![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dffn2 | Structured version Visualization version GIF version |
Description: Any function is a mapping into V. (Contributed by NM, 31-Oct-1995.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
Ref | Expression |
---|---|
dffn2 | ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssv 4006 | . . 3 ⊢ ran 𝐹 ⊆ V | |
2 | 1 | biantru 530 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ V)) |
3 | df-f 6547 | . 2 ⊢ (𝐹:𝐴⟶V ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ V)) | |
4 | 2, 3 | bitr4i 277 | 1 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶V) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 Vcvv 3474 ⊆ wss 3948 ran crn 5677 Fn wfn 6538 ⟶wf 6539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-v 3476 df-in 3955 df-ss 3965 df-f 6547 |
This theorem is referenced by: f1cnvcnv 6797 fcoconst 7134 fnressn 7158 fndifnfp 7176 1stcof 8007 2ndcof 8008 fnmpo 8057 tposfn 8242 tz7.48lem 8443 seqomlem2 8453 mptelixpg 8931 r111 9772 smobeth 10583 inar1 10772 imasvscafn 17487 fucidcl 17922 fucsect 17929 dfinito3 17959 dftermo3 17960 curfcl 18189 curf2ndf 18204 dsmmbas2 21511 frlmsslsp 21570 frlmup1 21572 prdstopn 23352 prdstps 23353 ist0-4 23453 ptuncnv 23531 xpstopnlem2 23535 prdstgpd 23849 prdsxmslem2 24258 curry2ima 32185 fnchoice 44015 fsneqrn 44209 stoweidlem35 45050 |
Copyright terms: Public domain | W3C validator |