Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  requad1 Structured version   Visualization version   GIF version

Theorem requad1 43781
Description: A condition for a quadratic equation with real coefficients to have (exactly) one real solution. (Contributed by AV, 26-Jan-2023.)
Hypotheses
Ref Expression
requad2.a (𝜑𝐴 ∈ ℝ)
requad2.z (𝜑𝐴 ≠ 0)
requad2.b (𝜑𝐵 ∈ ℝ)
requad2.c (𝜑𝐶 ∈ ℝ)
requad2.d (𝜑𝐷 = ((𝐵↑2) − (4 · (𝐴 · 𝐶))))
Assertion
Ref Expression
requad1 (𝜑 → (∃!𝑥 ∈ ℝ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ 𝐷 = 0))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷   𝜑,𝑥

Proof of Theorem requad1
StepHypRef Expression
1 requad2.a . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
21recnd 10663 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
32ad2antrr 724 . . . . . 6 (((𝜑 ∧ 0 ≤ 𝐷) ∧ 𝑥 ∈ ℝ) → 𝐴 ∈ ℂ)
4 requad2.z . . . . . . 7 (𝜑𝐴 ≠ 0)
54ad2antrr 724 . . . . . 6 (((𝜑 ∧ 0 ≤ 𝐷) ∧ 𝑥 ∈ ℝ) → 𝐴 ≠ 0)
6 requad2.b . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
76recnd 10663 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
87ad2antrr 724 . . . . . 6 (((𝜑 ∧ 0 ≤ 𝐷) ∧ 𝑥 ∈ ℝ) → 𝐵 ∈ ℂ)
9 requad2.c . . . . . . . 8 (𝜑𝐶 ∈ ℝ)
109recnd 10663 . . . . . . 7 (𝜑𝐶 ∈ ℂ)
1110ad2antrr 724 . . . . . 6 (((𝜑 ∧ 0 ≤ 𝐷) ∧ 𝑥 ∈ ℝ) → 𝐶 ∈ ℂ)
12 recn 10621 . . . . . . 7 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
1312adantl 484 . . . . . 6 (((𝜑 ∧ 0 ≤ 𝐷) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
14 requad2.d . . . . . . 7 (𝜑𝐷 = ((𝐵↑2) − (4 · (𝐴 · 𝐶))))
1514ad2antrr 724 . . . . . 6 (((𝜑 ∧ 0 ≤ 𝐷) ∧ 𝑥 ∈ ℝ) → 𝐷 = ((𝐵↑2) − (4 · (𝐴 · 𝐶))))
163, 5, 8, 11, 13, 15quad 25412 . . . . 5 (((𝜑 ∧ 0 ≤ 𝐷) ∧ 𝑥 ∈ ℝ) → (((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ (𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∨ 𝑥 = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)))))
1716reubidva 3388 . . . 4 ((𝜑 ∧ 0 ≤ 𝐷) → (∃!𝑥 ∈ ℝ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ ∃!𝑥 ∈ ℝ (𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∨ 𝑥 = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)))))
186renegcld 11061 . . . . . . . 8 (𝜑 → -𝐵 ∈ ℝ)
1918adantr 483 . . . . . . 7 ((𝜑 ∧ 0 ≤ 𝐷) → -𝐵 ∈ ℝ)
206resqcld 13605 . . . . . . . . . 10 (𝜑 → (𝐵↑2) ∈ ℝ)
21 4re 11715 . . . . . . . . . . . 12 4 ∈ ℝ
2221a1i 11 . . . . . . . . . . 11 (𝜑 → 4 ∈ ℝ)
231, 9remulcld 10665 . . . . . . . . . . 11 (𝜑 → (𝐴 · 𝐶) ∈ ℝ)
2422, 23remulcld 10665 . . . . . . . . . 10 (𝜑 → (4 · (𝐴 · 𝐶)) ∈ ℝ)
2520, 24resubcld 11062 . . . . . . . . 9 (𝜑 → ((𝐵↑2) − (4 · (𝐴 · 𝐶))) ∈ ℝ)
2614, 25eqeltrd 2913 . . . . . . . 8 (𝜑𝐷 ∈ ℝ)
27 resqrtcl 14607 . . . . . . . 8 ((𝐷 ∈ ℝ ∧ 0 ≤ 𝐷) → (√‘𝐷) ∈ ℝ)
2826, 27sylan 582 . . . . . . 7 ((𝜑 ∧ 0 ≤ 𝐷) → (√‘𝐷) ∈ ℝ)
2919, 28readdcld 10664 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝐷) → (-𝐵 + (√‘𝐷)) ∈ ℝ)
30 2re 11705 . . . . . . . . 9 2 ∈ ℝ
3130a1i 11 . . . . . . . 8 (𝜑 → 2 ∈ ℝ)
3231, 1remulcld 10665 . . . . . . 7 (𝜑 → (2 · 𝐴) ∈ ℝ)
3332adantr 483 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝐷) → (2 · 𝐴) ∈ ℝ)
34 2cnd 11709 . . . . . . . 8 (𝜑 → 2 ∈ ℂ)
35 2ne0 11735 . . . . . . . . 9 2 ≠ 0
3635a1i 11 . . . . . . . 8 (𝜑 → 2 ≠ 0)
3734, 2, 36, 4mulne0d 11286 . . . . . . 7 (𝜑 → (2 · 𝐴) ≠ 0)
3837adantr 483 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝐷) → (2 · 𝐴) ≠ 0)
3929, 33, 38redivcld 11462 . . . . 5 ((𝜑 ∧ 0 ≤ 𝐷) → ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∈ ℝ)
4019, 28resubcld 11062 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝐷) → (-𝐵 − (√‘𝐷)) ∈ ℝ)
4140, 33, 38redivcld 11462 . . . . 5 ((𝜑 ∧ 0 ≤ 𝐷) → ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) ∈ ℝ)
42 euoreqb 43302 . . . . 5 ((((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∈ ℝ ∧ ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) ∈ ℝ) → (∃!𝑥 ∈ ℝ (𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∨ 𝑥 = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴))) ↔ ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴))))
4339, 41, 42syl2anc 586 . . . 4 ((𝜑 ∧ 0 ≤ 𝐷) → (∃!𝑥 ∈ ℝ (𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∨ 𝑥 = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴))) ↔ ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴))))
447negcld 10978 . . . . . . . 8 (𝜑 → -𝐵 ∈ ℂ)
4526recnd 10663 . . . . . . . . 9 (𝜑𝐷 ∈ ℂ)
4645sqrtcld 14791 . . . . . . . 8 (𝜑 → (√‘𝐷) ∈ ℂ)
4732recnd 10663 . . . . . . . 8 (𝜑 → (2 · 𝐴) ∈ ℂ)
4844, 46, 47, 37divdird 11448 . . . . . . 7 (𝜑 → ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) = ((-𝐵 / (2 · 𝐴)) + ((√‘𝐷) / (2 · 𝐴))))
4948adantr 483 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝐷) → ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) = ((-𝐵 / (2 · 𝐴)) + ((√‘𝐷) / (2 · 𝐴))))
5044, 46, 47, 37divsubdird 11449 . . . . . . . 8 (𝜑 → ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) = ((-𝐵 / (2 · 𝐴)) − ((√‘𝐷) / (2 · 𝐴))))
5150adantr 483 . . . . . . 7 ((𝜑 ∧ 0 ≤ 𝐷) → ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) = ((-𝐵 / (2 · 𝐴)) − ((√‘𝐷) / (2 · 𝐴))))
5244, 47, 37divcld 11410 . . . . . . . . 9 (𝜑 → (-𝐵 / (2 · 𝐴)) ∈ ℂ)
5352adantr 483 . . . . . . . 8 ((𝜑 ∧ 0 ≤ 𝐷) → (-𝐵 / (2 · 𝐴)) ∈ ℂ)
5446, 47, 37divcld 11410 . . . . . . . . 9 (𝜑 → ((√‘𝐷) / (2 · 𝐴)) ∈ ℂ)
5554adantr 483 . . . . . . . 8 ((𝜑 ∧ 0 ≤ 𝐷) → ((√‘𝐷) / (2 · 𝐴)) ∈ ℂ)
5653, 55negsubd 10997 . . . . . . 7 ((𝜑 ∧ 0 ≤ 𝐷) → ((-𝐵 / (2 · 𝐴)) + -((√‘𝐷) / (2 · 𝐴))) = ((-𝐵 / (2 · 𝐴)) − ((√‘𝐷) / (2 · 𝐴))))
5746adantr 483 . . . . . . . . 9 ((𝜑 ∧ 0 ≤ 𝐷) → (√‘𝐷) ∈ ℂ)
5847adantr 483 . . . . . . . . 9 ((𝜑 ∧ 0 ≤ 𝐷) → (2 · 𝐴) ∈ ℂ)
5957, 58, 38divnegd 11423 . . . . . . . 8 ((𝜑 ∧ 0 ≤ 𝐷) → -((√‘𝐷) / (2 · 𝐴)) = (-(√‘𝐷) / (2 · 𝐴)))
6059oveq2d 7166 . . . . . . 7 ((𝜑 ∧ 0 ≤ 𝐷) → ((-𝐵 / (2 · 𝐴)) + -((√‘𝐷) / (2 · 𝐴))) = ((-𝐵 / (2 · 𝐴)) + (-(√‘𝐷) / (2 · 𝐴))))
6151, 56, 603eqtr2d 2862 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝐷) → ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) = ((-𝐵 / (2 · 𝐴)) + (-(√‘𝐷) / (2 · 𝐴))))
6249, 61eqeq12d 2837 . . . . 5 ((𝜑 ∧ 0 ≤ 𝐷) → (((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) ↔ ((-𝐵 / (2 · 𝐴)) + ((√‘𝐷) / (2 · 𝐴))) = ((-𝐵 / (2 · 𝐴)) + (-(√‘𝐷) / (2 · 𝐴)))))
6346negcld 10978 . . . . . . . . 9 (𝜑 → -(√‘𝐷) ∈ ℂ)
6463, 47, 37divcld 11410 . . . . . . . 8 (𝜑 → (-(√‘𝐷) / (2 · 𝐴)) ∈ ℂ)
6564adantr 483 . . . . . . 7 ((𝜑 ∧ 0 ≤ 𝐷) → (-(√‘𝐷) / (2 · 𝐴)) ∈ ℂ)
6653, 55, 65addcand 10837 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝐷) → (((-𝐵 / (2 · 𝐴)) + ((√‘𝐷) / (2 · 𝐴))) = ((-𝐵 / (2 · 𝐴)) + (-(√‘𝐷) / (2 · 𝐴))) ↔ ((√‘𝐷) / (2 · 𝐴)) = (-(√‘𝐷) / (2 · 𝐴))))
67 div11 11320 . . . . . . . 8 (((√‘𝐷) ∈ ℂ ∧ -(√‘𝐷) ∈ ℂ ∧ ((2 · 𝐴) ∈ ℂ ∧ (2 · 𝐴) ≠ 0)) → (((√‘𝐷) / (2 · 𝐴)) = (-(√‘𝐷) / (2 · 𝐴)) ↔ (√‘𝐷) = -(√‘𝐷)))
6846, 63, 47, 37, 67syl112anc 1370 . . . . . . 7 (𝜑 → (((√‘𝐷) / (2 · 𝐴)) = (-(√‘𝐷) / (2 · 𝐴)) ↔ (√‘𝐷) = -(√‘𝐷)))
6968adantr 483 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝐷) → (((√‘𝐷) / (2 · 𝐴)) = (-(√‘𝐷) / (2 · 𝐴)) ↔ (√‘𝐷) = -(√‘𝐷)))
7057eqnegd 11355 . . . . . . 7 ((𝜑 ∧ 0 ≤ 𝐷) → ((√‘𝐷) = -(√‘𝐷) ↔ (√‘𝐷) = 0))
71 sqrt00 14617 . . . . . . . 8 ((𝐷 ∈ ℝ ∧ 0 ≤ 𝐷) → ((√‘𝐷) = 0 ↔ 𝐷 = 0))
7226, 71sylan 582 . . . . . . 7 ((𝜑 ∧ 0 ≤ 𝐷) → ((√‘𝐷) = 0 ↔ 𝐷 = 0))
7370, 72bitrd 281 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝐷) → ((√‘𝐷) = -(√‘𝐷) ↔ 𝐷 = 0))
7466, 69, 733bitrd 307 . . . . 5 ((𝜑 ∧ 0 ≤ 𝐷) → (((-𝐵 / (2 · 𝐴)) + ((√‘𝐷) / (2 · 𝐴))) = ((-𝐵 / (2 · 𝐴)) + (-(√‘𝐷) / (2 · 𝐴))) ↔ 𝐷 = 0))
7562, 74bitrd 281 . . . 4 ((𝜑 ∧ 0 ≤ 𝐷) → (((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) ↔ 𝐷 = 0))
7617, 43, 753bitrd 307 . . 3 ((𝜑 ∧ 0 ≤ 𝐷) → (∃!𝑥 ∈ ℝ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ 𝐷 = 0))
7776expcom 416 . 2 (0 ≤ 𝐷 → (𝜑 → (∃!𝑥 ∈ ℝ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ 𝐷 = 0)))
781, 4, 6, 9, 14requad01 43780 . . . . . . . 8 (𝜑 → (∃𝑥 ∈ ℝ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ 0 ≤ 𝐷))
7978notbid 320 . . . . . . 7 (𝜑 → (¬ ∃𝑥 ∈ ℝ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ ¬ 0 ≤ 𝐷))
8079biimparc 482 . . . . . 6 ((¬ 0 ≤ 𝐷𝜑) → ¬ ∃𝑥 ∈ ℝ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0)
81 reurex 3431 . . . . . 6 (∃!𝑥 ∈ ℝ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 → ∃𝑥 ∈ ℝ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0)
8280, 81nsyl 142 . . . . 5 ((¬ 0 ≤ 𝐷𝜑) → ¬ ∃!𝑥 ∈ ℝ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0)
8382pm2.21d 121 . . . 4 ((¬ 0 ≤ 𝐷𝜑) → (∃!𝑥 ∈ ℝ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 → 𝐷 = 0))
84 0red 10638 . . . . . . . 8 (𝜑 → 0 ∈ ℝ)
8526, 84ltnled 10781 . . . . . . 7 (𝜑 → (𝐷 < 0 ↔ ¬ 0 ≤ 𝐷))
8685biimparc 482 . . . . . 6 ((¬ 0 ≤ 𝐷𝜑) → 𝐷 < 0)
8786lt0ne0d 11199 . . . . 5 ((¬ 0 ≤ 𝐷𝜑) → 𝐷 ≠ 0)
88 eqneqall 3027 . . . . 5 (𝐷 = 0 → (𝐷 ≠ 0 → ∃!𝑥 ∈ ℝ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0))
8987, 88syl5com 31 . . . 4 ((¬ 0 ≤ 𝐷𝜑) → (𝐷 = 0 → ∃!𝑥 ∈ ℝ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0))
9083, 89impbid 214 . . 3 ((¬ 0 ≤ 𝐷𝜑) → (∃!𝑥 ∈ ℝ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ 𝐷 = 0))
9190ex 415 . 2 (¬ 0 ≤ 𝐷 → (𝜑 → (∃!𝑥 ∈ ℝ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ 𝐷 = 0)))
9277, 91pm2.61i 184 1 (𝜑 → (∃!𝑥 ∈ ℝ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ 𝐷 = 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843   = wceq 1533  wcel 2110  wne 3016  wrex 3139  ∃!wreu 3140   class class class wbr 5058  cfv 6349  (class class class)co 7150  cc 10529  cr 10530  0cc0 10531   + caddc 10534   · cmul 10536   < clt 10669  cle 10670  cmin 10864  -cneg 10865   / cdiv 11291  2c2 11686  4c4 11688  cexp 13423  csqrt 14586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-sup 8900  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-seq 13364  df-exp 13424  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator