| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dffn2 | Structured version Visualization version GIF version | ||
| Description: Any function is a mapping into V. (Contributed by NM, 31-Oct-1995.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| dffn2 | ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssv 3983 | . . 3 ⊢ ran 𝐹 ⊆ V | |
| 2 | 1 | biantru 529 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ V)) |
| 3 | df-f 6535 | . 2 ⊢ (𝐹:𝐴⟶V ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ V)) | |
| 4 | 2, 3 | bitr4i 278 | 1 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶V) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 Vcvv 3459 ⊆ wss 3926 ran crn 5655 Fn wfn 6526 ⟶wf 6527 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-ss 3943 df-f 6535 |
| This theorem is referenced by: f1cnvcnv 6783 fcoconst 7124 fnressn 7148 fndifnfp 7168 1stcof 8018 2ndcof 8019 fnmpo 8068 tposfn 8254 tz7.48lem 8455 seqomlem2 8465 mptelixpg 8949 r111 9789 smobeth 10600 inar1 10789 imasvscafn 17551 fucidcl 17981 fucsect 17988 dfinito3 18018 dftermo3 18019 curfcl 18244 curf2ndf 18259 dsmmbas2 21697 frlmsslsp 21756 frlmup1 21758 prdstopn 23566 prdstps 23567 ist0-4 23667 ptuncnv 23745 xpstopnlem2 23749 prdstgpd 24063 prdsxmslem2 24468 curry2ima 32686 fnchoice 45053 fsneqrn 45235 stoweidlem35 46064 ixpv 48865 basresposfo 48952 fucorid2 49274 precofval2 49280 |
| Copyright terms: Public domain | W3C validator |