![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dffn2 | Structured version Visualization version GIF version |
Description: Any function is a mapping into V. (Contributed by NM, 31-Oct-1995.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
Ref | Expression |
---|---|
dffn2 | ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssv 4020 | . . 3 ⊢ ran 𝐹 ⊆ V | |
2 | 1 | biantru 529 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ V)) |
3 | df-f 6567 | . 2 ⊢ (𝐹:𝐴⟶V ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ V)) | |
4 | 2, 3 | bitr4i 278 | 1 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶V) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 Vcvv 3478 ⊆ wss 3963 ran crn 5690 Fn wfn 6558 ⟶wf 6559 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-ss 3980 df-f 6567 |
This theorem is referenced by: f1cnvcnv 6814 fcoconst 7154 fnressn 7178 fndifnfp 7196 1stcof 8043 2ndcof 8044 fnmpo 8093 tposfn 8279 tz7.48lem 8480 seqomlem2 8490 mptelixpg 8974 r111 9813 smobeth 10624 inar1 10813 imasvscafn 17584 fucidcl 18022 fucsect 18029 dfinito3 18059 dftermo3 18060 curfcl 18289 curf2ndf 18304 dsmmbas2 21775 frlmsslsp 21834 frlmup1 21836 prdstopn 23652 prdstps 23653 ist0-4 23753 ptuncnv 23831 xpstopnlem2 23835 prdstgpd 24149 prdsxmslem2 24558 curry2ima 32724 fnchoice 44967 fsneqrn 45154 stoweidlem35 45991 |
Copyright terms: Public domain | W3C validator |