Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  quad1 Structured version   Visualization version   GIF version

Theorem quad1 47634
Description: A condition for a quadratic equation with complex coefficients to have (exactly) one complex solution. (Contributed by AV, 23-Jan-2023.)
Hypotheses
Ref Expression
quad1.a (𝜑𝐴 ∈ ℂ)
quad1.z (𝜑𝐴 ≠ 0)
quad1.b (𝜑𝐵 ∈ ℂ)
quad1.c (𝜑𝐶 ∈ ℂ)
quad1.d (𝜑𝐷 = ((𝐵↑2) − (4 · (𝐴 · 𝐶))))
Assertion
Ref Expression
quad1 (𝜑 → (∃!𝑥 ∈ ℂ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ 𝐷 = 0))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷   𝜑,𝑥

Proof of Theorem quad1
StepHypRef Expression
1 quad1.a . . . . 5 (𝜑𝐴 ∈ ℂ)
21adantr 480 . . . 4 ((𝜑𝑥 ∈ ℂ) → 𝐴 ∈ ℂ)
3 quad1.z . . . . 5 (𝜑𝐴 ≠ 0)
43adantr 480 . . . 4 ((𝜑𝑥 ∈ ℂ) → 𝐴 ≠ 0)
5 quad1.b . . . . 5 (𝜑𝐵 ∈ ℂ)
65adantr 480 . . . 4 ((𝜑𝑥 ∈ ℂ) → 𝐵 ∈ ℂ)
7 quad1.c . . . . 5 (𝜑𝐶 ∈ ℂ)
87adantr 480 . . . 4 ((𝜑𝑥 ∈ ℂ) → 𝐶 ∈ ℂ)
9 simpr 484 . . . 4 ((𝜑𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
10 quad1.d . . . . 5 (𝜑𝐷 = ((𝐵↑2) − (4 · (𝐴 · 𝐶))))
1110adantr 480 . . . 4 ((𝜑𝑥 ∈ ℂ) → 𝐷 = ((𝐵↑2) − (4 · (𝐴 · 𝐶))))
122, 4, 6, 8, 9, 11quad 26802 . . 3 ((𝜑𝑥 ∈ ℂ) → (((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ (𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∨ 𝑥 = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)))))
1312reubidva 3375 . 2 (𝜑 → (∃!𝑥 ∈ ℂ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ ∃!𝑥 ∈ ℂ (𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∨ 𝑥 = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)))))
145negcld 11581 . . . . 5 (𝜑 → -𝐵 ∈ ℂ)
155sqcld 14162 . . . . . . . 8 (𝜑 → (𝐵↑2) ∈ ℂ)
16 4cn 12325 . . . . . . . . . 10 4 ∈ ℂ
1716a1i 11 . . . . . . . . 9 (𝜑 → 4 ∈ ℂ)
181, 7mulcld 11255 . . . . . . . . 9 (𝜑 → (𝐴 · 𝐶) ∈ ℂ)
1917, 18mulcld 11255 . . . . . . . 8 (𝜑 → (4 · (𝐴 · 𝐶)) ∈ ℂ)
2015, 19subcld 11594 . . . . . . 7 (𝜑 → ((𝐵↑2) − (4 · (𝐴 · 𝐶))) ∈ ℂ)
2110, 20eqeltrd 2834 . . . . . 6 (𝜑𝐷 ∈ ℂ)
2221sqrtcld 15456 . . . . 5 (𝜑 → (√‘𝐷) ∈ ℂ)
2314, 22addcld 11254 . . . 4 (𝜑 → (-𝐵 + (√‘𝐷)) ∈ ℂ)
24 2cnd 12318 . . . . 5 (𝜑 → 2 ∈ ℂ)
2524, 1mulcld 11255 . . . 4 (𝜑 → (2 · 𝐴) ∈ ℂ)
26 2ne0 12344 . . . . . 6 2 ≠ 0
2726a1i 11 . . . . 5 (𝜑 → 2 ≠ 0)
2824, 1, 27, 3mulne0d 11889 . . . 4 (𝜑 → (2 · 𝐴) ≠ 0)
2923, 25, 28divcld 12017 . . 3 (𝜑 → ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∈ ℂ)
3014, 22subcld 11594 . . . 4 (𝜑 → (-𝐵 − (√‘𝐷)) ∈ ℂ)
3130, 25, 28divcld 12017 . . 3 (𝜑 → ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) ∈ ℂ)
32 euoreqb 47138 . . 3 ((((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∈ ℂ ∧ ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) ∈ ℂ) → (∃!𝑥 ∈ ℂ (𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∨ 𝑥 = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴))) ↔ ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴))))
3329, 31, 32syl2anc 584 . 2 (𝜑 → (∃!𝑥 ∈ ℂ (𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∨ 𝑥 = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴))) ↔ ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴))))
3414, 22, 25, 28divdird 12055 . . . 4 (𝜑 → ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) = ((-𝐵 / (2 · 𝐴)) + ((√‘𝐷) / (2 · 𝐴))))
3514, 22, 25, 28divsubdird 12056 . . . . 5 (𝜑 → ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) = ((-𝐵 / (2 · 𝐴)) − ((√‘𝐷) / (2 · 𝐴))))
3614, 25, 28divcld 12017 . . . . . 6 (𝜑 → (-𝐵 / (2 · 𝐴)) ∈ ℂ)
3722, 25, 28divcld 12017 . . . . . 6 (𝜑 → ((√‘𝐷) / (2 · 𝐴)) ∈ ℂ)
3836, 37negsubd 11600 . . . . 5 (𝜑 → ((-𝐵 / (2 · 𝐴)) + -((√‘𝐷) / (2 · 𝐴))) = ((-𝐵 / (2 · 𝐴)) − ((√‘𝐷) / (2 · 𝐴))))
3922, 25, 28divnegd 12030 . . . . . 6 (𝜑 → -((√‘𝐷) / (2 · 𝐴)) = (-(√‘𝐷) / (2 · 𝐴)))
4039oveq2d 7421 . . . . 5 (𝜑 → ((-𝐵 / (2 · 𝐴)) + -((√‘𝐷) / (2 · 𝐴))) = ((-𝐵 / (2 · 𝐴)) + (-(√‘𝐷) / (2 · 𝐴))))
4135, 38, 403eqtr2d 2776 . . . 4 (𝜑 → ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) = ((-𝐵 / (2 · 𝐴)) + (-(√‘𝐷) / (2 · 𝐴))))
4234, 41eqeq12d 2751 . . 3 (𝜑 → (((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) ↔ ((-𝐵 / (2 · 𝐴)) + ((√‘𝐷) / (2 · 𝐴))) = ((-𝐵 / (2 · 𝐴)) + (-(√‘𝐷) / (2 · 𝐴)))))
4322negcld 11581 . . . . . 6 (𝜑 → -(√‘𝐷) ∈ ℂ)
4443, 25, 28divcld 12017 . . . . 5 (𝜑 → (-(√‘𝐷) / (2 · 𝐴)) ∈ ℂ)
4536, 37, 44addcand 11438 . . . 4 (𝜑 → (((-𝐵 / (2 · 𝐴)) + ((√‘𝐷) / (2 · 𝐴))) = ((-𝐵 / (2 · 𝐴)) + (-(√‘𝐷) / (2 · 𝐴))) ↔ ((√‘𝐷) / (2 · 𝐴)) = (-(√‘𝐷) / (2 · 𝐴))))
46 div11 11924 . . . . 5 (((√‘𝐷) ∈ ℂ ∧ -(√‘𝐷) ∈ ℂ ∧ ((2 · 𝐴) ∈ ℂ ∧ (2 · 𝐴) ≠ 0)) → (((√‘𝐷) / (2 · 𝐴)) = (-(√‘𝐷) / (2 · 𝐴)) ↔ (√‘𝐷) = -(√‘𝐷)))
4722, 43, 25, 28, 46syl112anc 1376 . . . 4 (𝜑 → (((√‘𝐷) / (2 · 𝐴)) = (-(√‘𝐷) / (2 · 𝐴)) ↔ (√‘𝐷) = -(√‘𝐷)))
4822eqnegd 11962 . . . . 5 (𝜑 → ((√‘𝐷) = -(√‘𝐷) ↔ (√‘𝐷) = 0))
49 cnsqrt00 15411 . . . . . 6 (𝐷 ∈ ℂ → ((√‘𝐷) = 0 ↔ 𝐷 = 0))
5021, 49syl 17 . . . . 5 (𝜑 → ((√‘𝐷) = 0 ↔ 𝐷 = 0))
5148, 50bitrd 279 . . . 4 (𝜑 → ((√‘𝐷) = -(√‘𝐷) ↔ 𝐷 = 0))
5245, 47, 513bitrd 305 . . 3 (𝜑 → (((-𝐵 / (2 · 𝐴)) + ((√‘𝐷) / (2 · 𝐴))) = ((-𝐵 / (2 · 𝐴)) + (-(√‘𝐷) / (2 · 𝐴))) ↔ 𝐷 = 0))
5342, 52bitrd 279 . 2 (𝜑 → (((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) ↔ 𝐷 = 0))
5413, 33, 533bitrd 305 1 (𝜑 → (∃!𝑥 ∈ ℂ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ 𝐷 = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2108  wne 2932  ∃!wreu 3357  cfv 6531  (class class class)co 7405  cc 11127  0cc0 11129   + caddc 11132   · cmul 11134  cmin 11466  -cneg 11467   / cdiv 11894  2c2 12295  4c4 12297  cexp 14079  csqrt 15252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-sup 9454  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-n0 12502  df-z 12589  df-uz 12853  df-rp 13009  df-seq 14020  df-exp 14080  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator