| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dffn2 | Structured version Visualization version GIF version | ||
| Description: Any function is a mapping into V. (Contributed by NM, 31-Oct-1995.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| dffn2 | ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssv 3962 | . . 3 ⊢ ran 𝐹 ⊆ V | |
| 2 | 1 | biantru 529 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ V)) |
| 3 | df-f 6490 | . 2 ⊢ (𝐹:𝐴⟶V ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ V)) | |
| 4 | 2, 3 | bitr4i 278 | 1 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶V) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 Vcvv 3438 ⊆ wss 3905 ran crn 5624 Fn wfn 6481 ⟶wf 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 df-ss 3922 df-f 6490 |
| This theorem is referenced by: f1cnvcnv 6733 fcoconst 7072 fnressn 7096 fndifnfp 7116 1stcof 7961 2ndcof 7962 fnmpo 8011 tposfn 8195 tz7.48lem 8370 seqomlem2 8380 mptelixpg 8869 r111 9690 smobeth 10499 inar1 10688 imasvscafn 17459 fucidcl 17893 fucsect 17900 dfinito3 17930 dftermo3 17931 curfcl 18156 curf2ndf 18171 dsmmbas2 21662 frlmsslsp 21721 frlmup1 21723 prdstopn 23531 prdstps 23532 ist0-4 23632 ptuncnv 23710 xpstopnlem2 23714 prdstgpd 24028 prdsxmslem2 24433 curry2ima 32665 onvf1od 35079 fnchoice 45007 fsneqrn 45189 stoweidlem35 46017 ixpv 48875 basresposfo 48963 fucorid2 49349 precofval2 49355 |
| Copyright terms: Public domain | W3C validator |