MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1oabexgOLD Structured version   Visualization version   GIF version

Theorem f1oabexgOLD 7981
Description: Obsolete version of f1oabexg 7980 as of 9-Jun-2025. (Contributed by Paul Chapman, 25-Feb-2008.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
f1oabexg.1 𝐹 = {𝑓 ∣ (𝑓:𝐴1-1-onto𝐵𝜑)}
Assertion
Ref Expression
f1oabexgOLD ((𝐴𝐶𝐵𝐷) → 𝐹 ∈ V)
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓
Allowed substitution hints:   𝜑(𝑓)   𝐶(𝑓)   𝐷(𝑓)   𝐹(𝑓)

Proof of Theorem f1oabexgOLD
StepHypRef Expression
1 f1oabexg.1 . 2 𝐹 = {𝑓 ∣ (𝑓:𝐴1-1-onto𝐵𝜑)}
2 f1of 6862 . . . . 5 (𝑓:𝐴1-1-onto𝐵𝑓:𝐴𝐵)
32anim1i 614 . . . 4 ((𝑓:𝐴1-1-onto𝐵𝜑) → (𝑓:𝐴𝐵𝜑))
43ss2abi 4090 . . 3 {𝑓 ∣ (𝑓:𝐴1-1-onto𝐵𝜑)} ⊆ {𝑓 ∣ (𝑓:𝐴𝐵𝜑)}
5 eqid 2740 . . . 4 {𝑓 ∣ (𝑓:𝐴𝐵𝜑)} = {𝑓 ∣ (𝑓:𝐴𝐵𝜑)}
65fabexg 7976 . . 3 ((𝐴𝐶𝐵𝐷) → {𝑓 ∣ (𝑓:𝐴𝐵𝜑)} ∈ V)
7 ssexg 5341 . . 3 (({𝑓 ∣ (𝑓:𝐴1-1-onto𝐵𝜑)} ⊆ {𝑓 ∣ (𝑓:𝐴𝐵𝜑)} ∧ {𝑓 ∣ (𝑓:𝐴𝐵𝜑)} ∈ V) → {𝑓 ∣ (𝑓:𝐴1-1-onto𝐵𝜑)} ∈ V)
84, 6, 7sylancr 586 . 2 ((𝐴𝐶𝐵𝐷) → {𝑓 ∣ (𝑓:𝐴1-1-onto𝐵𝜑)} ∈ V)
91, 8eqeltrid 2848 1 ((𝐴𝐶𝐵𝐷) → 𝐹 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  {cab 2717  Vcvv 3488  wss 3976  wf 6569  1-1-ontowf1o 6572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708  df-dm 5710  df-rn 5711  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-f1o 6580
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator