Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dffn2 | Structured version Visualization version GIF version |
Description: Any function is a mapping into V. (Contributed by NM, 31-Oct-1995.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
Ref | Expression |
---|---|
dffn2 | ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssv 3945 | . . 3 ⊢ ran 𝐹 ⊆ V | |
2 | 1 | biantru 530 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ V)) |
3 | df-f 6437 | . 2 ⊢ (𝐹:𝐴⟶V ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ V)) | |
4 | 2, 3 | bitr4i 277 | 1 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶V) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 Vcvv 3432 ⊆ wss 3887 ran crn 5590 Fn wfn 6428 ⟶wf 6429 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 df-f 6437 |
This theorem is referenced by: f1cnvcnv 6680 fcoconst 7006 fnressn 7030 fndifnfp 7048 1stcof 7861 2ndcof 7862 fnmpo 7909 tposfn 8071 tz7.48lem 8272 seqomlem2 8282 mptelixpg 8723 r111 9533 smobeth 10342 inar1 10531 imasvscafn 17248 fucidcl 17683 fucsect 17690 dfinito3 17720 dftermo3 17721 curfcl 17950 curf2ndf 17965 dsmmbas2 20944 frlmsslsp 21003 frlmup1 21005 prdstopn 22779 prdstps 22780 ist0-4 22880 ptuncnv 22958 xpstopnlem2 22962 prdstgpd 23276 prdsxmslem2 23685 curry2ima 31041 fnchoice 42572 fsneqrn 42751 stoweidlem35 43576 |
Copyright terms: Public domain | W3C validator |