MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmphl Structured version   Visualization version   GIF version

Theorem frlmphl 21741
Description: Conditions for a free module to be a pre-Hilbert space. (Contributed by Thierry Arnoux, 21-Jun-2019.) (Proof shortened by AV, 21-Jul-2019.)
Hypotheses
Ref Expression
frlmphl.y 𝑌 = (𝑅 freeLMod 𝐼)
frlmphl.b 𝐵 = (Base‘𝑅)
frlmphl.t · = (.r𝑅)
frlmphl.v 𝑉 = (Base‘𝑌)
frlmphl.j , = (·𝑖𝑌)
frlmphl.o 𝑂 = (0g𝑌)
frlmphl.0 0 = (0g𝑅)
frlmphl.s = (*𝑟𝑅)
frlmphl.f (𝜑𝑅 ∈ Field)
frlmphl.m ((𝜑𝑔𝑉 ∧ (𝑔 , 𝑔) = 0 ) → 𝑔 = 𝑂)
frlmphl.u ((𝜑𝑥𝐵) → ( 𝑥) = 𝑥)
frlmphl.i (𝜑𝐼𝑊)
Assertion
Ref Expression
frlmphl (𝜑𝑌 ∈ PreHil)
Distinct variable groups:   𝐵,𝑔,𝑥   𝑔,𝐼,𝑥   𝑅,𝑔,𝑥   𝑔,𝑉,𝑥   𝑔,𝑊,𝑥   · ,𝑔,𝑥   𝑔,𝑌,𝑥   0 ,𝑔,𝑥   𝜑,𝑔,𝑥   , ,𝑔,𝑥   𝑔,𝑂   𝑥,
Allowed substitution hints:   (𝑔)   𝑂(𝑥)

Proof of Theorem frlmphl
Dummy variables 𝑓 𝑒 𝑖 𝑦 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frlmphl.v . . 3 𝑉 = (Base‘𝑌)
21a1i 11 . 2 (𝜑𝑉 = (Base‘𝑌))
3 eqidd 2736 . 2 (𝜑 → (+g𝑌) = (+g𝑌))
4 eqidd 2736 . 2 (𝜑 → ( ·𝑠𝑌) = ( ·𝑠𝑌))
5 frlmphl.j . . 3 , = (·𝑖𝑌)
65a1i 11 . 2 (𝜑, = (·𝑖𝑌))
7 frlmphl.o . . 3 𝑂 = (0g𝑌)
87a1i 11 . 2 (𝜑𝑂 = (0g𝑌))
9 frlmphl.f . . . . 5 (𝜑𝑅 ∈ Field)
10 isfld 20700 . . . . 5 (𝑅 ∈ Field ↔ (𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing))
119, 10sylib 218 . . . 4 (𝜑 → (𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing))
1211simpld 494 . . 3 (𝜑𝑅 ∈ DivRing)
13 frlmphl.i . . 3 (𝜑𝐼𝑊)
14 frlmphl.y . . . 4 𝑌 = (𝑅 freeLMod 𝐼)
1514frlmsca 21713 . . 3 ((𝑅 ∈ DivRing ∧ 𝐼𝑊) → 𝑅 = (Scalar‘𝑌))
1612, 13, 15syl2anc 584 . 2 (𝜑𝑅 = (Scalar‘𝑌))
17 frlmphl.b . . 3 𝐵 = (Base‘𝑅)
1817a1i 11 . 2 (𝜑𝐵 = (Base‘𝑅))
19 eqidd 2736 . 2 (𝜑 → (+g𝑅) = (+g𝑅))
20 frlmphl.t . . 3 · = (.r𝑅)
2120a1i 11 . 2 (𝜑· = (.r𝑅))
22 frlmphl.s . . 3 = (*𝑟𝑅)
2322a1i 11 . 2 (𝜑 = (*𝑟𝑅))
24 frlmphl.0 . . 3 0 = (0g𝑅)
2524a1i 11 . 2 (𝜑0 = (0g𝑅))
2612drngringd 20697 . . . 4 (𝜑𝑅 ∈ Ring)
2714frlmlmod 21709 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝑌 ∈ LMod)
2826, 13, 27syl2anc 584 . . 3 (𝜑𝑌 ∈ LMod)
2916, 12eqeltrrd 2835 . . 3 (𝜑 → (Scalar‘𝑌) ∈ DivRing)
30 eqid 2735 . . . 4 (Scalar‘𝑌) = (Scalar‘𝑌)
3130islvec 21062 . . 3 (𝑌 ∈ LVec ↔ (𝑌 ∈ LMod ∧ (Scalar‘𝑌) ∈ DivRing))
3228, 29, 31sylanbrc 583 . 2 (𝜑𝑌 ∈ LVec)
339fldcrngd 20702 . . 3 (𝜑𝑅 ∈ CRing)
34 frlmphl.u . . 3 ((𝜑𝑥𝐵) → ( 𝑥) = 𝑥)
3517, 22, 33, 34idsrngd 20816 . 2 (𝜑𝑅 ∈ *-Ring)
36133ad2ant1 1133 . . . . 5 ((𝜑𝑔𝑉𝑉) → 𝐼𝑊)
37263ad2ant1 1133 . . . . 5 ((𝜑𝑔𝑉𝑉) → 𝑅 ∈ Ring)
38 simp2 1137 . . . . 5 ((𝜑𝑔𝑉𝑉) → 𝑔𝑉)
39 simp3 1138 . . . . 5 ((𝜑𝑔𝑉𝑉) → 𝑉)
4014, 17, 20, 1, 5frlmipval 21739 . . . . 5 (((𝐼𝑊𝑅 ∈ Ring) ∧ (𝑔𝑉𝑉)) → (𝑔 , ) = (𝑅 Σg (𝑔f · )))
4136, 37, 38, 39, 40syl22anc 838 . . . 4 ((𝜑𝑔𝑉𝑉) → (𝑔 , ) = (𝑅 Σg (𝑔f · )))
4214, 17, 1frlmbasmap 21719 . . . . . . . . 9 ((𝐼𝑊𝑔𝑉) → 𝑔 ∈ (𝐵m 𝐼))
4336, 38, 42syl2anc 584 . . . . . . . 8 ((𝜑𝑔𝑉𝑉) → 𝑔 ∈ (𝐵m 𝐼))
44 elmapi 8863 . . . . . . . 8 (𝑔 ∈ (𝐵m 𝐼) → 𝑔:𝐼𝐵)
4543, 44syl 17 . . . . . . 7 ((𝜑𝑔𝑉𝑉) → 𝑔:𝐼𝐵)
4645ffnd 6707 . . . . . 6 ((𝜑𝑔𝑉𝑉) → 𝑔 Fn 𝐼)
4714, 17, 1frlmbasmap 21719 . . . . . . . . 9 ((𝐼𝑊𝑉) → ∈ (𝐵m 𝐼))
4836, 39, 47syl2anc 584 . . . . . . . 8 ((𝜑𝑔𝑉𝑉) → ∈ (𝐵m 𝐼))
49 elmapi 8863 . . . . . . . 8 ( ∈ (𝐵m 𝐼) → :𝐼𝐵)
5048, 49syl 17 . . . . . . 7 ((𝜑𝑔𝑉𝑉) → :𝐼𝐵)
5150ffnd 6707 . . . . . 6 ((𝜑𝑔𝑉𝑉) → Fn 𝐼)
52 inidm 4202 . . . . . 6 (𝐼𝐼) = 𝐼
53 eqidd 2736 . . . . . 6 (((𝜑𝑔𝑉𝑉) ∧ 𝑥𝐼) → (𝑔𝑥) = (𝑔𝑥))
54 eqidd 2736 . . . . . 6 (((𝜑𝑔𝑉𝑉) ∧ 𝑥𝐼) → (𝑥) = (𝑥))
5546, 51, 36, 36, 52, 53, 54offval 7680 . . . . 5 ((𝜑𝑔𝑉𝑉) → (𝑔f · ) = (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))))
5655oveq2d 7421 . . . 4 ((𝜑𝑔𝑉𝑉) → (𝑅 Σg (𝑔f · )) = (𝑅 Σg (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥)))))
5741, 56eqtrd 2770 . . 3 ((𝜑𝑔𝑉𝑉) → (𝑔 , ) = (𝑅 Σg (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥)))))
5826ringcmnd 20244 . . . . 5 (𝜑𝑅 ∈ CMnd)
59583ad2ant1 1133 . . . 4 ((𝜑𝑔𝑉𝑉) → 𝑅 ∈ CMnd)
6037adantr 480 . . . . . 6 (((𝜑𝑔𝑉𝑉) ∧ 𝑥𝐼) → 𝑅 ∈ Ring)
6145ffvelcdmda 7074 . . . . . 6 (((𝜑𝑔𝑉𝑉) ∧ 𝑥𝐼) → (𝑔𝑥) ∈ 𝐵)
6250ffvelcdmda 7074 . . . . . 6 (((𝜑𝑔𝑉𝑉) ∧ 𝑥𝐼) → (𝑥) ∈ 𝐵)
6317, 20, 60, 61, 62ringcld 20220 . . . . 5 (((𝜑𝑔𝑉𝑉) ∧ 𝑥𝐼) → ((𝑔𝑥) · (𝑥)) ∈ 𝐵)
6463fmpttd 7105 . . . 4 ((𝜑𝑔𝑉𝑉) → (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))):𝐼𝐵)
65 frlmphl.m . . . . 5 ((𝜑𝑔𝑉 ∧ (𝑔 , 𝑔) = 0 ) → 𝑔 = 𝑂)
6614, 17, 20, 1, 5, 7, 24, 22, 9, 65, 34, 13frlmphllem 21740 . . . 4 ((𝜑𝑔𝑉𝑉) → (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))) finSupp 0 )
6717, 24, 59, 36, 64, 66gsumcl 19896 . . 3 ((𝜑𝑔𝑉𝑉) → (𝑅 Σg (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥)))) ∈ 𝐵)
6857, 67eqeltrd 2834 . 2 ((𝜑𝑔𝑉𝑉) → (𝑔 , ) ∈ 𝐵)
69 eqid 2735 . . . 4 (+g𝑅) = (+g𝑅)
70583ad2ant1 1133 . . . 4 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝑅 ∈ CMnd)
71133ad2ant1 1133 . . . 4 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝐼𝑊)
72263ad2ant1 1133 . . . . . 6 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝑅 ∈ Ring)
7372adantr 480 . . . . 5 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → 𝑅 ∈ Ring)
74 simp2 1137 . . . . . 6 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝑘𝐵)
7574adantr 480 . . . . 5 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → 𝑘𝐵)
76 simp31 1210 . . . . . . . . 9 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝑔𝑉)
7771, 76, 42syl2anc 584 . . . . . . . 8 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝑔 ∈ (𝐵m 𝐼))
7877, 44syl 17 . . . . . . 7 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝑔:𝐼𝐵)
7978ffvelcdmda 7074 . . . . . 6 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → (𝑔𝑥) ∈ 𝐵)
80 simp33 1212 . . . . . . . . 9 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝑖𝑉)
8114, 17, 1frlmbasmap 21719 . . . . . . . . 9 ((𝐼𝑊𝑖𝑉) → 𝑖 ∈ (𝐵m 𝐼))
8271, 80, 81syl2anc 584 . . . . . . . 8 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝑖 ∈ (𝐵m 𝐼))
83 elmapi 8863 . . . . . . . 8 (𝑖 ∈ (𝐵m 𝐼) → 𝑖:𝐼𝐵)
8482, 83syl 17 . . . . . . 7 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝑖:𝐼𝐵)
8584ffvelcdmda 7074 . . . . . 6 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → (𝑖𝑥) ∈ 𝐵)
8617, 20, 73, 79, 85ringcld 20220 . . . . 5 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → ((𝑔𝑥) · (𝑖𝑥)) ∈ 𝐵)
8717, 20, 73, 75, 86ringcld 20220 . . . 4 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → (𝑘 · ((𝑔𝑥) · (𝑖𝑥))) ∈ 𝐵)
88 simp32 1211 . . . . . . . 8 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝑉)
8971, 88, 47syl2anc 584 . . . . . . 7 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → ∈ (𝐵m 𝐼))
9089, 49syl 17 . . . . . 6 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → :𝐼𝐵)
9190ffvelcdmda 7074 . . . . 5 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → (𝑥) ∈ 𝐵)
9217, 20, 73, 91, 85ringcld 20220 . . . 4 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → ((𝑥) · (𝑖𝑥)) ∈ 𝐵)
93 eqidd 2736 . . . 4 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑥𝐼 ↦ (𝑘 · ((𝑔𝑥) · (𝑖𝑥)))) = (𝑥𝐼 ↦ (𝑘 · ((𝑔𝑥) · (𝑖𝑥)))))
94 eqidd 2736 . . . 4 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑥𝐼 ↦ ((𝑥) · (𝑖𝑥))) = (𝑥𝐼 ↦ ((𝑥) · (𝑖𝑥))))
95 fveq2 6876 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑔𝑥) = (𝑔𝑦))
9695oveq2d 7421 . . . . . . . 8 (𝑥 = 𝑦 → (𝑘 · (𝑔𝑥)) = (𝑘 · (𝑔𝑦)))
9796cbvmptv 5225 . . . . . . 7 (𝑥𝐼 ↦ (𝑘 · (𝑔𝑥))) = (𝑦𝐼 ↦ (𝑘 · (𝑔𝑦)))
9897oveq1i 7415 . . . . . 6 ((𝑥𝐼 ↦ (𝑘 · (𝑔𝑥))) ∘f · 𝑖) = ((𝑦𝐼 ↦ (𝑘 · (𝑔𝑦))) ∘f · 𝑖)
9917, 20, 73, 75, 79ringcld 20220 . . . . . . . . . . 11 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → (𝑘 · (𝑔𝑥)) ∈ 𝐵)
10099fmpttd 7105 . . . . . . . . . 10 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑥𝐼 ↦ (𝑘 · (𝑔𝑥))):𝐼𝐵)
101100ffnd 6707 . . . . . . . . 9 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑥𝐼 ↦ (𝑘 · (𝑔𝑥))) Fn 𝐼)
10297fneq1i 6635 . . . . . . . . 9 ((𝑥𝐼 ↦ (𝑘 · (𝑔𝑥))) Fn 𝐼 ↔ (𝑦𝐼 ↦ (𝑘 · (𝑔𝑦))) Fn 𝐼)
103101, 102sylib 218 . . . . . . . 8 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑦𝐼 ↦ (𝑘 · (𝑔𝑦))) Fn 𝐼)
10484ffnd 6707 . . . . . . . 8 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝑖 Fn 𝐼)
105 eqidd 2736 . . . . . . . . 9 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → (𝑦𝐼 ↦ (𝑘 · (𝑔𝑦))) = (𝑦𝐼 ↦ (𝑘 · (𝑔𝑦))))
106 simpr 484 . . . . . . . . . . 11 ((((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) ∧ 𝑦 = 𝑥) → 𝑦 = 𝑥)
107106fveq2d 6880 . . . . . . . . . 10 ((((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) ∧ 𝑦 = 𝑥) → (𝑔𝑦) = (𝑔𝑥))
108107oveq2d 7421 . . . . . . . . 9 ((((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) ∧ 𝑦 = 𝑥) → (𝑘 · (𝑔𝑦)) = (𝑘 · (𝑔𝑥)))
109 simpr 484 . . . . . . . . 9 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → 𝑥𝐼)
110 ovexd 7440 . . . . . . . . 9 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → (𝑘 · (𝑔𝑥)) ∈ V)
111105, 108, 109, 110fvmptd 6993 . . . . . . . 8 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → ((𝑦𝐼 ↦ (𝑘 · (𝑔𝑦)))‘𝑥) = (𝑘 · (𝑔𝑥)))
112 eqidd 2736 . . . . . . . 8 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → (𝑖𝑥) = (𝑖𝑥))
113103, 104, 71, 71, 52, 111, 112offval 7680 . . . . . . 7 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → ((𝑦𝐼 ↦ (𝑘 · (𝑔𝑦))) ∘f · 𝑖) = (𝑥𝐼 ↦ ((𝑘 · (𝑔𝑥)) · (𝑖𝑥))))
11417, 20ringass 20213 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑘𝐵 ∧ (𝑔𝑥) ∈ 𝐵 ∧ (𝑖𝑥) ∈ 𝐵)) → ((𝑘 · (𝑔𝑥)) · (𝑖𝑥)) = (𝑘 · ((𝑔𝑥) · (𝑖𝑥))))
11573, 75, 79, 85, 114syl13anc 1374 . . . . . . . 8 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → ((𝑘 · (𝑔𝑥)) · (𝑖𝑥)) = (𝑘 · ((𝑔𝑥) · (𝑖𝑥))))
116115mpteq2dva 5214 . . . . . . 7 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑥𝐼 ↦ ((𝑘 · (𝑔𝑥)) · (𝑖𝑥))) = (𝑥𝐼 ↦ (𝑘 · ((𝑔𝑥) · (𝑖𝑥)))))
117113, 116eqtrd 2770 . . . . . 6 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → ((𝑦𝐼 ↦ (𝑘 · (𝑔𝑦))) ∘f · 𝑖) = (𝑥𝐼 ↦ (𝑘 · ((𝑔𝑥) · (𝑖𝑥)))))
11898, 117eqtrid 2782 . . . . 5 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → ((𝑥𝐼 ↦ (𝑘 · (𝑔𝑥))) ∘f · 𝑖) = (𝑥𝐼 ↦ (𝑘 · ((𝑔𝑥) · (𝑖𝑥)))))
119 ovexd 7440 . . . . . 6 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → ((𝑥𝐼 ↦ (𝑘 · (𝑔𝑥))) ∘f · 𝑖) ∈ V)
120101, 104, 71, 71offun 7685 . . . . . 6 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → Fun ((𝑥𝐼 ↦ (𝑘 · (𝑔𝑥))) ∘f · 𝑖))
121 simp3 1138 . . . . . . . . 9 ((𝑔𝑉𝑉𝑖𝑉) → 𝑖𝑉)
12213, 121anim12i 613 . . . . . . . 8 ((𝜑 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝐼𝑊𝑖𝑉))
1231223adant2 1131 . . . . . . 7 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝐼𝑊𝑖𝑉))
12414, 24, 1frlmbasfsupp 21718 . . . . . . 7 ((𝐼𝑊𝑖𝑉) → 𝑖 finSupp 0 )
125123, 124syl 17 . . . . . 6 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝑖 finSupp 0 )
12617, 24ring0cl 20227 . . . . . . . 8 (𝑅 ∈ Ring → 0𝐵)
12772, 126syl 17 . . . . . . 7 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 0𝐵)
12817, 20, 24ringrz 20254 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑦𝐵) → (𝑦 · 0 ) = 0 )
12972, 128sylan 580 . . . . . . 7 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑦𝐵) → (𝑦 · 0 ) = 0 )
13071, 127, 100, 84, 129suppofss2d 8204 . . . . . 6 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (((𝑥𝐼 ↦ (𝑘 · (𝑔𝑥))) ∘f · 𝑖) supp 0 ) ⊆ (𝑖 supp 0 ))
131 fsuppsssupp 9393 . . . . . 6 (((((𝑥𝐼 ↦ (𝑘 · (𝑔𝑥))) ∘f · 𝑖) ∈ V ∧ Fun ((𝑥𝐼 ↦ (𝑘 · (𝑔𝑥))) ∘f · 𝑖)) ∧ (𝑖 finSupp 0 ∧ (((𝑥𝐼 ↦ (𝑘 · (𝑔𝑥))) ∘f · 𝑖) supp 0 ) ⊆ (𝑖 supp 0 ))) → ((𝑥𝐼 ↦ (𝑘 · (𝑔𝑥))) ∘f · 𝑖) finSupp 0 )
132119, 120, 125, 130, 131syl22anc 838 . . . . 5 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → ((𝑥𝐼 ↦ (𝑘 · (𝑔𝑥))) ∘f · 𝑖) finSupp 0 )
133118, 132eqbrtrrd 5143 . . . 4 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑥𝐼 ↦ (𝑘 · ((𝑔𝑥) · (𝑖𝑥)))) finSupp 0 )
134 simp1 1136 . . . . 5 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝜑)
135 eleq1w 2817 . . . . . . . . 9 (𝑔 = → (𝑔𝑉𝑉))
136 id 22 . . . . . . . . . . 11 (𝑔 = 𝑔 = )
137136, 136oveq12d 7423 . . . . . . . . . 10 (𝑔 = → (𝑔 , 𝑔) = ( , ))
138137eqeq1d 2737 . . . . . . . . 9 (𝑔 = → ((𝑔 , 𝑔) = 0 ↔ ( , ) = 0 ))
139135, 1383anbi23d 1441 . . . . . . . 8 (𝑔 = → ((𝜑𝑔𝑉 ∧ (𝑔 , 𝑔) = 0 ) ↔ (𝜑𝑉 ∧ ( , ) = 0 )))
140 eqeq1 2739 . . . . . . . 8 (𝑔 = → (𝑔 = 𝑂 = 𝑂))
141139, 140imbi12d 344 . . . . . . 7 (𝑔 = → (((𝜑𝑔𝑉 ∧ (𝑔 , 𝑔) = 0 ) → 𝑔 = 𝑂) ↔ ((𝜑𝑉 ∧ ( , ) = 0 ) → = 𝑂)))
142141, 65chvarvv 1998 . . . . . 6 ((𝜑𝑉 ∧ ( , ) = 0 ) → = 𝑂)
14314, 17, 20, 1, 5, 7, 24, 22, 9, 142, 34, 13frlmphllem 21740 . . . . 5 ((𝜑𝑉𝑖𝑉) → (𝑥𝐼 ↦ ((𝑥) · (𝑖𝑥))) finSupp 0 )
144134, 88, 80, 143syl3anc 1373 . . . 4 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑥𝐼 ↦ ((𝑥) · (𝑖𝑥))) finSupp 0 )
14517, 24, 69, 70, 71, 87, 92, 93, 94, 133, 144gsummptfsadd 19905 . . 3 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑅 Σg (𝑥𝐼 ↦ ((𝑘 · ((𝑔𝑥) · (𝑖𝑥)))(+g𝑅)((𝑥) · (𝑖𝑥))))) = ((𝑅 Σg (𝑥𝐼 ↦ (𝑘 · ((𝑔𝑥) · (𝑖𝑥)))))(+g𝑅)(𝑅 Σg (𝑥𝐼 ↦ ((𝑥) · (𝑖𝑥))))))
14614, 17, 20frlmip 21738 . . . . . . . . 9 ((𝐼𝑊𝑅 ∈ DivRing) → (𝑔 ∈ (𝐵m 𝐼), ∈ (𝐵m 𝐼) ↦ (𝑅 Σg (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))))) = (·𝑖𝑌))
14713, 12, 146syl2anc 584 . . . . . . . 8 (𝜑 → (𝑔 ∈ (𝐵m 𝐼), ∈ (𝐵m 𝐼) ↦ (𝑅 Σg (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))))) = (·𝑖𝑌))
1485, 147eqtr4id 2789 . . . . . . 7 (𝜑, = (𝑔 ∈ (𝐵m 𝐼), ∈ (𝐵m 𝐼) ↦ (𝑅 Σg (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))))))
149 fveq1 6875 . . . . . . . . . . 11 (𝑒 = 𝑔 → (𝑒𝑥) = (𝑔𝑥))
150149oveq1d 7420 . . . . . . . . . 10 (𝑒 = 𝑔 → ((𝑒𝑥) · (𝑓𝑥)) = ((𝑔𝑥) · (𝑓𝑥)))
151150mpteq2dv 5215 . . . . . . . . 9 (𝑒 = 𝑔 → (𝑥𝐼 ↦ ((𝑒𝑥) · (𝑓𝑥))) = (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑓𝑥))))
152151oveq2d 7421 . . . . . . . 8 (𝑒 = 𝑔 → (𝑅 Σg (𝑥𝐼 ↦ ((𝑒𝑥) · (𝑓𝑥)))) = (𝑅 Σg (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑓𝑥)))))
153 fveq1 6875 . . . . . . . . . . 11 (𝑓 = → (𝑓𝑥) = (𝑥))
154153oveq2d 7421 . . . . . . . . . 10 (𝑓 = → ((𝑔𝑥) · (𝑓𝑥)) = ((𝑔𝑥) · (𝑥)))
155154mpteq2dv 5215 . . . . . . . . 9 (𝑓 = → (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑓𝑥))) = (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))))
156155oveq2d 7421 . . . . . . . 8 (𝑓 = → (𝑅 Σg (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑓𝑥)))) = (𝑅 Σg (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥)))))
157152, 156cbvmpov 7502 . . . . . . 7 (𝑒 ∈ (𝐵m 𝐼), 𝑓 ∈ (𝐵m 𝐼) ↦ (𝑅 Σg (𝑥𝐼 ↦ ((𝑒𝑥) · (𝑓𝑥))))) = (𝑔 ∈ (𝐵m 𝐼), ∈ (𝐵m 𝐼) ↦ (𝑅 Σg (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥)))))
158148, 157eqtr4di 2788 . . . . . 6 (𝜑, = (𝑒 ∈ (𝐵m 𝐼), 𝑓 ∈ (𝐵m 𝐼) ↦ (𝑅 Σg (𝑥𝐼 ↦ ((𝑒𝑥) · (𝑓𝑥))))))
1591583ad2ant1 1133 . . . . 5 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → , = (𝑒 ∈ (𝐵m 𝐼), 𝑓 ∈ (𝐵m 𝐼) ↦ (𝑅 Σg (𝑥𝐼 ↦ ((𝑒𝑥) · (𝑓𝑥))))))
160 simprl 770 . . . . . . . . 9 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = ((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)) ∧ 𝑓 = 𝑖)) → 𝑒 = ((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)))
161160fveq1d 6878 . . . . . . . 8 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = ((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)) ∧ 𝑓 = 𝑖)) → (𝑒𝑥) = (((𝑘( ·𝑠𝑌)𝑔)(+g𝑌))‘𝑥))
162 simprr 772 . . . . . . . . 9 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = ((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)) ∧ 𝑓 = 𝑖)) → 𝑓 = 𝑖)
163162fveq1d 6878 . . . . . . . 8 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = ((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)) ∧ 𝑓 = 𝑖)) → (𝑓𝑥) = (𝑖𝑥))
164161, 163oveq12d 7423 . . . . . . 7 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = ((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)) ∧ 𝑓 = 𝑖)) → ((𝑒𝑥) · (𝑓𝑥)) = ((((𝑘( ·𝑠𝑌)𝑔)(+g𝑌))‘𝑥) · (𝑖𝑥)))
165164mpteq2dv 5215 . . . . . 6 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = ((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)) ∧ 𝑓 = 𝑖)) → (𝑥𝐼 ↦ ((𝑒𝑥) · (𝑓𝑥))) = (𝑥𝐼 ↦ ((((𝑘( ·𝑠𝑌)𝑔)(+g𝑌))‘𝑥) · (𝑖𝑥))))
166165oveq2d 7421 . . . . 5 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = ((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)) ∧ 𝑓 = 𝑖)) → (𝑅 Σg (𝑥𝐼 ↦ ((𝑒𝑥) · (𝑓𝑥)))) = (𝑅 Σg (𝑥𝐼 ↦ ((((𝑘( ·𝑠𝑌)𝑔)(+g𝑌))‘𝑥) · (𝑖𝑥)))))
167283ad2ant1 1133 . . . . . . 7 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝑌 ∈ LMod)
168163ad2ant1 1133 . . . . . . . . . . 11 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝑅 = (Scalar‘𝑌))
169168fveq2d 6880 . . . . . . . . . 10 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (Base‘𝑅) = (Base‘(Scalar‘𝑌)))
17017, 169eqtrid 2782 . . . . . . . . 9 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝐵 = (Base‘(Scalar‘𝑌)))
17174, 170eleqtrd 2836 . . . . . . . 8 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝑘 ∈ (Base‘(Scalar‘𝑌)))
172 eqid 2735 . . . . . . . . 9 ( ·𝑠𝑌) = ( ·𝑠𝑌)
173 eqid 2735 . . . . . . . . 9 (Base‘(Scalar‘𝑌)) = (Base‘(Scalar‘𝑌))
1741, 30, 172, 173lmodvscl 20835 . . . . . . . 8 ((𝑌 ∈ LMod ∧ 𝑘 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑔𝑉) → (𝑘( ·𝑠𝑌)𝑔) ∈ 𝑉)
175167, 171, 76, 174syl3anc 1373 . . . . . . 7 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑘( ·𝑠𝑌)𝑔) ∈ 𝑉)
176 eqid 2735 . . . . . . . 8 (+g𝑌) = (+g𝑌)
1771, 176lmodvacl 20832 . . . . . . 7 ((𝑌 ∈ LMod ∧ (𝑘( ·𝑠𝑌)𝑔) ∈ 𝑉𝑉) → ((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)) ∈ 𝑉)
178167, 175, 88, 177syl3anc 1373 . . . . . 6 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → ((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)) ∈ 𝑉)
17914, 17, 1frlmbasmap 21719 . . . . . 6 ((𝐼𝑊 ∧ ((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)) ∈ 𝑉) → ((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)) ∈ (𝐵m 𝐼))
18071, 178, 179syl2anc 584 . . . . 5 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → ((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)) ∈ (𝐵m 𝐼))
181 ovexd 7440 . . . . 5 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑅 Σg (𝑥𝐼 ↦ ((((𝑘( ·𝑠𝑌)𝑔)(+g𝑌))‘𝑥) · (𝑖𝑥)))) ∈ V)
182159, 166, 180, 82, 181ovmpod 7559 . . . 4 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)) , 𝑖) = (𝑅 Σg (𝑥𝐼 ↦ ((((𝑘( ·𝑠𝑌)𝑔)(+g𝑌))‘𝑥) · (𝑖𝑥)))))
18314, 1, 72, 71, 175, 88, 69, 176frlmplusgval 21724 . . . . . . . . . 10 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → ((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)) = ((𝑘( ·𝑠𝑌)𝑔) ∘f (+g𝑅)))
18414, 17, 1frlmbasmap 21719 . . . . . . . . . . . . 13 ((𝐼𝑊 ∧ (𝑘( ·𝑠𝑌)𝑔) ∈ 𝑉) → (𝑘( ·𝑠𝑌)𝑔) ∈ (𝐵m 𝐼))
18571, 175, 184syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑘( ·𝑠𝑌)𝑔) ∈ (𝐵m 𝐼))
186 elmapi 8863 . . . . . . . . . . . 12 ((𝑘( ·𝑠𝑌)𝑔) ∈ (𝐵m 𝐼) → (𝑘( ·𝑠𝑌)𝑔):𝐼𝐵)
187 ffn 6706 . . . . . . . . . . . 12 ((𝑘( ·𝑠𝑌)𝑔):𝐼𝐵 → (𝑘( ·𝑠𝑌)𝑔) Fn 𝐼)
188185, 186, 1873syl 18 . . . . . . . . . . 11 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑘( ·𝑠𝑌)𝑔) Fn 𝐼)
18990ffnd 6707 . . . . . . . . . . 11 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → Fn 𝐼)
19071adantr 480 . . . . . . . . . . . 12 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → 𝐼𝑊)
19176adantr 480 . . . . . . . . . . . 12 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → 𝑔𝑉)
19214, 1, 17, 190, 75, 191, 109, 172, 20frlmvscaval 21728 . . . . . . . . . . 11 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → ((𝑘( ·𝑠𝑌)𝑔)‘𝑥) = (𝑘 · (𝑔𝑥)))
193 eqidd 2736 . . . . . . . . . . 11 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → (𝑥) = (𝑥))
194188, 189, 71, 71, 52, 192, 193offval 7680 . . . . . . . . . 10 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → ((𝑘( ·𝑠𝑌)𝑔) ∘f (+g𝑅)) = (𝑥𝐼 ↦ ((𝑘 · (𝑔𝑥))(+g𝑅)(𝑥))))
195183, 194eqtrd 2770 . . . . . . . . 9 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → ((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)) = (𝑥𝐼 ↦ ((𝑘 · (𝑔𝑥))(+g𝑅)(𝑥))))
196 ovexd 7440 . . . . . . . . 9 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → ((𝑘 · (𝑔𝑥))(+g𝑅)(𝑥)) ∈ V)
197195, 196fvmpt2d 6999 . . . . . . . 8 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → (((𝑘( ·𝑠𝑌)𝑔)(+g𝑌))‘𝑥) = ((𝑘 · (𝑔𝑥))(+g𝑅)(𝑥)))
198197oveq1d 7420 . . . . . . 7 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → ((((𝑘( ·𝑠𝑌)𝑔)(+g𝑌))‘𝑥) · (𝑖𝑥)) = (((𝑘 · (𝑔𝑥))(+g𝑅)(𝑥)) · (𝑖𝑥)))
19917, 69, 20ringdir 20222 . . . . . . . 8 ((𝑅 ∈ Ring ∧ ((𝑘 · (𝑔𝑥)) ∈ 𝐵 ∧ (𝑥) ∈ 𝐵 ∧ (𝑖𝑥) ∈ 𝐵)) → (((𝑘 · (𝑔𝑥))(+g𝑅)(𝑥)) · (𝑖𝑥)) = (((𝑘 · (𝑔𝑥)) · (𝑖𝑥))(+g𝑅)((𝑥) · (𝑖𝑥))))
20073, 99, 91, 85, 199syl13anc 1374 . . . . . . 7 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → (((𝑘 · (𝑔𝑥))(+g𝑅)(𝑥)) · (𝑖𝑥)) = (((𝑘 · (𝑔𝑥)) · (𝑖𝑥))(+g𝑅)((𝑥) · (𝑖𝑥))))
201115oveq1d 7420 . . . . . . 7 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → (((𝑘 · (𝑔𝑥)) · (𝑖𝑥))(+g𝑅)((𝑥) · (𝑖𝑥))) = ((𝑘 · ((𝑔𝑥) · (𝑖𝑥)))(+g𝑅)((𝑥) · (𝑖𝑥))))
202198, 200, 2013eqtrd 2774 . . . . . 6 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → ((((𝑘( ·𝑠𝑌)𝑔)(+g𝑌))‘𝑥) · (𝑖𝑥)) = ((𝑘 · ((𝑔𝑥) · (𝑖𝑥)))(+g𝑅)((𝑥) · (𝑖𝑥))))
203202mpteq2dva 5214 . . . . 5 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑥𝐼 ↦ ((((𝑘( ·𝑠𝑌)𝑔)(+g𝑌))‘𝑥) · (𝑖𝑥))) = (𝑥𝐼 ↦ ((𝑘 · ((𝑔𝑥) · (𝑖𝑥)))(+g𝑅)((𝑥) · (𝑖𝑥)))))
204203oveq2d 7421 . . . 4 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑅 Σg (𝑥𝐼 ↦ ((((𝑘( ·𝑠𝑌)𝑔)(+g𝑌))‘𝑥) · (𝑖𝑥)))) = (𝑅 Σg (𝑥𝐼 ↦ ((𝑘 · ((𝑔𝑥) · (𝑖𝑥)))(+g𝑅)((𝑥) · (𝑖𝑥))))))
205182, 204eqtrd 2770 . . 3 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)) , 𝑖) = (𝑅 Σg (𝑥𝐼 ↦ ((𝑘 · ((𝑔𝑥) · (𝑖𝑥)))(+g𝑅)((𝑥) · (𝑖𝑥))))))
206 simprl 770 . . . . . . . . . . 11 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = 𝑔𝑓 = 𝑖)) → 𝑒 = 𝑔)
207206fveq1d 6878 . . . . . . . . . 10 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = 𝑔𝑓 = 𝑖)) → (𝑒𝑥) = (𝑔𝑥))
208 simprr 772 . . . . . . . . . . 11 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = 𝑔𝑓 = 𝑖)) → 𝑓 = 𝑖)
209208fveq1d 6878 . . . . . . . . . 10 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = 𝑔𝑓 = 𝑖)) → (𝑓𝑥) = (𝑖𝑥))
210207, 209oveq12d 7423 . . . . . . . . 9 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = 𝑔𝑓 = 𝑖)) → ((𝑒𝑥) · (𝑓𝑥)) = ((𝑔𝑥) · (𝑖𝑥)))
211210mpteq2dv 5215 . . . . . . . 8 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = 𝑔𝑓 = 𝑖)) → (𝑥𝐼 ↦ ((𝑒𝑥) · (𝑓𝑥))) = (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑖𝑥))))
212211oveq2d 7421 . . . . . . 7 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = 𝑔𝑓 = 𝑖)) → (𝑅 Σg (𝑥𝐼 ↦ ((𝑒𝑥) · (𝑓𝑥)))) = (𝑅 Σg (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑖𝑥)))))
213 ovexd 7440 . . . . . . 7 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑅 Σg (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑖𝑥)))) ∈ V)
214159, 212, 77, 82, 213ovmpod 7559 . . . . . 6 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑔 , 𝑖) = (𝑅 Σg (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑖𝑥)))))
215214oveq2d 7421 . . . . 5 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑘 · (𝑔 , 𝑖)) = (𝑘 · (𝑅 Σg (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑖𝑥))))))
21614, 17, 20, 1, 5, 7, 24, 22, 9, 65, 34, 13frlmphllem 21740 . . . . . . 7 ((𝜑𝑔𝑉𝑖𝑉) → (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑖𝑥))) finSupp 0 )
217134, 76, 80, 216syl3anc 1373 . . . . . 6 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑖𝑥))) finSupp 0 )
21817, 24, 20, 72, 71, 74, 86, 217gsummulc2 20277 . . . . 5 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑅 Σg (𝑥𝐼 ↦ (𝑘 · ((𝑔𝑥) · (𝑖𝑥))))) = (𝑘 · (𝑅 Σg (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑖𝑥))))))
219215, 218eqtr4d 2773 . . . 4 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑘 · (𝑔 , 𝑖)) = (𝑅 Σg (𝑥𝐼 ↦ (𝑘 · ((𝑔𝑥) · (𝑖𝑥))))))
220 simprl 770 . . . . . . . . 9 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = 𝑓 = 𝑖)) → 𝑒 = )
221220fveq1d 6878 . . . . . . . 8 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = 𝑓 = 𝑖)) → (𝑒𝑥) = (𝑥))
222 simprr 772 . . . . . . . . 9 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = 𝑓 = 𝑖)) → 𝑓 = 𝑖)
223222fveq1d 6878 . . . . . . . 8 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = 𝑓 = 𝑖)) → (𝑓𝑥) = (𝑖𝑥))
224221, 223oveq12d 7423 . . . . . . 7 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = 𝑓 = 𝑖)) → ((𝑒𝑥) · (𝑓𝑥)) = ((𝑥) · (𝑖𝑥)))
225224mpteq2dv 5215 . . . . . 6 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = 𝑓 = 𝑖)) → (𝑥𝐼 ↦ ((𝑒𝑥) · (𝑓𝑥))) = (𝑥𝐼 ↦ ((𝑥) · (𝑖𝑥))))
226225oveq2d 7421 . . . . 5 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = 𝑓 = 𝑖)) → (𝑅 Σg (𝑥𝐼 ↦ ((𝑒𝑥) · (𝑓𝑥)))) = (𝑅 Σg (𝑥𝐼 ↦ ((𝑥) · (𝑖𝑥)))))
227 ovexd 7440 . . . . 5 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑅 Σg (𝑥𝐼 ↦ ((𝑥) · (𝑖𝑥)))) ∈ V)
228159, 226, 89, 82, 227ovmpod 7559 . . . 4 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → ( , 𝑖) = (𝑅 Σg (𝑥𝐼 ↦ ((𝑥) · (𝑖𝑥)))))
229219, 228oveq12d 7423 . . 3 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → ((𝑘 · (𝑔 , 𝑖))(+g𝑅)( , 𝑖)) = ((𝑅 Σg (𝑥𝐼 ↦ (𝑘 · ((𝑔𝑥) · (𝑖𝑥)))))(+g𝑅)(𝑅 Σg (𝑥𝐼 ↦ ((𝑥) · (𝑖𝑥))))))
230145, 205, 2293eqtr4d 2780 . 2 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)) , 𝑖) = ((𝑘 · (𝑔 , 𝑖))(+g𝑅)( , 𝑖)))
231333ad2ant1 1133 . . . . . . 7 ((𝜑𝑔𝑉𝑉) → 𝑅 ∈ CRing)
232231adantr 480 . . . . . 6 (((𝜑𝑔𝑉𝑉) ∧ 𝑥𝐼) → 𝑅 ∈ CRing)
23317, 20crngcom 20211 . . . . . 6 ((𝑅 ∈ CRing ∧ (𝑥) ∈ 𝐵 ∧ (𝑔𝑥) ∈ 𝐵) → ((𝑥) · (𝑔𝑥)) = ((𝑔𝑥) · (𝑥)))
234232, 62, 61, 233syl3anc 1373 . . . . 5 (((𝜑𝑔𝑉𝑉) ∧ 𝑥𝐼) → ((𝑥) · (𝑔𝑥)) = ((𝑔𝑥) · (𝑥)))
235234mpteq2dva 5214 . . . 4 ((𝜑𝑔𝑉𝑉) → (𝑥𝐼 ↦ ((𝑥) · (𝑔𝑥))) = (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))))
236235oveq2d 7421 . . 3 ((𝜑𝑔𝑉𝑉) → (𝑅 Σg (𝑥𝐼 ↦ ((𝑥) · (𝑔𝑥)))) = (𝑅 Σg (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥)))))
2371583ad2ant1 1133 . . . 4 ((𝜑𝑔𝑉𝑉) → , = (𝑒 ∈ (𝐵m 𝐼), 𝑓 ∈ (𝐵m 𝐼) ↦ (𝑅 Σg (𝑥𝐼 ↦ ((𝑒𝑥) · (𝑓𝑥))))))
238 simprl 770 . . . . . . . 8 (((𝜑𝑔𝑉𝑉) ∧ (𝑒 = 𝑓 = 𝑔)) → 𝑒 = )
239238fveq1d 6878 . . . . . . 7 (((𝜑𝑔𝑉𝑉) ∧ (𝑒 = 𝑓 = 𝑔)) → (𝑒𝑥) = (𝑥))
240 simprr 772 . . . . . . . 8 (((𝜑𝑔𝑉𝑉) ∧ (𝑒 = 𝑓 = 𝑔)) → 𝑓 = 𝑔)
241240fveq1d 6878 . . . . . . 7 (((𝜑𝑔𝑉𝑉) ∧ (𝑒 = 𝑓 = 𝑔)) → (𝑓𝑥) = (𝑔𝑥))
242239, 241oveq12d 7423 . . . . . 6 (((𝜑𝑔𝑉𝑉) ∧ (𝑒 = 𝑓 = 𝑔)) → ((𝑒𝑥) · (𝑓𝑥)) = ((𝑥) · (𝑔𝑥)))
243242mpteq2dv 5215 . . . . 5 (((𝜑𝑔𝑉𝑉) ∧ (𝑒 = 𝑓 = 𝑔)) → (𝑥𝐼 ↦ ((𝑒𝑥) · (𝑓𝑥))) = (𝑥𝐼 ↦ ((𝑥) · (𝑔𝑥))))
244243oveq2d 7421 . . . 4 (((𝜑𝑔𝑉𝑉) ∧ (𝑒 = 𝑓 = 𝑔)) → (𝑅 Σg (𝑥𝐼 ↦ ((𝑒𝑥) · (𝑓𝑥)))) = (𝑅 Σg (𝑥𝐼 ↦ ((𝑥) · (𝑔𝑥)))))
245 ovexd 7440 . . . 4 ((𝜑𝑔𝑉𝑉) → (𝑅 Σg (𝑥𝐼 ↦ ((𝑥) · (𝑔𝑥)))) ∈ V)
246237, 244, 48, 43, 245ovmpod 7559 . . 3 ((𝜑𝑔𝑉𝑉) → ( , 𝑔) = (𝑅 Σg (𝑥𝐼 ↦ ((𝑥) · (𝑔𝑥)))))
247 fveq2 6876 . . . . . 6 (𝑥 = (𝑔 , ) → ( 𝑥) = ( ‘(𝑔 , )))
248 id 22 . . . . . 6 (𝑥 = (𝑔 , ) → 𝑥 = (𝑔 , ))
249247, 248eqeq12d 2751 . . . . 5 (𝑥 = (𝑔 , ) → (( 𝑥) = 𝑥 ↔ ( ‘(𝑔 , )) = (𝑔 , )))
25034ralrimiva 3132 . . . . . 6 (𝜑 → ∀𝑥𝐵 ( 𝑥) = 𝑥)
2512503ad2ant1 1133 . . . . 5 ((𝜑𝑔𝑉𝑉) → ∀𝑥𝐵 ( 𝑥) = 𝑥)
252249, 251, 68rspcdva 3602 . . . 4 ((𝜑𝑔𝑉𝑉) → ( ‘(𝑔 , )) = (𝑔 , ))
253252, 57eqtrd 2770 . . 3 ((𝜑𝑔𝑉𝑉) → ( ‘(𝑔 , )) = (𝑅 Σg (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥)))))
254236, 246, 2533eqtr4rd 2781 . 2 ((𝜑𝑔𝑉𝑉) → ( ‘(𝑔 , )) = ( , 𝑔))
2552, 3, 4, 6, 8, 16, 18, 19, 21, 23, 25, 32, 35, 68, 230, 65, 254isphld 21614 1 (𝜑𝑌 ∈ PreHil)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051  Vcvv 3459  wss 3926   class class class wbr 5119  cmpt 5201  Fun wfun 6525   Fn wfn 6526  wf 6527  cfv 6531  (class class class)co 7405  cmpo 7407  f cof 7669   supp csupp 8159  m cmap 8840   finSupp cfsupp 9373  Basecbs 17228  +gcplusg 17271  .rcmulr 17272  *𝑟cstv 17273  Scalarcsca 17274   ·𝑠 cvsca 17275  ·𝑖cip 17276  0gc0g 17453   Σg cgsu 17454  CMndccmn 19761  Ringcrg 20193  CRingccrg 20194  DivRingcdr 20689  Fieldcfield 20690  LModclmod 20817  LVecclvec 21060  PreHilcphl 21584   freeLMod cfrlm 21706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-map 8842  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-sup 9454  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-fz 13525  df-fzo 13672  df-seq 14020  df-hash 14349  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-hom 17295  df-cco 17296  df-0g 17455  df-gsum 17456  df-prds 17461  df-pws 17463  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-mhm 18761  df-submnd 18762  df-grp 18919  df-minusg 18920  df-sbg 18921  df-subg 19106  df-ghm 19196  df-cntz 19300  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-cring 20196  df-oppr 20297  df-rhm 20432  df-subrg 20530  df-drng 20691  df-field 20692  df-staf 20799  df-srng 20800  df-lmod 20819  df-lss 20889  df-lmhm 20980  df-lvec 21061  df-sra 21131  df-rgmod 21132  df-phl 21586  df-dsmm 21692  df-frlm 21707
This theorem is referenced by:  rrxcph  25344
  Copyright terms: Public domain W3C validator