| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dffn2 | Structured version Visualization version GIF version | ||
| Description: Any function is a mapping into V. (Contributed by NM, 31-Oct-1995.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| dffn2 | ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssv 3974 | . . 3 ⊢ ran 𝐹 ⊆ V | |
| 2 | 1 | biantru 529 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ V)) |
| 3 | df-f 6518 | . 2 ⊢ (𝐹:𝐴⟶V ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ V)) | |
| 4 | 2, 3 | bitr4i 278 | 1 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶V) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 Vcvv 3450 ⊆ wss 3917 ran crn 5642 Fn wfn 6509 ⟶wf 6510 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-ss 3934 df-f 6518 |
| This theorem is referenced by: f1cnvcnv 6768 fcoconst 7109 fnressn 7133 fndifnfp 7153 1stcof 8001 2ndcof 8002 fnmpo 8051 tposfn 8237 tz7.48lem 8412 seqomlem2 8422 mptelixpg 8911 r111 9735 smobeth 10546 inar1 10735 imasvscafn 17507 fucidcl 17937 fucsect 17944 dfinito3 17974 dftermo3 17975 curfcl 18200 curf2ndf 18215 dsmmbas2 21653 frlmsslsp 21712 frlmup1 21714 prdstopn 23522 prdstps 23523 ist0-4 23623 ptuncnv 23701 xpstopnlem2 23705 prdstgpd 24019 prdsxmslem2 24424 curry2ima 32639 onvf1od 35101 fnchoice 45030 fsneqrn 45212 stoweidlem35 46040 ixpv 48882 basresposfo 48970 fucorid2 49356 precofval2 49362 |
| Copyright terms: Public domain | W3C validator |