MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1oabexgOLD Structured version   Visualization version   GIF version

Theorem f1oabexgOLD 7882
Description: Obsolete version of f1oabexg 7881 as of 9-Jun-2025. (Contributed by Paul Chapman, 25-Feb-2008.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
f1oabexg.1 𝐹 = {𝑓 ∣ (𝑓:𝐴1-1-onto𝐵𝜑)}
Assertion
Ref Expression
f1oabexgOLD ((𝐴𝐶𝐵𝐷) → 𝐹 ∈ V)
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓
Allowed substitution hints:   𝜑(𝑓)   𝐶(𝑓)   𝐷(𝑓)   𝐹(𝑓)

Proof of Theorem f1oabexgOLD
StepHypRef Expression
1 f1oabexg.1 . 2 𝐹 = {𝑓 ∣ (𝑓:𝐴1-1-onto𝐵𝜑)}
2 f1of 6771 . . . . 5 (𝑓:𝐴1-1-onto𝐵𝑓:𝐴𝐵)
32anim1i 615 . . . 4 ((𝑓:𝐴1-1-onto𝐵𝜑) → (𝑓:𝐴𝐵𝜑))
43ss2abi 4015 . . 3 {𝑓 ∣ (𝑓:𝐴1-1-onto𝐵𝜑)} ⊆ {𝑓 ∣ (𝑓:𝐴𝐵𝜑)}
5 eqid 2733 . . . 4 {𝑓 ∣ (𝑓:𝐴𝐵𝜑)} = {𝑓 ∣ (𝑓:𝐴𝐵𝜑)}
65fabexg 7877 . . 3 ((𝐴𝐶𝐵𝐷) → {𝑓 ∣ (𝑓:𝐴𝐵𝜑)} ∈ V)
7 ssexg 5265 . . 3 (({𝑓 ∣ (𝑓:𝐴1-1-onto𝐵𝜑)} ⊆ {𝑓 ∣ (𝑓:𝐴𝐵𝜑)} ∧ {𝑓 ∣ (𝑓:𝐴𝐵𝜑)} ∈ V) → {𝑓 ∣ (𝑓:𝐴1-1-onto𝐵𝜑)} ∈ V)
84, 6, 7sylancr 587 . 2 ((𝐴𝐶𝐵𝐷) → {𝑓 ∣ (𝑓:𝐴1-1-onto𝐵𝜑)} ∈ V)
91, 8eqeltrid 2837 1 ((𝐴𝐶𝐵𝐷) → 𝐹 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  {cab 2711  Vcvv 3437  wss 3898  wf 6485  1-1-ontowf1o 6488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-xp 5627  df-rel 5628  df-cnv 5629  df-dm 5631  df-rn 5632  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-f1o 6496
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator