![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dffn2 | Structured version Visualization version GIF version |
Description: Any function is a mapping into V. (Contributed by NM, 31-Oct-1995.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
Ref | Expression |
---|---|
dffn2 | ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssv 4007 | . . 3 ⊢ ran 𝐹 ⊆ V | |
2 | 1 | biantru 531 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ V)) |
3 | df-f 6548 | . 2 ⊢ (𝐹:𝐴⟶V ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ V)) | |
4 | 2, 3 | bitr4i 278 | 1 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶V) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 Vcvv 3475 ⊆ wss 3949 ran crn 5678 Fn wfn 6539 ⟶wf 6540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3477 df-in 3956 df-ss 3966 df-f 6548 |
This theorem is referenced by: f1cnvcnv 6798 fcoconst 7132 fnressn 7156 fndifnfp 7174 1stcof 8005 2ndcof 8006 fnmpo 8055 tposfn 8240 tz7.48lem 8441 seqomlem2 8451 mptelixpg 8929 r111 9770 smobeth 10581 inar1 10770 imasvscafn 17483 fucidcl 17918 fucsect 17925 dfinito3 17955 dftermo3 17956 curfcl 18185 curf2ndf 18200 dsmmbas2 21292 frlmsslsp 21351 frlmup1 21353 prdstopn 23132 prdstps 23133 ist0-4 23233 ptuncnv 23311 xpstopnlem2 23315 prdstgpd 23629 prdsxmslem2 24038 curry2ima 31930 fnchoice 43713 fsneqrn 43910 stoweidlem35 44751 |
Copyright terms: Public domain | W3C validator |