Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  requad1 Structured version   Visualization version   GIF version

Theorem requad1 45414
Description: A condition for a quadratic equation with real coefficients to have (exactly) one real solution. (Contributed by AV, 26-Jan-2023.)
Hypotheses
Ref Expression
requad2.a (𝜑𝐴 ∈ ℝ)
requad2.z (𝜑𝐴 ≠ 0)
requad2.b (𝜑𝐵 ∈ ℝ)
requad2.c (𝜑𝐶 ∈ ℝ)
requad2.d (𝜑𝐷 = ((𝐵↑2) − (4 · (𝐴 · 𝐶))))
Assertion
Ref Expression
requad1 (𝜑 → (∃!𝑥 ∈ ℝ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ 𝐷 = 0))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷   𝜑,𝑥

Proof of Theorem requad1
StepHypRef Expression
1 requad2.a . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
21recnd 11096 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
32ad2antrr 723 . . . . . 6 (((𝜑 ∧ 0 ≤ 𝐷) ∧ 𝑥 ∈ ℝ) → 𝐴 ∈ ℂ)
4 requad2.z . . . . . . 7 (𝜑𝐴 ≠ 0)
54ad2antrr 723 . . . . . 6 (((𝜑 ∧ 0 ≤ 𝐷) ∧ 𝑥 ∈ ℝ) → 𝐴 ≠ 0)
6 requad2.b . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
76recnd 11096 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
87ad2antrr 723 . . . . . 6 (((𝜑 ∧ 0 ≤ 𝐷) ∧ 𝑥 ∈ ℝ) → 𝐵 ∈ ℂ)
9 requad2.c . . . . . . . 8 (𝜑𝐶 ∈ ℝ)
109recnd 11096 . . . . . . 7 (𝜑𝐶 ∈ ℂ)
1110ad2antrr 723 . . . . . 6 (((𝜑 ∧ 0 ≤ 𝐷) ∧ 𝑥 ∈ ℝ) → 𝐶 ∈ ℂ)
12 recn 11054 . . . . . . 7 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
1312adantl 482 . . . . . 6 (((𝜑 ∧ 0 ≤ 𝐷) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
14 requad2.d . . . . . . 7 (𝜑𝐷 = ((𝐵↑2) − (4 · (𝐴 · 𝐶))))
1514ad2antrr 723 . . . . . 6 (((𝜑 ∧ 0 ≤ 𝐷) ∧ 𝑥 ∈ ℝ) → 𝐷 = ((𝐵↑2) − (4 · (𝐴 · 𝐶))))
163, 5, 8, 11, 13, 15quad 26088 . . . . 5 (((𝜑 ∧ 0 ≤ 𝐷) ∧ 𝑥 ∈ ℝ) → (((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ (𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∨ 𝑥 = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)))))
1716reubidva 3365 . . . 4 ((𝜑 ∧ 0 ≤ 𝐷) → (∃!𝑥 ∈ ℝ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ ∃!𝑥 ∈ ℝ (𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∨ 𝑥 = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)))))
186renegcld 11495 . . . . . . . 8 (𝜑 → -𝐵 ∈ ℝ)
1918adantr 481 . . . . . . 7 ((𝜑 ∧ 0 ≤ 𝐷) → -𝐵 ∈ ℝ)
206resqcld 14058 . . . . . . . . . 10 (𝜑 → (𝐵↑2) ∈ ℝ)
21 4re 12150 . . . . . . . . . . . 12 4 ∈ ℝ
2221a1i 11 . . . . . . . . . . 11 (𝜑 → 4 ∈ ℝ)
231, 9remulcld 11098 . . . . . . . . . . 11 (𝜑 → (𝐴 · 𝐶) ∈ ℝ)
2422, 23remulcld 11098 . . . . . . . . . 10 (𝜑 → (4 · (𝐴 · 𝐶)) ∈ ℝ)
2520, 24resubcld 11496 . . . . . . . . 9 (𝜑 → ((𝐵↑2) − (4 · (𝐴 · 𝐶))) ∈ ℝ)
2614, 25eqeltrd 2837 . . . . . . . 8 (𝜑𝐷 ∈ ℝ)
27 resqrtcl 15056 . . . . . . . 8 ((𝐷 ∈ ℝ ∧ 0 ≤ 𝐷) → (√‘𝐷) ∈ ℝ)
2826, 27sylan 580 . . . . . . 7 ((𝜑 ∧ 0 ≤ 𝐷) → (√‘𝐷) ∈ ℝ)
2919, 28readdcld 11097 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝐷) → (-𝐵 + (√‘𝐷)) ∈ ℝ)
30 2re 12140 . . . . . . . . 9 2 ∈ ℝ
3130a1i 11 . . . . . . . 8 (𝜑 → 2 ∈ ℝ)
3231, 1remulcld 11098 . . . . . . 7 (𝜑 → (2 · 𝐴) ∈ ℝ)
3332adantr 481 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝐷) → (2 · 𝐴) ∈ ℝ)
34 2cnd 12144 . . . . . . . 8 (𝜑 → 2 ∈ ℂ)
35 2ne0 12170 . . . . . . . . 9 2 ≠ 0
3635a1i 11 . . . . . . . 8 (𝜑 → 2 ≠ 0)
3734, 2, 36, 4mulne0d 11720 . . . . . . 7 (𝜑 → (2 · 𝐴) ≠ 0)
3837adantr 481 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝐷) → (2 · 𝐴) ≠ 0)
3929, 33, 38redivcld 11896 . . . . 5 ((𝜑 ∧ 0 ≤ 𝐷) → ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∈ ℝ)
4019, 28resubcld 11496 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝐷) → (-𝐵 − (√‘𝐷)) ∈ ℝ)
4140, 33, 38redivcld 11896 . . . . 5 ((𝜑 ∧ 0 ≤ 𝐷) → ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) ∈ ℝ)
42 euoreqb 44941 . . . . 5 ((((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∈ ℝ ∧ ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) ∈ ℝ) → (∃!𝑥 ∈ ℝ (𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∨ 𝑥 = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴))) ↔ ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴))))
4339, 41, 42syl2anc 584 . . . 4 ((𝜑 ∧ 0 ≤ 𝐷) → (∃!𝑥 ∈ ℝ (𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∨ 𝑥 = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴))) ↔ ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴))))
447negcld 11412 . . . . . . . 8 (𝜑 → -𝐵 ∈ ℂ)
4526recnd 11096 . . . . . . . . 9 (𝜑𝐷 ∈ ℂ)
4645sqrtcld 15240 . . . . . . . 8 (𝜑 → (√‘𝐷) ∈ ℂ)
4732recnd 11096 . . . . . . . 8 (𝜑 → (2 · 𝐴) ∈ ℂ)
4844, 46, 47, 37divdird 11882 . . . . . . 7 (𝜑 → ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) = ((-𝐵 / (2 · 𝐴)) + ((√‘𝐷) / (2 · 𝐴))))
4948adantr 481 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝐷) → ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) = ((-𝐵 / (2 · 𝐴)) + ((√‘𝐷) / (2 · 𝐴))))
5044, 46, 47, 37divsubdird 11883 . . . . . . . 8 (𝜑 → ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) = ((-𝐵 / (2 · 𝐴)) − ((√‘𝐷) / (2 · 𝐴))))
5150adantr 481 . . . . . . 7 ((𝜑 ∧ 0 ≤ 𝐷) → ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) = ((-𝐵 / (2 · 𝐴)) − ((√‘𝐷) / (2 · 𝐴))))
5244, 47, 37divcld 11844 . . . . . . . . 9 (𝜑 → (-𝐵 / (2 · 𝐴)) ∈ ℂ)
5352adantr 481 . . . . . . . 8 ((𝜑 ∧ 0 ≤ 𝐷) → (-𝐵 / (2 · 𝐴)) ∈ ℂ)
5446, 47, 37divcld 11844 . . . . . . . . 9 (𝜑 → ((√‘𝐷) / (2 · 𝐴)) ∈ ℂ)
5554adantr 481 . . . . . . . 8 ((𝜑 ∧ 0 ≤ 𝐷) → ((√‘𝐷) / (2 · 𝐴)) ∈ ℂ)
5653, 55negsubd 11431 . . . . . . 7 ((𝜑 ∧ 0 ≤ 𝐷) → ((-𝐵 / (2 · 𝐴)) + -((√‘𝐷) / (2 · 𝐴))) = ((-𝐵 / (2 · 𝐴)) − ((√‘𝐷) / (2 · 𝐴))))
5746adantr 481 . . . . . . . . 9 ((𝜑 ∧ 0 ≤ 𝐷) → (√‘𝐷) ∈ ℂ)
5847adantr 481 . . . . . . . . 9 ((𝜑 ∧ 0 ≤ 𝐷) → (2 · 𝐴) ∈ ℂ)
5957, 58, 38divnegd 11857 . . . . . . . 8 ((𝜑 ∧ 0 ≤ 𝐷) → -((√‘𝐷) / (2 · 𝐴)) = (-(√‘𝐷) / (2 · 𝐴)))
6059oveq2d 7345 . . . . . . 7 ((𝜑 ∧ 0 ≤ 𝐷) → ((-𝐵 / (2 · 𝐴)) + -((√‘𝐷) / (2 · 𝐴))) = ((-𝐵 / (2 · 𝐴)) + (-(√‘𝐷) / (2 · 𝐴))))
6151, 56, 603eqtr2d 2782 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝐷) → ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) = ((-𝐵 / (2 · 𝐴)) + (-(√‘𝐷) / (2 · 𝐴))))
6249, 61eqeq12d 2752 . . . . 5 ((𝜑 ∧ 0 ≤ 𝐷) → (((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) ↔ ((-𝐵 / (2 · 𝐴)) + ((√‘𝐷) / (2 · 𝐴))) = ((-𝐵 / (2 · 𝐴)) + (-(√‘𝐷) / (2 · 𝐴)))))
6346negcld 11412 . . . . . . . . 9 (𝜑 → -(√‘𝐷) ∈ ℂ)
6463, 47, 37divcld 11844 . . . . . . . 8 (𝜑 → (-(√‘𝐷) / (2 · 𝐴)) ∈ ℂ)
6564adantr 481 . . . . . . 7 ((𝜑 ∧ 0 ≤ 𝐷) → (-(√‘𝐷) / (2 · 𝐴)) ∈ ℂ)
6653, 55, 65addcand 11271 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝐷) → (((-𝐵 / (2 · 𝐴)) + ((√‘𝐷) / (2 · 𝐴))) = ((-𝐵 / (2 · 𝐴)) + (-(√‘𝐷) / (2 · 𝐴))) ↔ ((√‘𝐷) / (2 · 𝐴)) = (-(√‘𝐷) / (2 · 𝐴))))
67 div11 11754 . . . . . . . 8 (((√‘𝐷) ∈ ℂ ∧ -(√‘𝐷) ∈ ℂ ∧ ((2 · 𝐴) ∈ ℂ ∧ (2 · 𝐴) ≠ 0)) → (((√‘𝐷) / (2 · 𝐴)) = (-(√‘𝐷) / (2 · 𝐴)) ↔ (√‘𝐷) = -(√‘𝐷)))
6846, 63, 47, 37, 67syl112anc 1373 . . . . . . 7 (𝜑 → (((√‘𝐷) / (2 · 𝐴)) = (-(√‘𝐷) / (2 · 𝐴)) ↔ (√‘𝐷) = -(√‘𝐷)))
6968adantr 481 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝐷) → (((√‘𝐷) / (2 · 𝐴)) = (-(√‘𝐷) / (2 · 𝐴)) ↔ (√‘𝐷) = -(√‘𝐷)))
7057eqnegd 11789 . . . . . . 7 ((𝜑 ∧ 0 ≤ 𝐷) → ((√‘𝐷) = -(√‘𝐷) ↔ (√‘𝐷) = 0))
71 sqrt00 15066 . . . . . . . 8 ((𝐷 ∈ ℝ ∧ 0 ≤ 𝐷) → ((√‘𝐷) = 0 ↔ 𝐷 = 0))
7226, 71sylan 580 . . . . . . 7 ((𝜑 ∧ 0 ≤ 𝐷) → ((√‘𝐷) = 0 ↔ 𝐷 = 0))
7370, 72bitrd 278 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝐷) → ((√‘𝐷) = -(√‘𝐷) ↔ 𝐷 = 0))
7466, 69, 733bitrd 304 . . . . 5 ((𝜑 ∧ 0 ≤ 𝐷) → (((-𝐵 / (2 · 𝐴)) + ((√‘𝐷) / (2 · 𝐴))) = ((-𝐵 / (2 · 𝐴)) + (-(√‘𝐷) / (2 · 𝐴))) ↔ 𝐷 = 0))
7562, 74bitrd 278 . . . 4 ((𝜑 ∧ 0 ≤ 𝐷) → (((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) ↔ 𝐷 = 0))
7617, 43, 753bitrd 304 . . 3 ((𝜑 ∧ 0 ≤ 𝐷) → (∃!𝑥 ∈ ℝ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ 𝐷 = 0))
7776expcom 414 . 2 (0 ≤ 𝐷 → (𝜑 → (∃!𝑥 ∈ ℝ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ 𝐷 = 0)))
781, 4, 6, 9, 14requad01 45413 . . . . . . . 8 (𝜑 → (∃𝑥 ∈ ℝ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ 0 ≤ 𝐷))
7978notbid 317 . . . . . . 7 (𝜑 → (¬ ∃𝑥 ∈ ℝ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ ¬ 0 ≤ 𝐷))
8079biimparc 480 . . . . . 6 ((¬ 0 ≤ 𝐷𝜑) → ¬ ∃𝑥 ∈ ℝ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0)
81 reurex 3353 . . . . . 6 (∃!𝑥 ∈ ℝ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 → ∃𝑥 ∈ ℝ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0)
8280, 81nsyl 140 . . . . 5 ((¬ 0 ≤ 𝐷𝜑) → ¬ ∃!𝑥 ∈ ℝ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0)
8382pm2.21d 121 . . . 4 ((¬ 0 ≤ 𝐷𝜑) → (∃!𝑥 ∈ ℝ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 → 𝐷 = 0))
84 0red 11071 . . . . . . . 8 (𝜑 → 0 ∈ ℝ)
8526, 84ltnled 11215 . . . . . . 7 (𝜑 → (𝐷 < 0 ↔ ¬ 0 ≤ 𝐷))
8685biimparc 480 . . . . . 6 ((¬ 0 ≤ 𝐷𝜑) → 𝐷 < 0)
8786lt0ne0d 11633 . . . . 5 ((¬ 0 ≤ 𝐷𝜑) → 𝐷 ≠ 0)
88 eqneqall 2951 . . . . 5 (𝐷 = 0 → (𝐷 ≠ 0 → ∃!𝑥 ∈ ℝ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0))
8987, 88syl5com 31 . . . 4 ((¬ 0 ≤ 𝐷𝜑) → (𝐷 = 0 → ∃!𝑥 ∈ ℝ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0))
9083, 89impbid 211 . . 3 ((¬ 0 ≤ 𝐷𝜑) → (∃!𝑥 ∈ ℝ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ 𝐷 = 0))
9190ex 413 . 2 (¬ 0 ≤ 𝐷 → (𝜑 → (∃!𝑥 ∈ ℝ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ 𝐷 = 0)))
9277, 91pm2.61i 182 1 (𝜑 → (∃!𝑥 ∈ ℝ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ 𝐷 = 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844   = wceq 1540  wcel 2105  wne 2940  wrex 3070  ∃!wreu 3347   class class class wbr 5089  cfv 6473  (class class class)co 7329  cc 10962  cr 10963  0cc0 10964   + caddc 10967   · cmul 10969   < clt 11102  cle 11103  cmin 11298  -cneg 11299   / cdiv 11725  2c2 12121  4c4 12123  cexp 13875  csqrt 15035
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5240  ax-nul 5247  ax-pow 5305  ax-pr 5369  ax-un 7642  ax-cnex 11020  ax-resscn 11021  ax-1cn 11022  ax-icn 11023  ax-addcl 11024  ax-addrcl 11025  ax-mulcl 11026  ax-mulrcl 11027  ax-mulcom 11028  ax-addass 11029  ax-mulass 11030  ax-distr 11031  ax-i2m1 11032  ax-1ne0 11033  ax-1rid 11034  ax-rnegex 11035  ax-rrecex 11036  ax-cnre 11037  ax-pre-lttri 11038  ax-pre-lttrn 11039  ax-pre-ltadd 11040  ax-pre-mulgt0 11041  ax-pre-sup 11042
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-op 4579  df-uni 4852  df-iun 4940  df-br 5090  df-opab 5152  df-mpt 5173  df-tr 5207  df-id 5512  df-eprel 5518  df-po 5526  df-so 5527  df-fr 5569  df-we 5571  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6232  df-ord 6299  df-on 6300  df-lim 6301  df-suc 6302  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-f1 6478  df-fo 6479  df-f1o 6480  df-fv 6481  df-riota 7286  df-ov 7332  df-oprab 7333  df-mpo 7334  df-om 7773  df-2nd 7892  df-frecs 8159  df-wrecs 8190  df-recs 8264  df-rdg 8303  df-er 8561  df-en 8797  df-dom 8798  df-sdom 8799  df-sup 9291  df-pnf 11104  df-mnf 11105  df-xr 11106  df-ltxr 11107  df-le 11108  df-sub 11300  df-neg 11301  df-div 11726  df-nn 12067  df-2 12129  df-3 12130  df-4 12131  df-n0 12327  df-z 12413  df-uz 12676  df-rp 12824  df-seq 13815  df-exp 13876  df-cj 14901  df-re 14902  df-im 14903  df-sqrt 15037  df-abs 15038
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator