MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1cof1 Structured version   Visualization version   GIF version

Theorem f1cof1 6815
Description: Composition of two one-to-one functions. Generalization of f1co 6816. (Contributed by AV, 18-Sep-2024.)
Assertion
Ref Expression
f1cof1 ((𝐹:𝐶1-1𝐷𝐺:𝐴1-1𝐵) → (𝐹𝐺):(𝐺𝐶)–1-1𝐷)

Proof of Theorem f1cof1
StepHypRef Expression
1 df-f1 6568 . . 3 (𝐹:𝐶1-1𝐷 ↔ (𝐹:𝐶𝐷 ∧ Fun 𝐹))
2 df-f1 6568 . . 3 (𝐺:𝐴1-1𝐵 ↔ (𝐺:𝐴𝐵 ∧ Fun 𝐺))
3 ffun 6740 . . . . . 6 (𝐺:𝐴𝐵 → Fun 𝐺)
4 fcof 6760 . . . . . 6 ((𝐹:𝐶𝐷 ∧ Fun 𝐺) → (𝐹𝐺):(𝐺𝐶)⟶𝐷)
53, 4sylan2 593 . . . . 5 ((𝐹:𝐶𝐷𝐺:𝐴𝐵) → (𝐹𝐺):(𝐺𝐶)⟶𝐷)
6 funco 6608 . . . . . . 7 ((Fun 𝐺 ∧ Fun 𝐹) → Fun (𝐺𝐹))
7 cnvco 5899 . . . . . . . 8 (𝐹𝐺) = (𝐺𝐹)
87funeqi 6589 . . . . . . 7 (Fun (𝐹𝐺) ↔ Fun (𝐺𝐹))
96, 8sylibr 234 . . . . . 6 ((Fun 𝐺 ∧ Fun 𝐹) → Fun (𝐹𝐺))
109ancoms 458 . . . . 5 ((Fun 𝐹 ∧ Fun 𝐺) → Fun (𝐹𝐺))
115, 10anim12i 613 . . . 4 (((𝐹:𝐶𝐷𝐺:𝐴𝐵) ∧ (Fun 𝐹 ∧ Fun 𝐺)) → ((𝐹𝐺):(𝐺𝐶)⟶𝐷 ∧ Fun (𝐹𝐺)))
1211an4s 660 . . 3 (((𝐹:𝐶𝐷 ∧ Fun 𝐹) ∧ (𝐺:𝐴𝐵 ∧ Fun 𝐺)) → ((𝐹𝐺):(𝐺𝐶)⟶𝐷 ∧ Fun (𝐹𝐺)))
131, 2, 12syl2anb 598 . 2 ((𝐹:𝐶1-1𝐷𝐺:𝐴1-1𝐵) → ((𝐹𝐺):(𝐺𝐶)⟶𝐷 ∧ Fun (𝐹𝐺)))
14 df-f1 6568 . 2 ((𝐹𝐺):(𝐺𝐶)–1-1𝐷 ↔ ((𝐹𝐺):(𝐺𝐶)⟶𝐷 ∧ Fun (𝐹𝐺)))
1513, 14sylibr 234 1 ((𝐹:𝐶1-1𝐷𝐺:𝐴1-1𝐵) → (𝐹𝐺):(𝐺𝐶)–1-1𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  ccnv 5688  cima 5692  ccom 5693  Fun wfun 6557  wf 6559  1-1wf1 6560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568
This theorem is referenced by:  f1co  6816  f1cof1b  47027
  Copyright terms: Public domain W3C validator