![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dffn2 | Structured version Visualization version GIF version |
Description: Any function is a mapping into V. (Contributed by NM, 31-Oct-1995.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
Ref | Expression |
---|---|
dffn2 | ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssv 4033 | . . 3 ⊢ ran 𝐹 ⊆ V | |
2 | 1 | biantru 529 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ V)) |
3 | df-f 6577 | . 2 ⊢ (𝐹:𝐴⟶V ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ V)) | |
4 | 2, 3 | bitr4i 278 | 1 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶V) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 Vcvv 3488 ⊆ wss 3976 ran crn 5701 Fn wfn 6568 ⟶wf 6569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-ss 3993 df-f 6577 |
This theorem is referenced by: f1cnvcnv 6826 fcoconst 7168 fnressn 7192 fndifnfp 7210 1stcof 8060 2ndcof 8061 fnmpo 8110 tposfn 8296 tz7.48lem 8497 seqomlem2 8507 mptelixpg 8993 r111 9844 smobeth 10655 inar1 10844 imasvscafn 17597 fucidcl 18035 fucsect 18042 dfinito3 18072 dftermo3 18073 curfcl 18302 curf2ndf 18317 dsmmbas2 21780 frlmsslsp 21839 frlmup1 21841 prdstopn 23657 prdstps 23658 ist0-4 23758 ptuncnv 23836 xpstopnlem2 23840 prdstgpd 24154 prdsxmslem2 24563 curry2ima 32720 fnchoice 44929 fsneqrn 45118 stoweidlem35 45956 |
Copyright terms: Public domain | W3C validator |