈ ℝ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ 𝐷 = 0))
9190ex 412 . 2 (¬ 0 ≤ 𝐷 → (𝜑 → (∃!𝑥 ∈ ℝ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ 𝐷 = 0)))
9277, 91pm2.61i 182 1 (𝜑 → (∃!𝑥 ∈ ℝ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ 𝐷 = 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108  wne 2942  wrex 3064  ∃!wreu 3065   class class class wbr 5070  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802   + caddc 10805   · cmul 10807   < clt 10940  cle 10941  cmin 11135  -cneg 11136   / cdiv 11562  2c2 11958  4c4 11960  cexp 13710  csqrt 14872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator