![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1cof1 | Structured version Visualization version GIF version |
Description: Composition of two one-to-one functions. Generalization of f1co 6799. (Contributed by AV, 18-Sep-2024.) |
Ref | Expression |
---|---|
f1cof1 | ⊢ ((𝐹:𝐶–1-1→𝐷 ∧ 𝐺:𝐴–1-1→𝐵) → (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐶)–1-1→𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-f1 6548 | . . 3 ⊢ (𝐹:𝐶–1-1→𝐷 ↔ (𝐹:𝐶⟶𝐷 ∧ Fun ◡𝐹)) | |
2 | df-f1 6548 | . . 3 ⊢ (𝐺:𝐴–1-1→𝐵 ↔ (𝐺:𝐴⟶𝐵 ∧ Fun ◡𝐺)) | |
3 | ffun 6720 | . . . . . 6 ⊢ (𝐺:𝐴⟶𝐵 → Fun 𝐺) | |
4 | fcof 6740 | . . . . . 6 ⊢ ((𝐹:𝐶⟶𝐷 ∧ Fun 𝐺) → (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐶)⟶𝐷) | |
5 | 3, 4 | sylan2 593 | . . . . 5 ⊢ ((𝐹:𝐶⟶𝐷 ∧ 𝐺:𝐴⟶𝐵) → (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐶)⟶𝐷) |
6 | funco 6588 | . . . . . . 7 ⊢ ((Fun ◡𝐺 ∧ Fun ◡𝐹) → Fun (◡𝐺 ∘ ◡𝐹)) | |
7 | cnvco 5885 | . . . . . . . 8 ⊢ ◡(𝐹 ∘ 𝐺) = (◡𝐺 ∘ ◡𝐹) | |
8 | 7 | funeqi 6569 | . . . . . . 7 ⊢ (Fun ◡(𝐹 ∘ 𝐺) ↔ Fun (◡𝐺 ∘ ◡𝐹)) |
9 | 6, 8 | sylibr 233 | . . . . . 6 ⊢ ((Fun ◡𝐺 ∧ Fun ◡𝐹) → Fun ◡(𝐹 ∘ 𝐺)) |
10 | 9 | ancoms 459 | . . . . 5 ⊢ ((Fun ◡𝐹 ∧ Fun ◡𝐺) → Fun ◡(𝐹 ∘ 𝐺)) |
11 | 5, 10 | anim12i 613 | . . . 4 ⊢ (((𝐹:𝐶⟶𝐷 ∧ 𝐺:𝐴⟶𝐵) ∧ (Fun ◡𝐹 ∧ Fun ◡𝐺)) → ((𝐹 ∘ 𝐺):(◡𝐺 “ 𝐶)⟶𝐷 ∧ Fun ◡(𝐹 ∘ 𝐺))) |
12 | 11 | an4s 658 | . . 3 ⊢ (((𝐹:𝐶⟶𝐷 ∧ Fun ◡𝐹) ∧ (𝐺:𝐴⟶𝐵 ∧ Fun ◡𝐺)) → ((𝐹 ∘ 𝐺):(◡𝐺 “ 𝐶)⟶𝐷 ∧ Fun ◡(𝐹 ∘ 𝐺))) |
13 | 1, 2, 12 | syl2anb 598 | . 2 ⊢ ((𝐹:𝐶–1-1→𝐷 ∧ 𝐺:𝐴–1-1→𝐵) → ((𝐹 ∘ 𝐺):(◡𝐺 “ 𝐶)⟶𝐷 ∧ Fun ◡(𝐹 ∘ 𝐺))) |
14 | df-f1 6548 | . 2 ⊢ ((𝐹 ∘ 𝐺):(◡𝐺 “ 𝐶)–1-1→𝐷 ↔ ((𝐹 ∘ 𝐺):(◡𝐺 “ 𝐶)⟶𝐷 ∧ Fun ◡(𝐹 ∘ 𝐺))) | |
15 | 13, 14 | sylibr 233 | 1 ⊢ ((𝐹:𝐶–1-1→𝐷 ∧ 𝐺:𝐴–1-1→𝐵) → (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐶)–1-1→𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ◡ccnv 5675 “ cima 5679 ∘ ccom 5680 Fun wfun 6537 ⟶wf 6539 –1-1→wf1 6540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 |
This theorem is referenced by: f1co 6799 f1cof1b 45775 |
Copyright terms: Public domain | W3C validator |