| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dffn2 | Structured version Visualization version GIF version | ||
| Description: Any function is a mapping into V. (Contributed by NM, 31-Oct-1995.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| dffn2 | ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssv 3955 | . . 3 ⊢ ran 𝐹 ⊆ V | |
| 2 | 1 | biantru 529 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ V)) |
| 3 | df-f 6490 | . 2 ⊢ (𝐹:𝐴⟶V ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ V)) | |
| 4 | 2, 3 | bitr4i 278 | 1 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶V) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 Vcvv 3437 ⊆ wss 3898 ran crn 5620 Fn wfn 6481 ⟶wf 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-ss 3915 df-f 6490 |
| This theorem is referenced by: f1cnvcnv 6733 fcoconst 7073 fnressn 7097 fndifnfp 7116 1stcof 7957 2ndcof 7958 fnmpo 8007 tposfn 8191 tz7.48lem 8366 seqomlem2 8376 mptelixpg 8865 r111 9675 smobeth 10484 inar1 10673 imasvscafn 17443 fucidcl 17877 fucsect 17884 dfinito3 17914 dftermo3 17915 curfcl 18140 curf2ndf 18155 dsmmbas2 21676 frlmsslsp 21735 frlmup1 21737 prdstopn 23544 prdstps 23545 ist0-4 23645 ptuncnv 23723 xpstopnlem2 23727 prdstgpd 24041 prdsxmslem2 24445 curry2ima 32694 mplvrpmrhm 33595 onvf1od 35172 fnchoice 45150 fsneqrn 45332 stoweidlem35 46157 ixpv 49014 basresposfo 49102 fucorid2 49488 precofval2 49494 |
| Copyright terms: Public domain | W3C validator |