Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f1cof1 | Structured version Visualization version GIF version |
Description: Composition of two one-to-one functions. Generalization of f1co 6719. (Contributed by AV, 18-Sep-2024.) |
Ref | Expression |
---|---|
f1cof1 | ⊢ ((𝐹:𝐶–1-1→𝐷 ∧ 𝐺:𝐴–1-1→𝐵) → (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐶)–1-1→𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-f1 6470 | . . 3 ⊢ (𝐹:𝐶–1-1→𝐷 ↔ (𝐹:𝐶⟶𝐷 ∧ Fun ◡𝐹)) | |
2 | df-f1 6470 | . . 3 ⊢ (𝐺:𝐴–1-1→𝐵 ↔ (𝐺:𝐴⟶𝐵 ∧ Fun ◡𝐺)) | |
3 | ffun 6640 | . . . . . 6 ⊢ (𝐺:𝐴⟶𝐵 → Fun 𝐺) | |
4 | fcof 6660 | . . . . . 6 ⊢ ((𝐹:𝐶⟶𝐷 ∧ Fun 𝐺) → (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐶)⟶𝐷) | |
5 | 3, 4 | sylan2 593 | . . . . 5 ⊢ ((𝐹:𝐶⟶𝐷 ∧ 𝐺:𝐴⟶𝐵) → (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐶)⟶𝐷) |
6 | funco 6510 | . . . . . . 7 ⊢ ((Fun ◡𝐺 ∧ Fun ◡𝐹) → Fun (◡𝐺 ∘ ◡𝐹)) | |
7 | cnvco 5814 | . . . . . . . 8 ⊢ ◡(𝐹 ∘ 𝐺) = (◡𝐺 ∘ ◡𝐹) | |
8 | 7 | funeqi 6491 | . . . . . . 7 ⊢ (Fun ◡(𝐹 ∘ 𝐺) ↔ Fun (◡𝐺 ∘ ◡𝐹)) |
9 | 6, 8 | sylibr 233 | . . . . . 6 ⊢ ((Fun ◡𝐺 ∧ Fun ◡𝐹) → Fun ◡(𝐹 ∘ 𝐺)) |
10 | 9 | ancoms 459 | . . . . 5 ⊢ ((Fun ◡𝐹 ∧ Fun ◡𝐺) → Fun ◡(𝐹 ∘ 𝐺)) |
11 | 5, 10 | anim12i 613 | . . . 4 ⊢ (((𝐹:𝐶⟶𝐷 ∧ 𝐺:𝐴⟶𝐵) ∧ (Fun ◡𝐹 ∧ Fun ◡𝐺)) → ((𝐹 ∘ 𝐺):(◡𝐺 “ 𝐶)⟶𝐷 ∧ Fun ◡(𝐹 ∘ 𝐺))) |
12 | 11 | an4s 657 | . . 3 ⊢ (((𝐹:𝐶⟶𝐷 ∧ Fun ◡𝐹) ∧ (𝐺:𝐴⟶𝐵 ∧ Fun ◡𝐺)) → ((𝐹 ∘ 𝐺):(◡𝐺 “ 𝐶)⟶𝐷 ∧ Fun ◡(𝐹 ∘ 𝐺))) |
13 | 1, 2, 12 | syl2anb 598 | . 2 ⊢ ((𝐹:𝐶–1-1→𝐷 ∧ 𝐺:𝐴–1-1→𝐵) → ((𝐹 ∘ 𝐺):(◡𝐺 “ 𝐶)⟶𝐷 ∧ Fun ◡(𝐹 ∘ 𝐺))) |
14 | df-f1 6470 | . 2 ⊢ ((𝐹 ∘ 𝐺):(◡𝐺 “ 𝐶)–1-1→𝐷 ↔ ((𝐹 ∘ 𝐺):(◡𝐺 “ 𝐶)⟶𝐷 ∧ Fun ◡(𝐹 ∘ 𝐺))) | |
15 | 13, 14 | sylibr 233 | 1 ⊢ ((𝐹:𝐶–1-1→𝐷 ∧ 𝐺:𝐴–1-1→𝐵) → (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐶)–1-1→𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ◡ccnv 5606 “ cima 5610 ∘ ccom 5611 Fun wfun 6459 ⟶wf 6461 –1-1→wf1 6462 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pr 5367 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-sn 4572 df-pr 4574 df-op 4578 df-br 5088 df-opab 5150 df-id 5507 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 |
This theorem is referenced by: f1co 6719 f1cof1b 44821 |
Copyright terms: Public domain | W3C validator |