![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dffn2 | Structured version Visualization version GIF version |
Description: Any function is a mapping into V. (Contributed by NM, 31-Oct-1995.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
Ref | Expression |
---|---|
dffn2 | ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssv 4005 | . . 3 ⊢ ran 𝐹 ⊆ V | |
2 | 1 | biantru 530 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ V)) |
3 | df-f 6544 | . 2 ⊢ (𝐹:𝐴⟶V ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ V)) | |
4 | 2, 3 | bitr4i 277 | 1 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶V) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 Vcvv 3474 ⊆ wss 3947 ran crn 5676 Fn wfn 6535 ⟶wf 6536 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-v 3476 df-in 3954 df-ss 3964 df-f 6544 |
This theorem is referenced by: f1cnvcnv 6794 fcoconst 7128 fnressn 7152 fndifnfp 7170 1stcof 8001 2ndcof 8002 fnmpo 8051 tposfn 8236 tz7.48lem 8437 seqomlem2 8447 mptelixpg 8925 r111 9766 smobeth 10577 inar1 10766 imasvscafn 17479 fucidcl 17914 fucsect 17921 dfinito3 17951 dftermo3 17952 curfcl 18181 curf2ndf 18196 dsmmbas2 21283 frlmsslsp 21342 frlmup1 21344 prdstopn 23123 prdstps 23124 ist0-4 23224 ptuncnv 23302 xpstopnlem2 23306 prdstgpd 23620 prdsxmslem2 24029 curry2ima 31917 fnchoice 43698 fsneqrn 43895 stoweidlem35 44737 |
Copyright terms: Public domain | W3C validator |