| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dffn2 | Structured version Visualization version GIF version | ||
| Description: Any function is a mapping into V. (Contributed by NM, 31-Oct-1995.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| dffn2 | ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssv 3959 | . . 3 ⊢ ran 𝐹 ⊆ V | |
| 2 | 1 | biantru 529 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ V)) |
| 3 | df-f 6485 | . 2 ⊢ (𝐹:𝐴⟶V ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ V)) | |
| 4 | 2, 3 | bitr4i 278 | 1 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶V) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 Vcvv 3436 ⊆ wss 3902 ran crn 5617 Fn wfn 6476 ⟶wf 6477 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-ss 3919 df-f 6485 |
| This theorem is referenced by: f1cnvcnv 6728 fcoconst 7067 fnressn 7091 fndifnfp 7110 1stcof 7951 2ndcof 7952 fnmpo 8001 tposfn 8185 tz7.48lem 8360 seqomlem2 8370 mptelixpg 8859 r111 9665 smobeth 10474 inar1 10663 imasvscafn 17438 fucidcl 17872 fucsect 17879 dfinito3 17909 dftermo3 17910 curfcl 18135 curf2ndf 18150 dsmmbas2 21672 frlmsslsp 21731 frlmup1 21733 prdstopn 23541 prdstps 23542 ist0-4 23642 ptuncnv 23720 xpstopnlem2 23724 prdstgpd 24038 prdsxmslem2 24442 curry2ima 32685 mplvrpmrhm 33572 onvf1od 35139 fnchoice 45065 fsneqrn 45247 stoweidlem35 46072 ixpv 48920 basresposfo 49008 fucorid2 49394 precofval2 49400 |
| Copyright terms: Public domain | W3C validator |