MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1cof1 Structured version   Visualization version   GIF version

Theorem f1cof1 6814
Description: Composition of two one-to-one functions. Generalization of f1co 6815. (Contributed by AV, 18-Sep-2024.)
Assertion
Ref Expression
f1cof1 ((𝐹:𝐶1-1𝐷𝐺:𝐴1-1𝐵) → (𝐹𝐺):(𝐺𝐶)–1-1𝐷)

Proof of Theorem f1cof1
StepHypRef Expression
1 df-f1 6566 . . 3 (𝐹:𝐶1-1𝐷 ↔ (𝐹:𝐶𝐷 ∧ Fun 𝐹))
2 df-f1 6566 . . 3 (𝐺:𝐴1-1𝐵 ↔ (𝐺:𝐴𝐵 ∧ Fun 𝐺))
3 ffun 6739 . . . . . 6 (𝐺:𝐴𝐵 → Fun 𝐺)
4 fcof 6759 . . . . . 6 ((𝐹:𝐶𝐷 ∧ Fun 𝐺) → (𝐹𝐺):(𝐺𝐶)⟶𝐷)
53, 4sylan2 593 . . . . 5 ((𝐹:𝐶𝐷𝐺:𝐴𝐵) → (𝐹𝐺):(𝐺𝐶)⟶𝐷)
6 funco 6606 . . . . . . 7 ((Fun 𝐺 ∧ Fun 𝐹) → Fun (𝐺𝐹))
7 cnvco 5896 . . . . . . . 8 (𝐹𝐺) = (𝐺𝐹)
87funeqi 6587 . . . . . . 7 (Fun (𝐹𝐺) ↔ Fun (𝐺𝐹))
96, 8sylibr 234 . . . . . 6 ((Fun 𝐺 ∧ Fun 𝐹) → Fun (𝐹𝐺))
109ancoms 458 . . . . 5 ((Fun 𝐹 ∧ Fun 𝐺) → Fun (𝐹𝐺))
115, 10anim12i 613 . . . 4 (((𝐹:𝐶𝐷𝐺:𝐴𝐵) ∧ (Fun 𝐹 ∧ Fun 𝐺)) → ((𝐹𝐺):(𝐺𝐶)⟶𝐷 ∧ Fun (𝐹𝐺)))
1211an4s 660 . . 3 (((𝐹:𝐶𝐷 ∧ Fun 𝐹) ∧ (𝐺:𝐴𝐵 ∧ Fun 𝐺)) → ((𝐹𝐺):(𝐺𝐶)⟶𝐷 ∧ Fun (𝐹𝐺)))
131, 2, 12syl2anb 598 . 2 ((𝐹:𝐶1-1𝐷𝐺:𝐴1-1𝐵) → ((𝐹𝐺):(𝐺𝐶)⟶𝐷 ∧ Fun (𝐹𝐺)))
14 df-f1 6566 . 2 ((𝐹𝐺):(𝐺𝐶)–1-1𝐷 ↔ ((𝐹𝐺):(𝐺𝐶)⟶𝐷 ∧ Fun (𝐹𝐺)))
1513, 14sylibr 234 1 ((𝐹:𝐶1-1𝐷𝐺:𝐴1-1𝐵) → (𝐹𝐺):(𝐺𝐶)–1-1𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  ccnv 5684  cima 5688  ccom 5689  Fun wfun 6555  wf 6557  1-1wf1 6558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-br 5144  df-opab 5206  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566
This theorem is referenced by:  f1co  6815  f1cof1b  47089
  Copyright terms: Public domain W3C validator