| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simprlr | Structured version Visualization version GIF version | ||
| Description: Simplification of a conjunction. (Contributed by Jeff Hankins, 28-Jul-2009.) |
| Ref | Expression |
|---|---|
| simprlr | ⊢ ((𝜑 ∧ ((𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜒) | |
| 2 | 1 | ad2antrl 728 | 1 ⊢ ((𝜑 ∧ ((𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜒) |
| Copyright terms: Public domain | W3C validator |