Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dffn2 | Structured version Visualization version GIF version |
Description: Any function is a mapping into V. (Contributed by NM, 31-Oct-1995.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
Ref | Expression |
---|---|
dffn2 | ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssv 3941 | . . 3 ⊢ ran 𝐹 ⊆ V | |
2 | 1 | biantru 529 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ V)) |
3 | df-f 6422 | . 2 ⊢ (𝐹:𝐴⟶V ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ V)) | |
4 | 2, 3 | bitr4i 277 | 1 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶V) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 Vcvv 3422 ⊆ wss 3883 ran crn 5581 Fn wfn 6413 ⟶wf 6414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-f 6422 |
This theorem is referenced by: f1cnvcnv 6664 fcoconst 6988 fnressn 7012 fndifnfp 7030 1stcof 7834 2ndcof 7835 fnmpo 7882 tposfn 8042 tz7.48lem 8242 seqomlem2 8252 mptelixpg 8681 r111 9464 smobeth 10273 inar1 10462 imasvscafn 17165 fucidcl 17599 fucsect 17606 dfinito3 17636 dftermo3 17637 curfcl 17866 curf2ndf 17881 dsmmbas2 20854 frlmsslsp 20913 frlmup1 20915 prdstopn 22687 prdstps 22688 ist0-4 22788 ptuncnv 22866 xpstopnlem2 22870 prdstgpd 23184 prdsxmslem2 23591 curry2ima 30943 fnchoice 42461 fsneqrn 42640 stoweidlem35 43466 |
Copyright terms: Public domain | W3C validator |