MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1cof1 Structured version   Visualization version   GIF version

Theorem f1cof1 6604
Description: Composition of two one-to-one functions. Generalization of f1co 6605. (Contributed by AV, 18-Sep-2024.)
Assertion
Ref Expression
f1cof1 ((𝐹:𝐶1-1𝐷𝐺:𝐴1-1𝐵) → (𝐹𝐺):(𝐺𝐶)–1-1𝐷)

Proof of Theorem f1cof1
StepHypRef Expression
1 df-f1 6363 . . 3 (𝐹:𝐶1-1𝐷 ↔ (𝐹:𝐶𝐷 ∧ Fun 𝐹))
2 df-f1 6363 . . 3 (𝐺:𝐴1-1𝐵 ↔ (𝐺:𝐴𝐵 ∧ Fun 𝐺))
3 ffun 6526 . . . . . 6 (𝐺:𝐴𝐵 → Fun 𝐺)
4 fcof 6546 . . . . . 6 ((𝐹:𝐶𝐷 ∧ Fun 𝐺) → (𝐹𝐺):(𝐺𝐶)⟶𝐷)
53, 4sylan2 596 . . . . 5 ((𝐹:𝐶𝐷𝐺:𝐴𝐵) → (𝐹𝐺):(𝐺𝐶)⟶𝐷)
6 funco 6398 . . . . . . 7 ((Fun 𝐺 ∧ Fun 𝐹) → Fun (𝐺𝐹))
7 cnvco 5739 . . . . . . . 8 (𝐹𝐺) = (𝐺𝐹)
87funeqi 6379 . . . . . . 7 (Fun (𝐹𝐺) ↔ Fun (𝐺𝐹))
96, 8sylibr 237 . . . . . 6 ((Fun 𝐺 ∧ Fun 𝐹) → Fun (𝐹𝐺))
109ancoms 462 . . . . 5 ((Fun 𝐹 ∧ Fun 𝐺) → Fun (𝐹𝐺))
115, 10anim12i 616 . . . 4 (((𝐹:𝐶𝐷𝐺:𝐴𝐵) ∧ (Fun 𝐹 ∧ Fun 𝐺)) → ((𝐹𝐺):(𝐺𝐶)⟶𝐷 ∧ Fun (𝐹𝐺)))
1211an4s 660 . . 3 (((𝐹:𝐶𝐷 ∧ Fun 𝐹) ∧ (𝐺:𝐴𝐵 ∧ Fun 𝐺)) → ((𝐹𝐺):(𝐺𝐶)⟶𝐷 ∧ Fun (𝐹𝐺)))
131, 2, 12syl2anb 601 . 2 ((𝐹:𝐶1-1𝐷𝐺:𝐴1-1𝐵) → ((𝐹𝐺):(𝐺𝐶)⟶𝐷 ∧ Fun (𝐹𝐺)))
14 df-f1 6363 . 2 ((𝐹𝐺):(𝐺𝐶)–1-1𝐷 ↔ ((𝐹𝐺):(𝐺𝐶)⟶𝐷 ∧ Fun (𝐹𝐺)))
1513, 14sylibr 237 1 ((𝐹:𝐶1-1𝐷𝐺:𝐴1-1𝐵) → (𝐹𝐺):(𝐺𝐶)–1-1𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  ccnv 5535  cima 5539  ccom 5540  Fun wfun 6352  wf 6354  1-1wf1 6355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pr 5307
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3400  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-sn 4528  df-pr 4530  df-op 4534  df-br 5040  df-opab 5102  df-id 5440  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363
This theorem is referenced by:  f1co  6605  f1cof1b  44184
  Copyright terms: Public domain W3C validator