Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  quad1 Structured version   Visualization version   GIF version

Theorem quad1 43957
Description: A condition for a quadratic equation with complex coefficients to have (exactly) one complex solution. (Contributed by AV, 23-Jan-2023.)
Hypotheses
Ref Expression
quad1.a (𝜑𝐴 ∈ ℂ)
quad1.z (𝜑𝐴 ≠ 0)
quad1.b (𝜑𝐵 ∈ ℂ)
quad1.c (𝜑𝐶 ∈ ℂ)
quad1.d (𝜑𝐷 = ((𝐵↑2) − (4 · (𝐴 · 𝐶))))
Assertion
Ref Expression
quad1 (𝜑 → (∃!𝑥 ∈ ℂ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ 𝐷 = 0))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷   𝜑,𝑥

Proof of Theorem quad1
StepHypRef Expression
1 quad1.a . . . . 5 (𝜑𝐴 ∈ ℂ)
21adantr 484 . . . 4 ((𝜑𝑥 ∈ ℂ) → 𝐴 ∈ ℂ)
3 quad1.z . . . . 5 (𝜑𝐴 ≠ 0)
43adantr 484 . . . 4 ((𝜑𝑥 ∈ ℂ) → 𝐴 ≠ 0)
5 quad1.b . . . . 5 (𝜑𝐵 ∈ ℂ)
65adantr 484 . . . 4 ((𝜑𝑥 ∈ ℂ) → 𝐵 ∈ ℂ)
7 quad1.c . . . . 5 (𝜑𝐶 ∈ ℂ)
87adantr 484 . . . 4 ((𝜑𝑥 ∈ ℂ) → 𝐶 ∈ ℂ)
9 simpr 488 . . . 4 ((𝜑𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
10 quad1.d . . . . 5 (𝜑𝐷 = ((𝐵↑2) − (4 · (𝐴 · 𝐶))))
1110adantr 484 . . . 4 ((𝜑𝑥 ∈ ℂ) → 𝐷 = ((𝐵↑2) − (4 · (𝐴 · 𝐶))))
122, 4, 6, 8, 9, 11quad 25405 . . 3 ((𝜑𝑥 ∈ ℂ) → (((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ (𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∨ 𝑥 = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)))))
1312reubidva 3373 . 2 (𝜑 → (∃!𝑥 ∈ ℂ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ ∃!𝑥 ∈ ℂ (𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∨ 𝑥 = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)))))
145negcld 10961 . . . . 5 (𝜑 → -𝐵 ∈ ℂ)
155sqcld 13492 . . . . . . . 8 (𝜑 → (𝐵↑2) ∈ ℂ)
16 4cn 11700 . . . . . . . . . 10 4 ∈ ℂ
1716a1i 11 . . . . . . . . 9 (𝜑 → 4 ∈ ℂ)
181, 7mulcld 10638 . . . . . . . . 9 (𝜑 → (𝐴 · 𝐶) ∈ ℂ)
1917, 18mulcld 10638 . . . . . . . 8 (𝜑 → (4 · (𝐴 · 𝐶)) ∈ ℂ)
2015, 19subcld 10974 . . . . . . 7 (𝜑 → ((𝐵↑2) − (4 · (𝐴 · 𝐶))) ∈ ℂ)
2110, 20eqeltrd 2912 . . . . . 6 (𝜑𝐷 ∈ ℂ)
2221sqrtcld 14776 . . . . 5 (𝜑 → (√‘𝐷) ∈ ℂ)
2314, 22addcld 10637 . . . 4 (𝜑 → (-𝐵 + (√‘𝐷)) ∈ ℂ)
24 2cnd 11693 . . . . 5 (𝜑 → 2 ∈ ℂ)
2524, 1mulcld 10638 . . . 4 (𝜑 → (2 · 𝐴) ∈ ℂ)
26 2ne0 11719 . . . . . 6 2 ≠ 0
2726a1i 11 . . . . 5 (𝜑 → 2 ≠ 0)
2824, 1, 27, 3mulne0d 11269 . . . 4 (𝜑 → (2 · 𝐴) ≠ 0)
2923, 25, 28divcld 11393 . . 3 (𝜑 → ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∈ ℂ)
3014, 22subcld 10974 . . . 4 (𝜑 → (-𝐵 − (√‘𝐷)) ∈ ℂ)
3130, 25, 28divcld 11393 . . 3 (𝜑 → ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) ∈ ℂ)
32 euoreqb 43484 . . 3 ((((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∈ ℂ ∧ ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) ∈ ℂ) → (∃!𝑥 ∈ ℂ (𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∨ 𝑥 = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴))) ↔ ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴))))
3329, 31, 32syl2anc 587 . 2 (𝜑 → (∃!𝑥 ∈ ℂ (𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∨ 𝑥 = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴))) ↔ ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴))))
3414, 22, 25, 28divdird 11431 . . . 4 (𝜑 → ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) = ((-𝐵 / (2 · 𝐴)) + ((√‘𝐷) / (2 · 𝐴))))
3514, 22, 25, 28divsubdird 11432 . . . . 5 (𝜑 → ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) = ((-𝐵 / (2 · 𝐴)) − ((√‘𝐷) / (2 · 𝐴))))
3614, 25, 28divcld 11393 . . . . . 6 (𝜑 → (-𝐵 / (2 · 𝐴)) ∈ ℂ)
3722, 25, 28divcld 11393 . . . . . 6 (𝜑 → ((√‘𝐷) / (2 · 𝐴)) ∈ ℂ)
3836, 37negsubd 10980 . . . . 5 (𝜑 → ((-𝐵 / (2 · 𝐴)) + -((√‘𝐷) / (2 · 𝐴))) = ((-𝐵 / (2 · 𝐴)) − ((√‘𝐷) / (2 · 𝐴))))
3922, 25, 28divnegd 11406 . . . . . 6 (𝜑 → -((√‘𝐷) / (2 · 𝐴)) = (-(√‘𝐷) / (2 · 𝐴)))
4039oveq2d 7146 . . . . 5 (𝜑 → ((-𝐵 / (2 · 𝐴)) + -((√‘𝐷) / (2 · 𝐴))) = ((-𝐵 / (2 · 𝐴)) + (-(√‘𝐷) / (2 · 𝐴))))
4135, 38, 403eqtr2d 2862 . . . 4 (𝜑 → ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) = ((-𝐵 / (2 · 𝐴)) + (-(√‘𝐷) / (2 · 𝐴))))
4234, 41eqeq12d 2837 . . 3 (𝜑 → (((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) ↔ ((-𝐵 / (2 · 𝐴)) + ((√‘𝐷) / (2 · 𝐴))) = ((-𝐵 / (2 · 𝐴)) + (-(√‘𝐷) / (2 · 𝐴)))))
4322negcld 10961 . . . . . 6 (𝜑 → -(√‘𝐷) ∈ ℂ)
4443, 25, 28divcld 11393 . . . . 5 (𝜑 → (-(√‘𝐷) / (2 · 𝐴)) ∈ ℂ)
4536, 37, 44addcand 10820 . . . 4 (𝜑 → (((-𝐵 / (2 · 𝐴)) + ((√‘𝐷) / (2 · 𝐴))) = ((-𝐵 / (2 · 𝐴)) + (-(√‘𝐷) / (2 · 𝐴))) ↔ ((√‘𝐷) / (2 · 𝐴)) = (-(√‘𝐷) / (2 · 𝐴))))
46 div11 11303 . . . . 5 (((√‘𝐷) ∈ ℂ ∧ -(√‘𝐷) ∈ ℂ ∧ ((2 · 𝐴) ∈ ℂ ∧ (2 · 𝐴) ≠ 0)) → (((√‘𝐷) / (2 · 𝐴)) = (-(√‘𝐷) / (2 · 𝐴)) ↔ (√‘𝐷) = -(√‘𝐷)))
4722, 43, 25, 28, 46syl112anc 1371 . . . 4 (𝜑 → (((√‘𝐷) / (2 · 𝐴)) = (-(√‘𝐷) / (2 · 𝐴)) ↔ (√‘𝐷) = -(√‘𝐷)))
4822eqnegd 11338 . . . . 5 (𝜑 → ((√‘𝐷) = -(√‘𝐷) ↔ (√‘𝐷) = 0))
49 cnsqrt00 14731 . . . . . 6 (𝐷 ∈ ℂ → ((√‘𝐷) = 0 ↔ 𝐷 = 0))
5021, 49syl 17 . . . . 5 (𝜑 → ((√‘𝐷) = 0 ↔ 𝐷 = 0))
5148, 50bitrd 282 . . . 4 (𝜑 → ((√‘𝐷) = -(√‘𝐷) ↔ 𝐷 = 0))
5245, 47, 513bitrd 308 . . 3 (𝜑 → (((-𝐵 / (2 · 𝐴)) + ((√‘𝐷) / (2 · 𝐴))) = ((-𝐵 / (2 · 𝐴)) + (-(√‘𝐷) / (2 · 𝐴))) ↔ 𝐷 = 0))
5342, 52bitrd 282 . 2 (𝜑 → (((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) ↔ 𝐷 = 0))
5413, 33, 533bitrd 308 1 (𝜑 → (∃!𝑥 ∈ ℂ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ 𝐷 = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 844   = wceq 1538  wcel 2115  wne 3007  ∃!wreu 3128  cfv 6328  (class class class)co 7130  cc 10512  0cc0 10514   + caddc 10517   · cmul 10519  cmin 10847  -cneg 10848   / cdiv 11274  2c2 11670  4c4 11672  cexp 13413  csqrt 14571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591  ax-pre-sup 10592
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rmo 3134  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-iun 4894  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-om 7556  df-2nd 7665  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-er 8264  df-en 8485  df-dom 8486  df-sdom 8487  df-sup 8882  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-div 11275  df-nn 11616  df-2 11678  df-3 11679  df-4 11680  df-n0 11876  df-z 11960  df-uz 12222  df-rp 12368  df-seq 13353  df-exp 13414  df-cj 14437  df-re 14438  df-im 14439  df-sqrt 14573  df-abs 14574
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator