MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1cof1 Structured version   Visualization version   GIF version

Theorem f1cof1 6665
Description: Composition of two one-to-one functions. Generalization of f1co 6666. (Contributed by AV, 18-Sep-2024.)
Assertion
Ref Expression
f1cof1 ((𝐹:𝐶1-1𝐷𝐺:𝐴1-1𝐵) → (𝐹𝐺):(𝐺𝐶)–1-1𝐷)

Proof of Theorem f1cof1
StepHypRef Expression
1 df-f1 6423 . . 3 (𝐹:𝐶1-1𝐷 ↔ (𝐹:𝐶𝐷 ∧ Fun 𝐹))
2 df-f1 6423 . . 3 (𝐺:𝐴1-1𝐵 ↔ (𝐺:𝐴𝐵 ∧ Fun 𝐺))
3 ffun 6587 . . . . . 6 (𝐺:𝐴𝐵 → Fun 𝐺)
4 fcof 6607 . . . . . 6 ((𝐹:𝐶𝐷 ∧ Fun 𝐺) → (𝐹𝐺):(𝐺𝐶)⟶𝐷)
53, 4sylan2 592 . . . . 5 ((𝐹:𝐶𝐷𝐺:𝐴𝐵) → (𝐹𝐺):(𝐺𝐶)⟶𝐷)
6 funco 6458 . . . . . . 7 ((Fun 𝐺 ∧ Fun 𝐹) → Fun (𝐺𝐹))
7 cnvco 5783 . . . . . . . 8 (𝐹𝐺) = (𝐺𝐹)
87funeqi 6439 . . . . . . 7 (Fun (𝐹𝐺) ↔ Fun (𝐺𝐹))
96, 8sylibr 233 . . . . . 6 ((Fun 𝐺 ∧ Fun 𝐹) → Fun (𝐹𝐺))
109ancoms 458 . . . . 5 ((Fun 𝐹 ∧ Fun 𝐺) → Fun (𝐹𝐺))
115, 10anim12i 612 . . . 4 (((𝐹:𝐶𝐷𝐺:𝐴𝐵) ∧ (Fun 𝐹 ∧ Fun 𝐺)) → ((𝐹𝐺):(𝐺𝐶)⟶𝐷 ∧ Fun (𝐹𝐺)))
1211an4s 656 . . 3 (((𝐹:𝐶𝐷 ∧ Fun 𝐹) ∧ (𝐺:𝐴𝐵 ∧ Fun 𝐺)) → ((𝐹𝐺):(𝐺𝐶)⟶𝐷 ∧ Fun (𝐹𝐺)))
131, 2, 12syl2anb 597 . 2 ((𝐹:𝐶1-1𝐷𝐺:𝐴1-1𝐵) → ((𝐹𝐺):(𝐺𝐶)⟶𝐷 ∧ Fun (𝐹𝐺)))
14 df-f1 6423 . 2 ((𝐹𝐺):(𝐺𝐶)–1-1𝐷 ↔ ((𝐹𝐺):(𝐺𝐶)⟶𝐷 ∧ Fun (𝐹𝐺)))
1513, 14sylibr 233 1 ((𝐹:𝐶1-1𝐷𝐺:𝐴1-1𝐵) → (𝐹𝐺):(𝐺𝐶)–1-1𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  ccnv 5579  cima 5583  ccom 5584  Fun wfun 6412  wf 6414  1-1wf1 6415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423
This theorem is referenced by:  f1co  6666  f1cof1b  44456
  Copyright terms: Public domain W3C validator