| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dffn2 | Structured version Visualization version GIF version | ||
| Description: Any function is a mapping into V. (Contributed by NM, 31-Oct-1995.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| dffn2 | ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssv 3971 | . . 3 ⊢ ran 𝐹 ⊆ V | |
| 2 | 1 | biantru 529 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ V)) |
| 3 | df-f 6515 | . 2 ⊢ (𝐹:𝐴⟶V ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ V)) | |
| 4 | 2, 3 | bitr4i 278 | 1 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶V) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 Vcvv 3447 ⊆ wss 3914 ran crn 5639 Fn wfn 6506 ⟶wf 6507 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-ss 3931 df-f 6515 |
| This theorem is referenced by: f1cnvcnv 6765 fcoconst 7106 fnressn 7130 fndifnfp 7150 1stcof 7998 2ndcof 7999 fnmpo 8048 tposfn 8234 tz7.48lem 8409 seqomlem2 8419 mptelixpg 8908 r111 9728 smobeth 10539 inar1 10728 imasvscafn 17500 fucidcl 17930 fucsect 17937 dfinito3 17967 dftermo3 17968 curfcl 18193 curf2ndf 18208 dsmmbas2 21646 frlmsslsp 21705 frlmup1 21707 prdstopn 23515 prdstps 23516 ist0-4 23616 ptuncnv 23694 xpstopnlem2 23698 prdstgpd 24012 prdsxmslem2 24417 curry2ima 32632 onvf1od 35094 fnchoice 45023 fsneqrn 45205 stoweidlem35 46033 ixpv 48878 basresposfo 48966 fucorid2 49352 precofval2 49358 |
| Copyright terms: Public domain | W3C validator |