MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmphl Structured version   Visualization version   GIF version

Theorem frlmphl 21824
Description: Conditions for a free module to be a pre-Hilbert space. (Contributed by Thierry Arnoux, 21-Jun-2019.) (Proof shortened by AV, 21-Jul-2019.)
Hypotheses
Ref Expression
frlmphl.y 𝑌 = (𝑅 freeLMod 𝐼)
frlmphl.b 𝐵 = (Base‘𝑅)
frlmphl.t · = (.r𝑅)
frlmphl.v 𝑉 = (Base‘𝑌)
frlmphl.j , = (·𝑖𝑌)
frlmphl.o 𝑂 = (0g𝑌)
frlmphl.0 0 = (0g𝑅)
frlmphl.s = (*𝑟𝑅)
frlmphl.f (𝜑𝑅 ∈ Field)
frlmphl.m ((𝜑𝑔𝑉 ∧ (𝑔 , 𝑔) = 0 ) → 𝑔 = 𝑂)
frlmphl.u ((𝜑𝑥𝐵) → ( 𝑥) = 𝑥)
frlmphl.i (𝜑𝐼𝑊)
Assertion
Ref Expression
frlmphl (𝜑𝑌 ∈ PreHil)
Distinct variable groups:   𝐵,𝑔,𝑥   𝑔,𝐼,𝑥   𝑅,𝑔,𝑥   𝑔,𝑉,𝑥   𝑔,𝑊,𝑥   · ,𝑔,𝑥   𝑔,𝑌,𝑥   0 ,𝑔,𝑥   𝜑,𝑔,𝑥   , ,𝑔,𝑥   𝑔,𝑂   𝑥,
Allowed substitution hints:   (𝑔)   𝑂(𝑥)

Proof of Theorem frlmphl
Dummy variables 𝑓 𝑒 𝑖 𝑦 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frlmphl.v . . 3 𝑉 = (Base‘𝑌)
21a1i 11 . 2 (𝜑𝑉 = (Base‘𝑌))
3 eqidd 2741 . 2 (𝜑 → (+g𝑌) = (+g𝑌))
4 eqidd 2741 . 2 (𝜑 → ( ·𝑠𝑌) = ( ·𝑠𝑌))
5 frlmphl.j . . 3 , = (·𝑖𝑌)
65a1i 11 . 2 (𝜑, = (·𝑖𝑌))
7 frlmphl.o . . 3 𝑂 = (0g𝑌)
87a1i 11 . 2 (𝜑𝑂 = (0g𝑌))
9 frlmphl.f . . . . 5 (𝜑𝑅 ∈ Field)
10 isfld 20762 . . . . 5 (𝑅 ∈ Field ↔ (𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing))
119, 10sylib 218 . . . 4 (𝜑 → (𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing))
1211simpld 494 . . 3 (𝜑𝑅 ∈ DivRing)
13 frlmphl.i . . 3 (𝜑𝐼𝑊)
14 frlmphl.y . . . 4 𝑌 = (𝑅 freeLMod 𝐼)
1514frlmsca 21796 . . 3 ((𝑅 ∈ DivRing ∧ 𝐼𝑊) → 𝑅 = (Scalar‘𝑌))
1612, 13, 15syl2anc 583 . 2 (𝜑𝑅 = (Scalar‘𝑌))
17 frlmphl.b . . 3 𝐵 = (Base‘𝑅)
1817a1i 11 . 2 (𝜑𝐵 = (Base‘𝑅))
19 eqidd 2741 . 2 (𝜑 → (+g𝑅) = (+g𝑅))
20 frlmphl.t . . 3 · = (.r𝑅)
2120a1i 11 . 2 (𝜑· = (.r𝑅))
22 frlmphl.s . . 3 = (*𝑟𝑅)
2322a1i 11 . 2 (𝜑 = (*𝑟𝑅))
24 frlmphl.0 . . 3 0 = (0g𝑅)
2524a1i 11 . 2 (𝜑0 = (0g𝑅))
2612drngringd 20759 . . . 4 (𝜑𝑅 ∈ Ring)
2714frlmlmod 21792 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝑌 ∈ LMod)
2826, 13, 27syl2anc 583 . . 3 (𝜑𝑌 ∈ LMod)
2916, 12eqeltrrd 2845 . . 3 (𝜑 → (Scalar‘𝑌) ∈ DivRing)
30 eqid 2740 . . . 4 (Scalar‘𝑌) = (Scalar‘𝑌)
3130islvec 21126 . . 3 (𝑌 ∈ LVec ↔ (𝑌 ∈ LMod ∧ (Scalar‘𝑌) ∈ DivRing))
3228, 29, 31sylanbrc 582 . 2 (𝜑𝑌 ∈ LVec)
339fldcrngd 20764 . . 3 (𝜑𝑅 ∈ CRing)
34 frlmphl.u . . 3 ((𝜑𝑥𝐵) → ( 𝑥) = 𝑥)
3517, 22, 33, 34idsrngd 20879 . 2 (𝜑𝑅 ∈ *-Ring)
36133ad2ant1 1133 . . . . 5 ((𝜑𝑔𝑉𝑉) → 𝐼𝑊)
37263ad2ant1 1133 . . . . 5 ((𝜑𝑔𝑉𝑉) → 𝑅 ∈ Ring)
38 simp2 1137 . . . . 5 ((𝜑𝑔𝑉𝑉) → 𝑔𝑉)
39 simp3 1138 . . . . 5 ((𝜑𝑔𝑉𝑉) → 𝑉)
4014, 17, 20, 1, 5frlmipval 21822 . . . . 5 (((𝐼𝑊𝑅 ∈ Ring) ∧ (𝑔𝑉𝑉)) → (𝑔 , ) = (𝑅 Σg (𝑔f · )))
4136, 37, 38, 39, 40syl22anc 838 . . . 4 ((𝜑𝑔𝑉𝑉) → (𝑔 , ) = (𝑅 Σg (𝑔f · )))
4214, 17, 1frlmbasmap 21802 . . . . . . . . 9 ((𝐼𝑊𝑔𝑉) → 𝑔 ∈ (𝐵m 𝐼))
4336, 38, 42syl2anc 583 . . . . . . . 8 ((𝜑𝑔𝑉𝑉) → 𝑔 ∈ (𝐵m 𝐼))
44 elmapi 8907 . . . . . . . 8 (𝑔 ∈ (𝐵m 𝐼) → 𝑔:𝐼𝐵)
4543, 44syl 17 . . . . . . 7 ((𝜑𝑔𝑉𝑉) → 𝑔:𝐼𝐵)
4645ffnd 6748 . . . . . 6 ((𝜑𝑔𝑉𝑉) → 𝑔 Fn 𝐼)
4714, 17, 1frlmbasmap 21802 . . . . . . . . 9 ((𝐼𝑊𝑉) → ∈ (𝐵m 𝐼))
4836, 39, 47syl2anc 583 . . . . . . . 8 ((𝜑𝑔𝑉𝑉) → ∈ (𝐵m 𝐼))
49 elmapi 8907 . . . . . . . 8 ( ∈ (𝐵m 𝐼) → :𝐼𝐵)
5048, 49syl 17 . . . . . . 7 ((𝜑𝑔𝑉𝑉) → :𝐼𝐵)
5150ffnd 6748 . . . . . 6 ((𝜑𝑔𝑉𝑉) → Fn 𝐼)
52 inidm 4248 . . . . . 6 (𝐼𝐼) = 𝐼
53 eqidd 2741 . . . . . 6 (((𝜑𝑔𝑉𝑉) ∧ 𝑥𝐼) → (𝑔𝑥) = (𝑔𝑥))
54 eqidd 2741 . . . . . 6 (((𝜑𝑔𝑉𝑉) ∧ 𝑥𝐼) → (𝑥) = (𝑥))
5546, 51, 36, 36, 52, 53, 54offval 7723 . . . . 5 ((𝜑𝑔𝑉𝑉) → (𝑔f · ) = (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))))
5655oveq2d 7464 . . . 4 ((𝜑𝑔𝑉𝑉) → (𝑅 Σg (𝑔f · )) = (𝑅 Σg (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥)))))
5741, 56eqtrd 2780 . . 3 ((𝜑𝑔𝑉𝑉) → (𝑔 , ) = (𝑅 Σg (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥)))))
5826ringcmnd 20307 . . . . 5 (𝜑𝑅 ∈ CMnd)
59583ad2ant1 1133 . . . 4 ((𝜑𝑔𝑉𝑉) → 𝑅 ∈ CMnd)
6037adantr 480 . . . . . 6 (((𝜑𝑔𝑉𝑉) ∧ 𝑥𝐼) → 𝑅 ∈ Ring)
6145ffvelcdmda 7118 . . . . . 6 (((𝜑𝑔𝑉𝑉) ∧ 𝑥𝐼) → (𝑔𝑥) ∈ 𝐵)
6250ffvelcdmda 7118 . . . . . 6 (((𝜑𝑔𝑉𝑉) ∧ 𝑥𝐼) → (𝑥) ∈ 𝐵)
6317, 20, 60, 61, 62ringcld 20286 . . . . 5 (((𝜑𝑔𝑉𝑉) ∧ 𝑥𝐼) → ((𝑔𝑥) · (𝑥)) ∈ 𝐵)
6463fmpttd 7149 . . . 4 ((𝜑𝑔𝑉𝑉) → (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))):𝐼𝐵)
65 frlmphl.m . . . . 5 ((𝜑𝑔𝑉 ∧ (𝑔 , 𝑔) = 0 ) → 𝑔 = 𝑂)
6614, 17, 20, 1, 5, 7, 24, 22, 9, 65, 34, 13frlmphllem 21823 . . . 4 ((𝜑𝑔𝑉𝑉) → (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))) finSupp 0 )
6717, 24, 59, 36, 64, 66gsumcl 19957 . . 3 ((𝜑𝑔𝑉𝑉) → (𝑅 Σg (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥)))) ∈ 𝐵)
6857, 67eqeltrd 2844 . 2 ((𝜑𝑔𝑉𝑉) → (𝑔 , ) ∈ 𝐵)
69 eqid 2740 . . . 4 (+g𝑅) = (+g𝑅)
70583ad2ant1 1133 . . . 4 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝑅 ∈ CMnd)
71133ad2ant1 1133 . . . 4 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝐼𝑊)
72263ad2ant1 1133 . . . . . 6 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝑅 ∈ Ring)
7372adantr 480 . . . . 5 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → 𝑅 ∈ Ring)
74 simp2 1137 . . . . . 6 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝑘𝐵)
7574adantr 480 . . . . 5 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → 𝑘𝐵)
76 simp31 1209 . . . . . . . . 9 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝑔𝑉)
7771, 76, 42syl2anc 583 . . . . . . . 8 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝑔 ∈ (𝐵m 𝐼))
7877, 44syl 17 . . . . . . 7 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝑔:𝐼𝐵)
7978ffvelcdmda 7118 . . . . . 6 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → (𝑔𝑥) ∈ 𝐵)
80 simp33 1211 . . . . . . . . 9 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝑖𝑉)
8114, 17, 1frlmbasmap 21802 . . . . . . . . 9 ((𝐼𝑊𝑖𝑉) → 𝑖 ∈ (𝐵m 𝐼))
8271, 80, 81syl2anc 583 . . . . . . . 8 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝑖 ∈ (𝐵m 𝐼))
83 elmapi 8907 . . . . . . . 8 (𝑖 ∈ (𝐵m 𝐼) → 𝑖:𝐼𝐵)
8482, 83syl 17 . . . . . . 7 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝑖:𝐼𝐵)
8584ffvelcdmda 7118 . . . . . 6 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → (𝑖𝑥) ∈ 𝐵)
8617, 20, 73, 79, 85ringcld 20286 . . . . 5 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → ((𝑔𝑥) · (𝑖𝑥)) ∈ 𝐵)
8717, 20, 73, 75, 86ringcld 20286 . . . 4 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → (𝑘 · ((𝑔𝑥) · (𝑖𝑥))) ∈ 𝐵)
88 simp32 1210 . . . . . . . 8 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝑉)
8971, 88, 47syl2anc 583 . . . . . . 7 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → ∈ (𝐵m 𝐼))
9089, 49syl 17 . . . . . 6 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → :𝐼𝐵)
9190ffvelcdmda 7118 . . . . 5 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → (𝑥) ∈ 𝐵)
9217, 20, 73, 91, 85ringcld 20286 . . . 4 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → ((𝑥) · (𝑖𝑥)) ∈ 𝐵)
93 eqidd 2741 . . . 4 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑥𝐼 ↦ (𝑘 · ((𝑔𝑥) · (𝑖𝑥)))) = (𝑥𝐼 ↦ (𝑘 · ((𝑔𝑥) · (𝑖𝑥)))))
94 eqidd 2741 . . . 4 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑥𝐼 ↦ ((𝑥) · (𝑖𝑥))) = (𝑥𝐼 ↦ ((𝑥) · (𝑖𝑥))))
95 fveq2 6920 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑔𝑥) = (𝑔𝑦))
9695oveq2d 7464 . . . . . . . 8 (𝑥 = 𝑦 → (𝑘 · (𝑔𝑥)) = (𝑘 · (𝑔𝑦)))
9796cbvmptv 5279 . . . . . . 7 (𝑥𝐼 ↦ (𝑘 · (𝑔𝑥))) = (𝑦𝐼 ↦ (𝑘 · (𝑔𝑦)))
9897oveq1i 7458 . . . . . 6 ((𝑥𝐼 ↦ (𝑘 · (𝑔𝑥))) ∘f · 𝑖) = ((𝑦𝐼 ↦ (𝑘 · (𝑔𝑦))) ∘f · 𝑖)
9917, 20, 73, 75, 79ringcld 20286 . . . . . . . . . . 11 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → (𝑘 · (𝑔𝑥)) ∈ 𝐵)
10099fmpttd 7149 . . . . . . . . . 10 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑥𝐼 ↦ (𝑘 · (𝑔𝑥))):𝐼𝐵)
101100ffnd 6748 . . . . . . . . 9 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑥𝐼 ↦ (𝑘 · (𝑔𝑥))) Fn 𝐼)
10297fneq1i 6676 . . . . . . . . 9 ((𝑥𝐼 ↦ (𝑘 · (𝑔𝑥))) Fn 𝐼 ↔ (𝑦𝐼 ↦ (𝑘 · (𝑔𝑦))) Fn 𝐼)
103101, 102sylib 218 . . . . . . . 8 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑦𝐼 ↦ (𝑘 · (𝑔𝑦))) Fn 𝐼)
10484ffnd 6748 . . . . . . . 8 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝑖 Fn 𝐼)
105 eqidd 2741 . . . . . . . . 9 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → (𝑦𝐼 ↦ (𝑘 · (𝑔𝑦))) = (𝑦𝐼 ↦ (𝑘 · (𝑔𝑦))))
106 simpr 484 . . . . . . . . . . 11 ((((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) ∧ 𝑦 = 𝑥) → 𝑦 = 𝑥)
107106fveq2d 6924 . . . . . . . . . 10 ((((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) ∧ 𝑦 = 𝑥) → (𝑔𝑦) = (𝑔𝑥))
108107oveq2d 7464 . . . . . . . . 9 ((((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) ∧ 𝑦 = 𝑥) → (𝑘 · (𝑔𝑦)) = (𝑘 · (𝑔𝑥)))
109 simpr 484 . . . . . . . . 9 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → 𝑥𝐼)
110 ovexd 7483 . . . . . . . . 9 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → (𝑘 · (𝑔𝑥)) ∈ V)
111105, 108, 109, 110fvmptd 7036 . . . . . . . 8 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → ((𝑦𝐼 ↦ (𝑘 · (𝑔𝑦)))‘𝑥) = (𝑘 · (𝑔𝑥)))
112 eqidd 2741 . . . . . . . 8 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → (𝑖𝑥) = (𝑖𝑥))
113103, 104, 71, 71, 52, 111, 112offval 7723 . . . . . . 7 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → ((𝑦𝐼 ↦ (𝑘 · (𝑔𝑦))) ∘f · 𝑖) = (𝑥𝐼 ↦ ((𝑘 · (𝑔𝑥)) · (𝑖𝑥))))
11417, 20ringass 20280 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑘𝐵 ∧ (𝑔𝑥) ∈ 𝐵 ∧ (𝑖𝑥) ∈ 𝐵)) → ((𝑘 · (𝑔𝑥)) · (𝑖𝑥)) = (𝑘 · ((𝑔𝑥) · (𝑖𝑥))))
11573, 75, 79, 85, 114syl13anc 1372 . . . . . . . 8 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → ((𝑘 · (𝑔𝑥)) · (𝑖𝑥)) = (𝑘 · ((𝑔𝑥) · (𝑖𝑥))))
116115mpteq2dva 5266 . . . . . . 7 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑥𝐼 ↦ ((𝑘 · (𝑔𝑥)) · (𝑖𝑥))) = (𝑥𝐼 ↦ (𝑘 · ((𝑔𝑥) · (𝑖𝑥)))))
117113, 116eqtrd 2780 . . . . . 6 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → ((𝑦𝐼 ↦ (𝑘 · (𝑔𝑦))) ∘f · 𝑖) = (𝑥𝐼 ↦ (𝑘 · ((𝑔𝑥) · (𝑖𝑥)))))
11898, 117eqtrid 2792 . . . . 5 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → ((𝑥𝐼 ↦ (𝑘 · (𝑔𝑥))) ∘f · 𝑖) = (𝑥𝐼 ↦ (𝑘 · ((𝑔𝑥) · (𝑖𝑥)))))
119 ovexd 7483 . . . . . 6 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → ((𝑥𝐼 ↦ (𝑘 · (𝑔𝑥))) ∘f · 𝑖) ∈ V)
120101, 104, 71, 71offun 7728 . . . . . 6 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → Fun ((𝑥𝐼 ↦ (𝑘 · (𝑔𝑥))) ∘f · 𝑖))
121 simp3 1138 . . . . . . . . 9 ((𝑔𝑉𝑉𝑖𝑉) → 𝑖𝑉)
12213, 121anim12i 612 . . . . . . . 8 ((𝜑 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝐼𝑊𝑖𝑉))
1231223adant2 1131 . . . . . . 7 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝐼𝑊𝑖𝑉))
12414, 24, 1frlmbasfsupp 21801 . . . . . . 7 ((𝐼𝑊𝑖𝑉) → 𝑖 finSupp 0 )
125123, 124syl 17 . . . . . 6 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝑖 finSupp 0 )
12617, 24ring0cl 20290 . . . . . . . 8 (𝑅 ∈ Ring → 0𝐵)
12772, 126syl 17 . . . . . . 7 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 0𝐵)
12817, 20, 24ringrz 20317 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑦𝐵) → (𝑦 · 0 ) = 0 )
12972, 128sylan 579 . . . . . . 7 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑦𝐵) → (𝑦 · 0 ) = 0 )
13071, 127, 100, 84, 129suppofss2d 8246 . . . . . 6 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (((𝑥𝐼 ↦ (𝑘 · (𝑔𝑥))) ∘f · 𝑖) supp 0 ) ⊆ (𝑖 supp 0 ))
131 fsuppsssupp 9450 . . . . . 6 (((((𝑥𝐼 ↦ (𝑘 · (𝑔𝑥))) ∘f · 𝑖) ∈ V ∧ Fun ((𝑥𝐼 ↦ (𝑘 · (𝑔𝑥))) ∘f · 𝑖)) ∧ (𝑖 finSupp 0 ∧ (((𝑥𝐼 ↦ (𝑘 · (𝑔𝑥))) ∘f · 𝑖) supp 0 ) ⊆ (𝑖 supp 0 ))) → ((𝑥𝐼 ↦ (𝑘 · (𝑔𝑥))) ∘f · 𝑖) finSupp 0 )
132119, 120, 125, 130, 131syl22anc 838 . . . . 5 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → ((𝑥𝐼 ↦ (𝑘 · (𝑔𝑥))) ∘f · 𝑖) finSupp 0 )
133118, 132eqbrtrrd 5190 . . . 4 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑥𝐼 ↦ (𝑘 · ((𝑔𝑥) · (𝑖𝑥)))) finSupp 0 )
134 simp1 1136 . . . . 5 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝜑)
135 eleq1w 2827 . . . . . . . . 9 (𝑔 = → (𝑔𝑉𝑉))
136 id 22 . . . . . . . . . . 11 (𝑔 = 𝑔 = )
137136, 136oveq12d 7466 . . . . . . . . . 10 (𝑔 = → (𝑔 , 𝑔) = ( , ))
138137eqeq1d 2742 . . . . . . . . 9 (𝑔 = → ((𝑔 , 𝑔) = 0 ↔ ( , ) = 0 ))
139135, 1383anbi23d 1439 . . . . . . . 8 (𝑔 = → ((𝜑𝑔𝑉 ∧ (𝑔 , 𝑔) = 0 ) ↔ (𝜑𝑉 ∧ ( , ) = 0 )))
140 eqeq1 2744 . . . . . . . 8 (𝑔 = → (𝑔 = 𝑂 = 𝑂))
141139, 140imbi12d 344 . . . . . . 7 (𝑔 = → (((𝜑𝑔𝑉 ∧ (𝑔 , 𝑔) = 0 ) → 𝑔 = 𝑂) ↔ ((𝜑𝑉 ∧ ( , ) = 0 ) → = 𝑂)))
142141, 65chvarvv 1998 . . . . . 6 ((𝜑𝑉 ∧ ( , ) = 0 ) → = 𝑂)
14314, 17, 20, 1, 5, 7, 24, 22, 9, 142, 34, 13frlmphllem 21823 . . . . 5 ((𝜑𝑉𝑖𝑉) → (𝑥𝐼 ↦ ((𝑥) · (𝑖𝑥))) finSupp 0 )
144134, 88, 80, 143syl3anc 1371 . . . 4 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑥𝐼 ↦ ((𝑥) · (𝑖𝑥))) finSupp 0 )
14517, 24, 69, 70, 71, 87, 92, 93, 94, 133, 144gsummptfsadd 19966 . . 3 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑅 Σg (𝑥𝐼 ↦ ((𝑘 · ((𝑔𝑥) · (𝑖𝑥)))(+g𝑅)((𝑥) · (𝑖𝑥))))) = ((𝑅 Σg (𝑥𝐼 ↦ (𝑘 · ((𝑔𝑥) · (𝑖𝑥)))))(+g𝑅)(𝑅 Σg (𝑥𝐼 ↦ ((𝑥) · (𝑖𝑥))))))
14614, 17, 20frlmip 21821 . . . . . . . . 9 ((𝐼𝑊𝑅 ∈ DivRing) → (𝑔 ∈ (𝐵m 𝐼), ∈ (𝐵m 𝐼) ↦ (𝑅 Σg (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))))) = (·𝑖𝑌))
14713, 12, 146syl2anc 583 . . . . . . . 8 (𝜑 → (𝑔 ∈ (𝐵m 𝐼), ∈ (𝐵m 𝐼) ↦ (𝑅 Σg (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))))) = (·𝑖𝑌))
1485, 147eqtr4id 2799 . . . . . . 7 (𝜑, = (𝑔 ∈ (𝐵m 𝐼), ∈ (𝐵m 𝐼) ↦ (𝑅 Σg (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))))))
149 fveq1 6919 . . . . . . . . . . 11 (𝑒 = 𝑔 → (𝑒𝑥) = (𝑔𝑥))
150149oveq1d 7463 . . . . . . . . . 10 (𝑒 = 𝑔 → ((𝑒𝑥) · (𝑓𝑥)) = ((𝑔𝑥) · (𝑓𝑥)))
151150mpteq2dv 5268 . . . . . . . . 9 (𝑒 = 𝑔 → (𝑥𝐼 ↦ ((𝑒𝑥) · (𝑓𝑥))) = (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑓𝑥))))
152151oveq2d 7464 . . . . . . . 8 (𝑒 = 𝑔 → (𝑅 Σg (𝑥𝐼 ↦ ((𝑒𝑥) · (𝑓𝑥)))) = (𝑅 Σg (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑓𝑥)))))
153 fveq1 6919 . . . . . . . . . . 11 (𝑓 = → (𝑓𝑥) = (𝑥))
154153oveq2d 7464 . . . . . . . . . 10 (𝑓 = → ((𝑔𝑥) · (𝑓𝑥)) = ((𝑔𝑥) · (𝑥)))
155154mpteq2dv 5268 . . . . . . . . 9 (𝑓 = → (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑓𝑥))) = (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))))
156155oveq2d 7464 . . . . . . . 8 (𝑓 = → (𝑅 Σg (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑓𝑥)))) = (𝑅 Σg (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥)))))
157152, 156cbvmpov 7545 . . . . . . 7 (𝑒 ∈ (𝐵m 𝐼), 𝑓 ∈ (𝐵m 𝐼) ↦ (𝑅 Σg (𝑥𝐼 ↦ ((𝑒𝑥) · (𝑓𝑥))))) = (𝑔 ∈ (𝐵m 𝐼), ∈ (𝐵m 𝐼) ↦ (𝑅 Σg (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥)))))
158148, 157eqtr4di 2798 . . . . . 6 (𝜑, = (𝑒 ∈ (𝐵m 𝐼), 𝑓 ∈ (𝐵m 𝐼) ↦ (𝑅 Σg (𝑥𝐼 ↦ ((𝑒𝑥) · (𝑓𝑥))))))
1591583ad2ant1 1133 . . . . 5 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → , = (𝑒 ∈ (𝐵m 𝐼), 𝑓 ∈ (𝐵m 𝐼) ↦ (𝑅 Σg (𝑥𝐼 ↦ ((𝑒𝑥) · (𝑓𝑥))))))
160 simprl 770 . . . . . . . . 9 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = ((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)) ∧ 𝑓 = 𝑖)) → 𝑒 = ((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)))
161160fveq1d 6922 . . . . . . . 8 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = ((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)) ∧ 𝑓 = 𝑖)) → (𝑒𝑥) = (((𝑘( ·𝑠𝑌)𝑔)(+g𝑌))‘𝑥))
162 simprr 772 . . . . . . . . 9 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = ((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)) ∧ 𝑓 = 𝑖)) → 𝑓 = 𝑖)
163162fveq1d 6922 . . . . . . . 8 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = ((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)) ∧ 𝑓 = 𝑖)) → (𝑓𝑥) = (𝑖𝑥))
164161, 163oveq12d 7466 . . . . . . 7 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = ((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)) ∧ 𝑓 = 𝑖)) → ((𝑒𝑥) · (𝑓𝑥)) = ((((𝑘( ·𝑠𝑌)𝑔)(+g𝑌))‘𝑥) · (𝑖𝑥)))
165164mpteq2dv 5268 . . . . . 6 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = ((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)) ∧ 𝑓 = 𝑖)) → (𝑥𝐼 ↦ ((𝑒𝑥) · (𝑓𝑥))) = (𝑥𝐼 ↦ ((((𝑘( ·𝑠𝑌)𝑔)(+g𝑌))‘𝑥) · (𝑖𝑥))))
166165oveq2d 7464 . . . . 5 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = ((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)) ∧ 𝑓 = 𝑖)) → (𝑅 Σg (𝑥𝐼 ↦ ((𝑒𝑥) · (𝑓𝑥)))) = (𝑅 Σg (𝑥𝐼 ↦ ((((𝑘( ·𝑠𝑌)𝑔)(+g𝑌))‘𝑥) · (𝑖𝑥)))))
167283ad2ant1 1133 . . . . . . 7 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝑌 ∈ LMod)
168163ad2ant1 1133 . . . . . . . . . . 11 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝑅 = (Scalar‘𝑌))
169168fveq2d 6924 . . . . . . . . . 10 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (Base‘𝑅) = (Base‘(Scalar‘𝑌)))
17017, 169eqtrid 2792 . . . . . . . . 9 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝐵 = (Base‘(Scalar‘𝑌)))
17174, 170eleqtrd 2846 . . . . . . . 8 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝑘 ∈ (Base‘(Scalar‘𝑌)))
172 eqid 2740 . . . . . . . . 9 ( ·𝑠𝑌) = ( ·𝑠𝑌)
173 eqid 2740 . . . . . . . . 9 (Base‘(Scalar‘𝑌)) = (Base‘(Scalar‘𝑌))
1741, 30, 172, 173lmodvscl 20898 . . . . . . . 8 ((𝑌 ∈ LMod ∧ 𝑘 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑔𝑉) → (𝑘( ·𝑠𝑌)𝑔) ∈ 𝑉)
175167, 171, 76, 174syl3anc 1371 . . . . . . 7 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑘( ·𝑠𝑌)𝑔) ∈ 𝑉)
176 eqid 2740 . . . . . . . 8 (+g𝑌) = (+g𝑌)
1771, 176lmodvacl 20895 . . . . . . 7 ((𝑌 ∈ LMod ∧ (𝑘( ·𝑠𝑌)𝑔) ∈ 𝑉𝑉) → ((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)) ∈ 𝑉)
178167, 175, 88, 177syl3anc 1371 . . . . . 6 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → ((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)) ∈ 𝑉)
17914, 17, 1frlmbasmap 21802 . . . . . 6 ((𝐼𝑊 ∧ ((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)) ∈ 𝑉) → ((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)) ∈ (𝐵m 𝐼))
18071, 178, 179syl2anc 583 . . . . 5 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → ((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)) ∈ (𝐵m 𝐼))
181 ovexd 7483 . . . . 5 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑅 Σg (𝑥𝐼 ↦ ((((𝑘( ·𝑠𝑌)𝑔)(+g𝑌))‘𝑥) · (𝑖𝑥)))) ∈ V)
182159, 166, 180, 82, 181ovmpod 7602 . . . 4 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)) , 𝑖) = (𝑅 Σg (𝑥𝐼 ↦ ((((𝑘( ·𝑠𝑌)𝑔)(+g𝑌))‘𝑥) · (𝑖𝑥)))))
18314, 1, 72, 71, 175, 88, 69, 176frlmplusgval 21807 . . . . . . . . . 10 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → ((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)) = ((𝑘( ·𝑠𝑌)𝑔) ∘f (+g𝑅)))
18414, 17, 1frlmbasmap 21802 . . . . . . . . . . . . 13 ((𝐼𝑊 ∧ (𝑘( ·𝑠𝑌)𝑔) ∈ 𝑉) → (𝑘( ·𝑠𝑌)𝑔) ∈ (𝐵m 𝐼))
18571, 175, 184syl2anc 583 . . . . . . . . . . . 12 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑘( ·𝑠𝑌)𝑔) ∈ (𝐵m 𝐼))
186 elmapi 8907 . . . . . . . . . . . 12 ((𝑘( ·𝑠𝑌)𝑔) ∈ (𝐵m 𝐼) → (𝑘( ·𝑠𝑌)𝑔):𝐼𝐵)
187 ffn 6747 . . . . . . . . . . . 12 ((𝑘( ·𝑠𝑌)𝑔):𝐼𝐵 → (𝑘( ·𝑠𝑌)𝑔) Fn 𝐼)
188185, 186, 1873syl 18 . . . . . . . . . . 11 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑘( ·𝑠𝑌)𝑔) Fn 𝐼)
18990ffnd 6748 . . . . . . . . . . 11 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → Fn 𝐼)
19071adantr 480 . . . . . . . . . . . 12 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → 𝐼𝑊)
19176adantr 480 . . . . . . . . . . . 12 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → 𝑔𝑉)
19214, 1, 17, 190, 75, 191, 109, 172, 20frlmvscaval 21811 . . . . . . . . . . 11 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → ((𝑘( ·𝑠𝑌)𝑔)‘𝑥) = (𝑘 · (𝑔𝑥)))
193 eqidd 2741 . . . . . . . . . . 11 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → (𝑥) = (𝑥))
194188, 189, 71, 71, 52, 192, 193offval 7723 . . . . . . . . . 10 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → ((𝑘( ·𝑠𝑌)𝑔) ∘f (+g𝑅)) = (𝑥𝐼 ↦ ((𝑘 · (𝑔𝑥))(+g𝑅)(𝑥))))
195183, 194eqtrd 2780 . . . . . . . . 9 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → ((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)) = (𝑥𝐼 ↦ ((𝑘 · (𝑔𝑥))(+g𝑅)(𝑥))))
196 ovexd 7483 . . . . . . . . 9 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → ((𝑘 · (𝑔𝑥))(+g𝑅)(𝑥)) ∈ V)
197195, 196fvmpt2d 7042 . . . . . . . 8 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → (((𝑘( ·𝑠𝑌)𝑔)(+g𝑌))‘𝑥) = ((𝑘 · (𝑔𝑥))(+g𝑅)(𝑥)))
198197oveq1d 7463 . . . . . . 7 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → ((((𝑘( ·𝑠𝑌)𝑔)(+g𝑌))‘𝑥) · (𝑖𝑥)) = (((𝑘 · (𝑔𝑥))(+g𝑅)(𝑥)) · (𝑖𝑥)))
19917, 69, 20ringdir 20288 . . . . . . . 8 ((𝑅 ∈ Ring ∧ ((𝑘 · (𝑔𝑥)) ∈ 𝐵 ∧ (𝑥) ∈ 𝐵 ∧ (𝑖𝑥) ∈ 𝐵)) → (((𝑘 · (𝑔𝑥))(+g𝑅)(𝑥)) · (𝑖𝑥)) = (((𝑘 · (𝑔𝑥)) · (𝑖𝑥))(+g𝑅)((𝑥) · (𝑖𝑥))))
20073, 99, 91, 85, 199syl13anc 1372 . . . . . . 7 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → (((𝑘 · (𝑔𝑥))(+g𝑅)(𝑥)) · (𝑖𝑥)) = (((𝑘 · (𝑔𝑥)) · (𝑖𝑥))(+g𝑅)((𝑥) · (𝑖𝑥))))
201115oveq1d 7463 . . . . . . 7 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → (((𝑘 · (𝑔𝑥)) · (𝑖𝑥))(+g𝑅)((𝑥) · (𝑖𝑥))) = ((𝑘 · ((𝑔𝑥) · (𝑖𝑥)))(+g𝑅)((𝑥) · (𝑖𝑥))))
202198, 200, 2013eqtrd 2784 . . . . . 6 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → ((((𝑘( ·𝑠𝑌)𝑔)(+g𝑌))‘𝑥) · (𝑖𝑥)) = ((𝑘 · ((𝑔𝑥) · (𝑖𝑥)))(+g𝑅)((𝑥) · (𝑖𝑥))))
203202mpteq2dva 5266 . . . . 5 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑥𝐼 ↦ ((((𝑘( ·𝑠𝑌)𝑔)(+g𝑌))‘𝑥) · (𝑖𝑥))) = (𝑥𝐼 ↦ ((𝑘 · ((𝑔𝑥) · (𝑖𝑥)))(+g𝑅)((𝑥) · (𝑖𝑥)))))
204203oveq2d 7464 . . . 4 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑅 Σg (𝑥𝐼 ↦ ((((𝑘( ·𝑠𝑌)𝑔)(+g𝑌))‘𝑥) · (𝑖𝑥)))) = (𝑅 Σg (𝑥𝐼 ↦ ((𝑘 · ((𝑔𝑥) · (𝑖𝑥)))(+g𝑅)((𝑥) · (𝑖𝑥))))))
205182, 204eqtrd 2780 . . 3 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)) , 𝑖) = (𝑅 Σg (𝑥𝐼 ↦ ((𝑘 · ((𝑔𝑥) · (𝑖𝑥)))(+g𝑅)((𝑥) · (𝑖𝑥))))))
206 simprl 770 . . . . . . . . . . 11 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = 𝑔𝑓 = 𝑖)) → 𝑒 = 𝑔)
207206fveq1d 6922 . . . . . . . . . 10 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = 𝑔𝑓 = 𝑖)) → (𝑒𝑥) = (𝑔𝑥))
208 simprr 772 . . . . . . . . . . 11 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = 𝑔𝑓 = 𝑖)) → 𝑓 = 𝑖)
209208fveq1d 6922 . . . . . . . . . 10 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = 𝑔𝑓 = 𝑖)) → (𝑓𝑥) = (𝑖𝑥))
210207, 209oveq12d 7466 . . . . . . . . 9 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = 𝑔𝑓 = 𝑖)) → ((𝑒𝑥) · (𝑓𝑥)) = ((𝑔𝑥) · (𝑖𝑥)))
211210mpteq2dv 5268 . . . . . . . 8 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = 𝑔𝑓 = 𝑖)) → (𝑥𝐼 ↦ ((𝑒𝑥) · (𝑓𝑥))) = (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑖𝑥))))
212211oveq2d 7464 . . . . . . 7 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = 𝑔𝑓 = 𝑖)) → (𝑅 Σg (𝑥𝐼 ↦ ((𝑒𝑥) · (𝑓𝑥)))) = (𝑅 Σg (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑖𝑥)))))
213 ovexd 7483 . . . . . . 7 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑅 Σg (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑖𝑥)))) ∈ V)
214159, 212, 77, 82, 213ovmpod 7602 . . . . . 6 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑔 , 𝑖) = (𝑅 Σg (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑖𝑥)))))
215214oveq2d 7464 . . . . 5 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑘 · (𝑔 , 𝑖)) = (𝑘 · (𝑅 Σg (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑖𝑥))))))
21614, 17, 20, 1, 5, 7, 24, 22, 9, 65, 34, 13frlmphllem 21823 . . . . . . 7 ((𝜑𝑔𝑉𝑖𝑉) → (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑖𝑥))) finSupp 0 )
217134, 76, 80, 216syl3anc 1371 . . . . . 6 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑖𝑥))) finSupp 0 )
21817, 24, 20, 72, 71, 74, 86, 217gsummulc2 20340 . . . . 5 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑅 Σg (𝑥𝐼 ↦ (𝑘 · ((𝑔𝑥) · (𝑖𝑥))))) = (𝑘 · (𝑅 Σg (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑖𝑥))))))
219215, 218eqtr4d 2783 . . . 4 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑘 · (𝑔 , 𝑖)) = (𝑅 Σg (𝑥𝐼 ↦ (𝑘 · ((𝑔𝑥) · (𝑖𝑥))))))
220 simprl 770 . . . . . . . . 9 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = 𝑓 = 𝑖)) → 𝑒 = )
221220fveq1d 6922 . . . . . . . 8 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = 𝑓 = 𝑖)) → (𝑒𝑥) = (𝑥))
222 simprr 772 . . . . . . . . 9 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = 𝑓 = 𝑖)) → 𝑓 = 𝑖)
223222fveq1d 6922 . . . . . . . 8 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = 𝑓 = 𝑖)) → (𝑓𝑥) = (𝑖𝑥))
224221, 223oveq12d 7466 . . . . . . 7 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = 𝑓 = 𝑖)) → ((𝑒𝑥) · (𝑓𝑥)) = ((𝑥) · (𝑖𝑥)))
225224mpteq2dv 5268 . . . . . 6 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = 𝑓 = 𝑖)) → (𝑥𝐼 ↦ ((𝑒𝑥) · (𝑓𝑥))) = (𝑥𝐼 ↦ ((𝑥) · (𝑖𝑥))))
226225oveq2d 7464 . . . . 5 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = 𝑓 = 𝑖)) → (𝑅 Σg (𝑥𝐼 ↦ ((𝑒𝑥) · (𝑓𝑥)))) = (𝑅 Σg (𝑥𝐼 ↦ ((𝑥) · (𝑖𝑥)))))
227 ovexd 7483 . . . . 5 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑅 Σg (𝑥𝐼 ↦ ((𝑥) · (𝑖𝑥)))) ∈ V)
228159, 226, 89, 82, 227ovmpod 7602 . . . 4 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → ( , 𝑖) = (𝑅 Σg (𝑥𝐼 ↦ ((𝑥) · (𝑖𝑥)))))
229219, 228oveq12d 7466 . . 3 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → ((𝑘 · (𝑔 , 𝑖))(+g𝑅)( , 𝑖)) = ((𝑅 Σg (𝑥𝐼 ↦ (𝑘 · ((𝑔𝑥) · (𝑖𝑥)))))(+g𝑅)(𝑅 Σg (𝑥𝐼 ↦ ((𝑥) · (𝑖𝑥))))))
230145, 205, 2293eqtr4d 2790 . 2 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)) , 𝑖) = ((𝑘 · (𝑔 , 𝑖))(+g𝑅)( , 𝑖)))
231333ad2ant1 1133 . . . . . . 7 ((𝜑𝑔𝑉𝑉) → 𝑅 ∈ CRing)
232231adantr 480 . . . . . 6 (((𝜑𝑔𝑉𝑉) ∧ 𝑥𝐼) → 𝑅 ∈ CRing)
23317, 20crngcom 20278 . . . . . 6 ((𝑅 ∈ CRing ∧ (𝑥) ∈ 𝐵 ∧ (𝑔𝑥) ∈ 𝐵) → ((𝑥) · (𝑔𝑥)) = ((𝑔𝑥) · (𝑥)))
234232, 62, 61, 233syl3anc 1371 . . . . 5 (((𝜑𝑔𝑉𝑉) ∧ 𝑥𝐼) → ((𝑥) · (𝑔𝑥)) = ((𝑔𝑥) · (𝑥)))
235234mpteq2dva 5266 . . . 4 ((𝜑𝑔𝑉𝑉) → (𝑥𝐼 ↦ ((𝑥) · (𝑔𝑥))) = (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))))
236235oveq2d 7464 . . 3 ((𝜑𝑔𝑉𝑉) → (𝑅 Σg (𝑥𝐼 ↦ ((𝑥) · (𝑔𝑥)))) = (𝑅 Σg (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥)))))
2371583ad2ant1 1133 . . . 4 ((𝜑𝑔𝑉𝑉) → , = (𝑒 ∈ (𝐵m 𝐼), 𝑓 ∈ (𝐵m 𝐼) ↦ (𝑅 Σg (𝑥𝐼 ↦ ((𝑒𝑥) · (𝑓𝑥))))))
238 simprl 770 . . . . . . . 8 (((𝜑𝑔𝑉𝑉) ∧ (𝑒 = 𝑓 = 𝑔)) → 𝑒 = )
239238fveq1d 6922 . . . . . . 7 (((𝜑𝑔𝑉𝑉) ∧ (𝑒 = 𝑓 = 𝑔)) → (𝑒𝑥) = (𝑥))
240 simprr 772 . . . . . . . 8 (((𝜑𝑔𝑉𝑉) ∧ (𝑒 = 𝑓 = 𝑔)) → 𝑓 = 𝑔)
241240fveq1d 6922 . . . . . . 7 (((𝜑𝑔𝑉𝑉) ∧ (𝑒 = 𝑓 = 𝑔)) → (𝑓𝑥) = (𝑔𝑥))
242239, 241oveq12d 7466 . . . . . 6 (((𝜑𝑔𝑉𝑉) ∧ (𝑒 = 𝑓 = 𝑔)) → ((𝑒𝑥) · (𝑓𝑥)) = ((𝑥) · (𝑔𝑥)))
243242mpteq2dv 5268 . . . . 5 (((𝜑𝑔𝑉𝑉) ∧ (𝑒 = 𝑓 = 𝑔)) → (𝑥𝐼 ↦ ((𝑒𝑥) · (𝑓𝑥))) = (𝑥𝐼 ↦ ((𝑥) · (𝑔𝑥))))
244243oveq2d 7464 . . . 4 (((𝜑𝑔𝑉𝑉) ∧ (𝑒 = 𝑓 = 𝑔)) → (𝑅 Σg (𝑥𝐼 ↦ ((𝑒𝑥) · (𝑓𝑥)))) = (𝑅 Σg (𝑥𝐼 ↦ ((𝑥) · (𝑔𝑥)))))
245 ovexd 7483 . . . 4 ((𝜑𝑔𝑉𝑉) → (𝑅 Σg (𝑥𝐼 ↦ ((𝑥) · (𝑔𝑥)))) ∈ V)
246237, 244, 48, 43, 245ovmpod 7602 . . 3 ((𝜑𝑔𝑉𝑉) → ( , 𝑔) = (𝑅 Σg (𝑥𝐼 ↦ ((𝑥) · (𝑔𝑥)))))
247 fveq2 6920 . . . . . 6 (𝑥 = (𝑔 , ) → ( 𝑥) = ( ‘(𝑔 , )))
248 id 22 . . . . . 6 (𝑥 = (𝑔 , ) → 𝑥 = (𝑔 , ))
249247, 248eqeq12d 2756 . . . . 5 (𝑥 = (𝑔 , ) → (( 𝑥) = 𝑥 ↔ ( ‘(𝑔 , )) = (𝑔 , )))
25034ralrimiva 3152 . . . . . 6 (𝜑 → ∀𝑥𝐵 ( 𝑥) = 𝑥)
2512503ad2ant1 1133 . . . . 5 ((𝜑𝑔𝑉𝑉) → ∀𝑥𝐵 ( 𝑥) = 𝑥)
252249, 251, 68rspcdva 3636 . . . 4 ((𝜑𝑔𝑉𝑉) → ( ‘(𝑔 , )) = (𝑔 , ))
253252, 57eqtrd 2780 . . 3 ((𝜑𝑔𝑉𝑉) → ( ‘(𝑔 , )) = (𝑅 Σg (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥)))))
254236, 246, 2533eqtr4rd 2791 . 2 ((𝜑𝑔𝑉𝑉) → ( ‘(𝑔 , )) = ( , 𝑔))
2552, 3, 4, 6, 8, 16, 18, 19, 21, 23, 25, 32, 35, 68, 230, 65, 254isphld 21695 1 (𝜑𝑌 ∈ PreHil)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488  wss 3976   class class class wbr 5166  cmpt 5249  Fun wfun 6567   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  cmpo 7450  f cof 7712   supp csupp 8201  m cmap 8884   finSupp cfsupp 9431  Basecbs 17258  +gcplusg 17311  .rcmulr 17312  *𝑟cstv 17313  Scalarcsca 17314   ·𝑠 cvsca 17315  ·𝑖cip 17316  0gc0g 17499   Σg cgsu 17500  CMndccmn 19822  Ringcrg 20260  CRingccrg 20261  DivRingcdr 20751  Fieldcfield 20752  LModclmod 20880  LVecclvec 21124  PreHilcphl 21665   freeLMod cfrlm 21789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-hom 17335  df-cco 17336  df-0g 17501  df-gsum 17502  df-prds 17507  df-pws 17509  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-subg 19163  df-ghm 19253  df-cntz 19357  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-oppr 20360  df-rhm 20498  df-subrg 20597  df-drng 20753  df-field 20754  df-staf 20862  df-srng 20863  df-lmod 20882  df-lss 20953  df-lmhm 21044  df-lvec 21125  df-sra 21195  df-rgmod 21196  df-phl 21667  df-dsmm 21775  df-frlm 21790
This theorem is referenced by:  rrxcph  25445
  Copyright terms: Public domain W3C validator