Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  quad1 Structured version   Visualization version   GIF version

Theorem quad1 47608
Description: A condition for a quadratic equation with complex coefficients to have (exactly) one complex solution. (Contributed by AV, 23-Jan-2023.)
Hypotheses
Ref Expression
quad1.a (𝜑𝐴 ∈ ℂ)
quad1.z (𝜑𝐴 ≠ 0)
quad1.b (𝜑𝐵 ∈ ℂ)
quad1.c (𝜑𝐶 ∈ ℂ)
quad1.d (𝜑𝐷 = ((𝐵↑2) − (4 · (𝐴 · 𝐶))))
Assertion
Ref Expression
quad1 (𝜑 → (∃!𝑥 ∈ ℂ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ 𝐷 = 0))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷   𝜑,𝑥

Proof of Theorem quad1
StepHypRef Expression
1 quad1.a . . . . 5 (𝜑𝐴 ∈ ℂ)
21adantr 480 . . . 4 ((𝜑𝑥 ∈ ℂ) → 𝐴 ∈ ℂ)
3 quad1.z . . . . 5 (𝜑𝐴 ≠ 0)
43adantr 480 . . . 4 ((𝜑𝑥 ∈ ℂ) → 𝐴 ≠ 0)
5 quad1.b . . . . 5 (𝜑𝐵 ∈ ℂ)
65adantr 480 . . . 4 ((𝜑𝑥 ∈ ℂ) → 𝐵 ∈ ℂ)
7 quad1.c . . . . 5 (𝜑𝐶 ∈ ℂ)
87adantr 480 . . . 4 ((𝜑𝑥 ∈ ℂ) → 𝐶 ∈ ℂ)
9 simpr 484 . . . 4 ((𝜑𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
10 quad1.d . . . . 5 (𝜑𝐷 = ((𝐵↑2) − (4 · (𝐴 · 𝐶))))
1110adantr 480 . . . 4 ((𝜑𝑥 ∈ ℂ) → 𝐷 = ((𝐵↑2) − (4 · (𝐴 · 𝐶))))
122, 4, 6, 8, 9, 11quad 26748 . . 3 ((𝜑𝑥 ∈ ℂ) → (((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ (𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∨ 𝑥 = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)))))
1312reubidva 3359 . 2 (𝜑 → (∃!𝑥 ∈ ℂ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ ∃!𝑥 ∈ ℂ (𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∨ 𝑥 = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)))))
145negcld 11462 . . . . 5 (𝜑 → -𝐵 ∈ ℂ)
155sqcld 14051 . . . . . . . 8 (𝜑 → (𝐵↑2) ∈ ℂ)
16 4cn 12213 . . . . . . . . . 10 4 ∈ ℂ
1716a1i 11 . . . . . . . . 9 (𝜑 → 4 ∈ ℂ)
181, 7mulcld 11135 . . . . . . . . 9 (𝜑 → (𝐴 · 𝐶) ∈ ℂ)
1917, 18mulcld 11135 . . . . . . . 8 (𝜑 → (4 · (𝐴 · 𝐶)) ∈ ℂ)
2015, 19subcld 11475 . . . . . . 7 (𝜑 → ((𝐵↑2) − (4 · (𝐴 · 𝐶))) ∈ ℂ)
2110, 20eqeltrd 2828 . . . . . 6 (𝜑𝐷 ∈ ℂ)
2221sqrtcld 15347 . . . . 5 (𝜑 → (√‘𝐷) ∈ ℂ)
2314, 22addcld 11134 . . . 4 (𝜑 → (-𝐵 + (√‘𝐷)) ∈ ℂ)
24 2cnd 12206 . . . . 5 (𝜑 → 2 ∈ ℂ)
2524, 1mulcld 11135 . . . 4 (𝜑 → (2 · 𝐴) ∈ ℂ)
26 2ne0 12232 . . . . . 6 2 ≠ 0
2726a1i 11 . . . . 5 (𝜑 → 2 ≠ 0)
2824, 1, 27, 3mulne0d 11772 . . . 4 (𝜑 → (2 · 𝐴) ≠ 0)
2923, 25, 28divcld 11900 . . 3 (𝜑 → ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∈ ℂ)
3014, 22subcld 11475 . . . 4 (𝜑 → (-𝐵 − (√‘𝐷)) ∈ ℂ)
3130, 25, 28divcld 11900 . . 3 (𝜑 → ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) ∈ ℂ)
32 euoreqb 47097 . . 3 ((((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∈ ℂ ∧ ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) ∈ ℂ) → (∃!𝑥 ∈ ℂ (𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∨ 𝑥 = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴))) ↔ ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴))))
3329, 31, 32syl2anc 584 . 2 (𝜑 → (∃!𝑥 ∈ ℂ (𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∨ 𝑥 = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴))) ↔ ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴))))
3414, 22, 25, 28divdird 11938 . . . 4 (𝜑 → ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) = ((-𝐵 / (2 · 𝐴)) + ((√‘𝐷) / (2 · 𝐴))))
3514, 22, 25, 28divsubdird 11939 . . . . 5 (𝜑 → ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) = ((-𝐵 / (2 · 𝐴)) − ((√‘𝐷) / (2 · 𝐴))))
3614, 25, 28divcld 11900 . . . . . 6 (𝜑 → (-𝐵 / (2 · 𝐴)) ∈ ℂ)
3722, 25, 28divcld 11900 . . . . . 6 (𝜑 → ((√‘𝐷) / (2 · 𝐴)) ∈ ℂ)
3836, 37negsubd 11481 . . . . 5 (𝜑 → ((-𝐵 / (2 · 𝐴)) + -((√‘𝐷) / (2 · 𝐴))) = ((-𝐵 / (2 · 𝐴)) − ((√‘𝐷) / (2 · 𝐴))))
3922, 25, 28divnegd 11913 . . . . . 6 (𝜑 → -((√‘𝐷) / (2 · 𝐴)) = (-(√‘𝐷) / (2 · 𝐴)))
4039oveq2d 7365 . . . . 5 (𝜑 → ((-𝐵 / (2 · 𝐴)) + -((√‘𝐷) / (2 · 𝐴))) = ((-𝐵 / (2 · 𝐴)) + (-(√‘𝐷) / (2 · 𝐴))))
4135, 38, 403eqtr2d 2770 . . . 4 (𝜑 → ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) = ((-𝐵 / (2 · 𝐴)) + (-(√‘𝐷) / (2 · 𝐴))))
4234, 41eqeq12d 2745 . . 3 (𝜑 → (((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) ↔ ((-𝐵 / (2 · 𝐴)) + ((√‘𝐷) / (2 · 𝐴))) = ((-𝐵 / (2 · 𝐴)) + (-(√‘𝐷) / (2 · 𝐴)))))
4322negcld 11462 . . . . . 6 (𝜑 → -(√‘𝐷) ∈ ℂ)
4443, 25, 28divcld 11900 . . . . 5 (𝜑 → (-(√‘𝐷) / (2 · 𝐴)) ∈ ℂ)
4536, 37, 44addcand 11319 . . . 4 (𝜑 → (((-𝐵 / (2 · 𝐴)) + ((√‘𝐷) / (2 · 𝐴))) = ((-𝐵 / (2 · 𝐴)) + (-(√‘𝐷) / (2 · 𝐴))) ↔ ((√‘𝐷) / (2 · 𝐴)) = (-(√‘𝐷) / (2 · 𝐴))))
46 div11 11807 . . . . 5 (((√‘𝐷) ∈ ℂ ∧ -(√‘𝐷) ∈ ℂ ∧ ((2 · 𝐴) ∈ ℂ ∧ (2 · 𝐴) ≠ 0)) → (((√‘𝐷) / (2 · 𝐴)) = (-(√‘𝐷) / (2 · 𝐴)) ↔ (√‘𝐷) = -(√‘𝐷)))
4722, 43, 25, 28, 46syl112anc 1376 . . . 4 (𝜑 → (((√‘𝐷) / (2 · 𝐴)) = (-(√‘𝐷) / (2 · 𝐴)) ↔ (√‘𝐷) = -(√‘𝐷)))
4822eqnegd 11845 . . . . 5 (𝜑 → ((√‘𝐷) = -(√‘𝐷) ↔ (√‘𝐷) = 0))
49 cnsqrt00 15300 . . . . . 6 (𝐷 ∈ ℂ → ((√‘𝐷) = 0 ↔ 𝐷 = 0))
5021, 49syl 17 . . . . 5 (𝜑 → ((√‘𝐷) = 0 ↔ 𝐷 = 0))
5148, 50bitrd 279 . . . 4 (𝜑 → ((√‘𝐷) = -(√‘𝐷) ↔ 𝐷 = 0))
5245, 47, 513bitrd 305 . . 3 (𝜑 → (((-𝐵 / (2 · 𝐴)) + ((√‘𝐷) / (2 · 𝐴))) = ((-𝐵 / (2 · 𝐴)) + (-(√‘𝐷) / (2 · 𝐴))) ↔ 𝐷 = 0))
5342, 52bitrd 279 . 2 (𝜑 → (((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) ↔ 𝐷 = 0))
5413, 33, 533bitrd 305 1 (𝜑 → (∃!𝑥 ∈ ℂ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ 𝐷 = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  ∃!wreu 3341  cfv 6482  (class class class)co 7349  cc 11007  0cc0 11009   + caddc 11012   · cmul 11014  cmin 11347  -cneg 11348   / cdiv 11777  2c2 12183  4c4 12185  cexp 13968  csqrt 15140
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-sup 9332  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator