Step | Hyp | Ref
| Expression |
1 | | frlmphl.v |
. . 3
⊢ 𝑉 = (Base‘𝑌) |
2 | 1 | a1i 11 |
. 2
⊢ (𝜑 → 𝑉 = (Base‘𝑌)) |
3 | | eqidd 2738 |
. 2
⊢ (𝜑 → (+g‘𝑌) = (+g‘𝑌)) |
4 | | eqidd 2738 |
. 2
⊢ (𝜑 → (
·𝑠 ‘𝑌) = ( ·𝑠
‘𝑌)) |
5 | | frlmphl.j |
. . 3
⊢ , =
(·𝑖‘𝑌) |
6 | 5 | a1i 11 |
. 2
⊢ (𝜑 → , =
(·𝑖‘𝑌)) |
7 | | frlmphl.o |
. . 3
⊢ 𝑂 = (0g‘𝑌) |
8 | 7 | a1i 11 |
. 2
⊢ (𝜑 → 𝑂 = (0g‘𝑌)) |
9 | | frlmphl.f |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ Field) |
10 | | isfld 19776 |
. . . . 5
⊢ (𝑅 ∈ Field ↔ (𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing)) |
11 | 9, 10 | sylib 221 |
. . . 4
⊢ (𝜑 → (𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing)) |
12 | 11 | simpld 498 |
. . 3
⊢ (𝜑 → 𝑅 ∈ DivRing) |
13 | | frlmphl.i |
. . 3
⊢ (𝜑 → 𝐼 ∈ 𝑊) |
14 | | frlmphl.y |
. . . 4
⊢ 𝑌 = (𝑅 freeLMod 𝐼) |
15 | 14 | frlmsca 20715 |
. . 3
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑊) → 𝑅 = (Scalar‘𝑌)) |
16 | 12, 13, 15 | syl2anc 587 |
. 2
⊢ (𝜑 → 𝑅 = (Scalar‘𝑌)) |
17 | | frlmphl.b |
. . 3
⊢ 𝐵 = (Base‘𝑅) |
18 | 17 | a1i 11 |
. 2
⊢ (𝜑 → 𝐵 = (Base‘𝑅)) |
19 | | eqidd 2738 |
. 2
⊢ (𝜑 → (+g‘𝑅) = (+g‘𝑅)) |
20 | | frlmphl.t |
. . 3
⊢ · =
(.r‘𝑅) |
21 | 20 | a1i 11 |
. 2
⊢ (𝜑 → · =
(.r‘𝑅)) |
22 | | frlmphl.s |
. . 3
⊢ ∗ =
(*𝑟‘𝑅) |
23 | 22 | a1i 11 |
. 2
⊢ (𝜑 → ∗ =
(*𝑟‘𝑅)) |
24 | | frlmphl.0 |
. . 3
⊢ 0 =
(0g‘𝑅) |
25 | 24 | a1i 11 |
. 2
⊢ (𝜑 → 0 =
(0g‘𝑅)) |
26 | | drngring 19774 |
. . . . 5
⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) |
27 | 12, 26 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑅 ∈ Ring) |
28 | 14 | frlmlmod 20711 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → 𝑌 ∈ LMod) |
29 | 27, 13, 28 | syl2anc 587 |
. . 3
⊢ (𝜑 → 𝑌 ∈ LMod) |
30 | 16, 12 | eqeltrrd 2839 |
. . 3
⊢ (𝜑 → (Scalar‘𝑌) ∈
DivRing) |
31 | | eqid 2737 |
. . . 4
⊢
(Scalar‘𝑌) =
(Scalar‘𝑌) |
32 | 31 | islvec 20141 |
. . 3
⊢ (𝑌 ∈ LVec ↔ (𝑌 ∈ LMod ∧
(Scalar‘𝑌) ∈
DivRing)) |
33 | 29, 30, 32 | sylanbrc 586 |
. 2
⊢ (𝜑 → 𝑌 ∈ LVec) |
34 | 11 | simprd 499 |
. . 3
⊢ (𝜑 → 𝑅 ∈ CRing) |
35 | | frlmphl.u |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( ∗ ‘𝑥) = 𝑥) |
36 | 17, 22, 34, 35 | idsrngd 19898 |
. 2
⊢ (𝜑 → 𝑅 ∈ *-Ring) |
37 | 13 | 3ad2ant1 1135 |
. . . . 5
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉) → 𝐼 ∈ 𝑊) |
38 | 27 | 3ad2ant1 1135 |
. . . . 5
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉) → 𝑅 ∈ Ring) |
39 | | simp2 1139 |
. . . . 5
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉) → 𝑔 ∈ 𝑉) |
40 | | simp3 1140 |
. . . . 5
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉) → ℎ ∈ 𝑉) |
41 | 14, 17, 20, 1, 5 | frlmipval 20741 |
. . . . 5
⊢ (((𝐼 ∈ 𝑊 ∧ 𝑅 ∈ Ring) ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉)) → (𝑔 , ℎ) = (𝑅 Σg (𝑔 ∘f · ℎ))) |
42 | 37, 38, 39, 40, 41 | syl22anc 839 |
. . . 4
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉) → (𝑔 , ℎ) = (𝑅 Σg (𝑔 ∘f · ℎ))) |
43 | 14, 17, 1 | frlmbasmap 20721 |
. . . . . . . . 9
⊢ ((𝐼 ∈ 𝑊 ∧ 𝑔 ∈ 𝑉) → 𝑔 ∈ (𝐵 ↑m 𝐼)) |
44 | 37, 39, 43 | syl2anc 587 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉) → 𝑔 ∈ (𝐵 ↑m 𝐼)) |
45 | | elmapi 8530 |
. . . . . . . 8
⊢ (𝑔 ∈ (𝐵 ↑m 𝐼) → 𝑔:𝐼⟶𝐵) |
46 | 44, 45 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉) → 𝑔:𝐼⟶𝐵) |
47 | 46 | ffnd 6546 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉) → 𝑔 Fn 𝐼) |
48 | 14, 17, 1 | frlmbasmap 20721 |
. . . . . . . . 9
⊢ ((𝐼 ∈ 𝑊 ∧ ℎ ∈ 𝑉) → ℎ ∈ (𝐵 ↑m 𝐼)) |
49 | 37, 40, 48 | syl2anc 587 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉) → ℎ ∈ (𝐵 ↑m 𝐼)) |
50 | | elmapi 8530 |
. . . . . . . 8
⊢ (ℎ ∈ (𝐵 ↑m 𝐼) → ℎ:𝐼⟶𝐵) |
51 | 49, 50 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉) → ℎ:𝐼⟶𝐵) |
52 | 51 | ffnd 6546 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉) → ℎ Fn 𝐼) |
53 | | inidm 4133 |
. . . . . 6
⊢ (𝐼 ∩ 𝐼) = 𝐼 |
54 | | eqidd 2738 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉) ∧ 𝑥 ∈ 𝐼) → (𝑔‘𝑥) = (𝑔‘𝑥)) |
55 | | eqidd 2738 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉) ∧ 𝑥 ∈ 𝐼) → (ℎ‘𝑥) = (ℎ‘𝑥)) |
56 | 47, 52, 37, 37, 53, 54, 55 | offval 7477 |
. . . . 5
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉) → (𝑔 ∘f · ℎ) = (𝑥 ∈ 𝐼 ↦ ((𝑔‘𝑥) · (ℎ‘𝑥)))) |
57 | 56 | oveq2d 7229 |
. . . 4
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉) → (𝑅 Σg (𝑔 ∘f · ℎ)) = (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((𝑔‘𝑥) · (ℎ‘𝑥))))) |
58 | 42, 57 | eqtrd 2777 |
. . 3
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉) → (𝑔 , ℎ) = (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((𝑔‘𝑥) · (ℎ‘𝑥))))) |
59 | | ringcmn 19599 |
. . . . . 6
⊢ (𝑅 ∈ Ring → 𝑅 ∈ CMnd) |
60 | 27, 59 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ CMnd) |
61 | 60 | 3ad2ant1 1135 |
. . . 4
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉) → 𝑅 ∈ CMnd) |
62 | 38 | adantr 484 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉) ∧ 𝑥 ∈ 𝐼) → 𝑅 ∈ Ring) |
63 | 46 | ffvelrnda 6904 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉) ∧ 𝑥 ∈ 𝐼) → (𝑔‘𝑥) ∈ 𝐵) |
64 | 51 | ffvelrnda 6904 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉) ∧ 𝑥 ∈ 𝐼) → (ℎ‘𝑥) ∈ 𝐵) |
65 | 17, 20 | ringcl 19579 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ (𝑔‘𝑥) ∈ 𝐵 ∧ (ℎ‘𝑥) ∈ 𝐵) → ((𝑔‘𝑥) · (ℎ‘𝑥)) ∈ 𝐵) |
66 | 62, 63, 64, 65 | syl3anc 1373 |
. . . . 5
⊢ (((𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉) ∧ 𝑥 ∈ 𝐼) → ((𝑔‘𝑥) · (ℎ‘𝑥)) ∈ 𝐵) |
67 | 66 | fmpttd 6932 |
. . . 4
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉) → (𝑥 ∈ 𝐼 ↦ ((𝑔‘𝑥) · (ℎ‘𝑥))):𝐼⟶𝐵) |
68 | | frlmphl.m |
. . . . 5
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑉 ∧ (𝑔 , 𝑔) = 0 ) → 𝑔 = 𝑂) |
69 | 14, 17, 20, 1, 5, 7,
24, 22, 9, 68, 35, 13 | frlmphllem 20742 |
. . . 4
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉) → (𝑥 ∈ 𝐼 ↦ ((𝑔‘𝑥) · (ℎ‘𝑥))) finSupp 0 ) |
70 | 17, 24, 61, 37, 67, 69 | gsumcl 19300 |
. . 3
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉) → (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((𝑔‘𝑥) · (ℎ‘𝑥)))) ∈ 𝐵) |
71 | 58, 70 | eqeltrd 2838 |
. 2
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉) → (𝑔 , ℎ) ∈ 𝐵) |
72 | | eqid 2737 |
. . . 4
⊢
(+g‘𝑅) = (+g‘𝑅) |
73 | 60 | 3ad2ant1 1135 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) → 𝑅 ∈ CMnd) |
74 | 13 | 3ad2ant1 1135 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) → 𝐼 ∈ 𝑊) |
75 | 27 | 3ad2ant1 1135 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) → 𝑅 ∈ Ring) |
76 | 75 | adantr 484 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) ∧ 𝑥 ∈ 𝐼) → 𝑅 ∈ Ring) |
77 | | simp2 1139 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) → 𝑘 ∈ 𝐵) |
78 | 77 | adantr 484 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) ∧ 𝑥 ∈ 𝐼) → 𝑘 ∈ 𝐵) |
79 | | simp31 1211 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) → 𝑔 ∈ 𝑉) |
80 | 74, 79, 43 | syl2anc 587 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) → 𝑔 ∈ (𝐵 ↑m 𝐼)) |
81 | 80, 45 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) → 𝑔:𝐼⟶𝐵) |
82 | 81 | ffvelrnda 6904 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) ∧ 𝑥 ∈ 𝐼) → (𝑔‘𝑥) ∈ 𝐵) |
83 | | simp33 1213 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) → 𝑖 ∈ 𝑉) |
84 | 14, 17, 1 | frlmbasmap 20721 |
. . . . . . . . 9
⊢ ((𝐼 ∈ 𝑊 ∧ 𝑖 ∈ 𝑉) → 𝑖 ∈ (𝐵 ↑m 𝐼)) |
85 | 74, 83, 84 | syl2anc 587 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) → 𝑖 ∈ (𝐵 ↑m 𝐼)) |
86 | | elmapi 8530 |
. . . . . . . 8
⊢ (𝑖 ∈ (𝐵 ↑m 𝐼) → 𝑖:𝐼⟶𝐵) |
87 | 85, 86 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) → 𝑖:𝐼⟶𝐵) |
88 | 87 | ffvelrnda 6904 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) ∧ 𝑥 ∈ 𝐼) → (𝑖‘𝑥) ∈ 𝐵) |
89 | 17, 20 | ringcl 19579 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ (𝑔‘𝑥) ∈ 𝐵 ∧ (𝑖‘𝑥) ∈ 𝐵) → ((𝑔‘𝑥) · (𝑖‘𝑥)) ∈ 𝐵) |
90 | 76, 82, 88, 89 | syl3anc 1373 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) ∧ 𝑥 ∈ 𝐼) → ((𝑔‘𝑥) · (𝑖‘𝑥)) ∈ 𝐵) |
91 | 17, 20 | ringcl 19579 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑘 ∈ 𝐵 ∧ ((𝑔‘𝑥) · (𝑖‘𝑥)) ∈ 𝐵) → (𝑘 · ((𝑔‘𝑥) · (𝑖‘𝑥))) ∈ 𝐵) |
92 | 76, 78, 90, 91 | syl3anc 1373 |
. . . 4
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) ∧ 𝑥 ∈ 𝐼) → (𝑘 · ((𝑔‘𝑥) · (𝑖‘𝑥))) ∈ 𝐵) |
93 | | simp32 1212 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) → ℎ ∈ 𝑉) |
94 | 74, 93, 48 | syl2anc 587 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) → ℎ ∈ (𝐵 ↑m 𝐼)) |
95 | 94, 50 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) → ℎ:𝐼⟶𝐵) |
96 | 95 | ffvelrnda 6904 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) ∧ 𝑥 ∈ 𝐼) → (ℎ‘𝑥) ∈ 𝐵) |
97 | 17, 20 | ringcl 19579 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (ℎ‘𝑥) ∈ 𝐵 ∧ (𝑖‘𝑥) ∈ 𝐵) → ((ℎ‘𝑥) · (𝑖‘𝑥)) ∈ 𝐵) |
98 | 76, 96, 88, 97 | syl3anc 1373 |
. . . 4
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) ∧ 𝑥 ∈ 𝐼) → ((ℎ‘𝑥) · (𝑖‘𝑥)) ∈ 𝐵) |
99 | | eqidd 2738 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) → (𝑥 ∈ 𝐼 ↦ (𝑘 · ((𝑔‘𝑥) · (𝑖‘𝑥)))) = (𝑥 ∈ 𝐼 ↦ (𝑘 · ((𝑔‘𝑥) · (𝑖‘𝑥))))) |
100 | | eqidd 2738 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) → (𝑥 ∈ 𝐼 ↦ ((ℎ‘𝑥) · (𝑖‘𝑥))) = (𝑥 ∈ 𝐼 ↦ ((ℎ‘𝑥) · (𝑖‘𝑥)))) |
101 | | fveq2 6717 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (𝑔‘𝑥) = (𝑔‘𝑦)) |
102 | 101 | oveq2d 7229 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝑘 · (𝑔‘𝑥)) = (𝑘 · (𝑔‘𝑦))) |
103 | 102 | cbvmptv 5158 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐼 ↦ (𝑘 · (𝑔‘𝑥))) = (𝑦 ∈ 𝐼 ↦ (𝑘 · (𝑔‘𝑦))) |
104 | 103 | oveq1i 7223 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐼 ↦ (𝑘 · (𝑔‘𝑥))) ∘f · 𝑖) = ((𝑦 ∈ 𝐼 ↦ (𝑘 · (𝑔‘𝑦))) ∘f · 𝑖) |
105 | 17, 20 | ringcl 19579 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ Ring ∧ 𝑘 ∈ 𝐵 ∧ (𝑔‘𝑥) ∈ 𝐵) → (𝑘 · (𝑔‘𝑥)) ∈ 𝐵) |
106 | 76, 78, 82, 105 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) ∧ 𝑥 ∈ 𝐼) → (𝑘 · (𝑔‘𝑥)) ∈ 𝐵) |
107 | 106 | fmpttd 6932 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) → (𝑥 ∈ 𝐼 ↦ (𝑘 · (𝑔‘𝑥))):𝐼⟶𝐵) |
108 | 107 | ffnd 6546 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) → (𝑥 ∈ 𝐼 ↦ (𝑘 · (𝑔‘𝑥))) Fn 𝐼) |
109 | 103 | fneq1i 6476 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝐼 ↦ (𝑘 · (𝑔‘𝑥))) Fn 𝐼 ↔ (𝑦 ∈ 𝐼 ↦ (𝑘 · (𝑔‘𝑦))) Fn 𝐼) |
110 | 108, 109 | sylib 221 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) → (𝑦 ∈ 𝐼 ↦ (𝑘 · (𝑔‘𝑦))) Fn 𝐼) |
111 | 87 | ffnd 6546 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) → 𝑖 Fn 𝐼) |
112 | | eqidd 2738 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) ∧ 𝑥 ∈ 𝐼) → (𝑦 ∈ 𝐼 ↦ (𝑘 · (𝑔‘𝑦))) = (𝑦 ∈ 𝐼 ↦ (𝑘 · (𝑔‘𝑦)))) |
113 | | simpr 488 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 = 𝑥) → 𝑦 = 𝑥) |
114 | 113 | fveq2d 6721 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 = 𝑥) → (𝑔‘𝑦) = (𝑔‘𝑥)) |
115 | 114 | oveq2d 7229 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 = 𝑥) → (𝑘 · (𝑔‘𝑦)) = (𝑘 · (𝑔‘𝑥))) |
116 | | simpr 488 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) ∧ 𝑥 ∈ 𝐼) → 𝑥 ∈ 𝐼) |
117 | | ovexd 7248 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) ∧ 𝑥 ∈ 𝐼) → (𝑘 · (𝑔‘𝑥)) ∈ V) |
118 | 112, 115,
116, 117 | fvmptd 6825 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) ∧ 𝑥 ∈ 𝐼) → ((𝑦 ∈ 𝐼 ↦ (𝑘 · (𝑔‘𝑦)))‘𝑥) = (𝑘 · (𝑔‘𝑥))) |
119 | | eqidd 2738 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) ∧ 𝑥 ∈ 𝐼) → (𝑖‘𝑥) = (𝑖‘𝑥)) |
120 | 110, 111,
74, 74, 53, 118, 119 | offval 7477 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) → ((𝑦 ∈ 𝐼 ↦ (𝑘 · (𝑔‘𝑦))) ∘f · 𝑖) = (𝑥 ∈ 𝐼 ↦ ((𝑘 · (𝑔‘𝑥)) · (𝑖‘𝑥)))) |
121 | 17, 20 | ringass 19582 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ (𝑘 ∈ 𝐵 ∧ (𝑔‘𝑥) ∈ 𝐵 ∧ (𝑖‘𝑥) ∈ 𝐵)) → ((𝑘 · (𝑔‘𝑥)) · (𝑖‘𝑥)) = (𝑘 · ((𝑔‘𝑥) · (𝑖‘𝑥)))) |
122 | 76, 78, 82, 88, 121 | syl13anc 1374 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) ∧ 𝑥 ∈ 𝐼) → ((𝑘 · (𝑔‘𝑥)) · (𝑖‘𝑥)) = (𝑘 · ((𝑔‘𝑥) · (𝑖‘𝑥)))) |
123 | 122 | mpteq2dva 5150 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) → (𝑥 ∈ 𝐼 ↦ ((𝑘 · (𝑔‘𝑥)) · (𝑖‘𝑥))) = (𝑥 ∈ 𝐼 ↦ (𝑘 · ((𝑔‘𝑥) · (𝑖‘𝑥))))) |
124 | 120, 123 | eqtrd 2777 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) → ((𝑦 ∈ 𝐼 ↦ (𝑘 · (𝑔‘𝑦))) ∘f · 𝑖) = (𝑥 ∈ 𝐼 ↦ (𝑘 · ((𝑔‘𝑥) · (𝑖‘𝑥))))) |
125 | 104, 124 | syl5eq 2790 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) → ((𝑥 ∈ 𝐼 ↦ (𝑘 · (𝑔‘𝑥))) ∘f · 𝑖) = (𝑥 ∈ 𝐼 ↦ (𝑘 · ((𝑔‘𝑥) · (𝑖‘𝑥))))) |
126 | | ovexd 7248 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) → ((𝑥 ∈ 𝐼 ↦ (𝑘 · (𝑔‘𝑥))) ∘f · 𝑖) ∈ V) |
127 | | funmpt 6418 |
. . . . . . 7
⊢ Fun
(𝑧 ∈ 𝐼 ↦ (((𝑥 ∈ 𝐼 ↦ (𝑘 · (𝑔‘𝑥)))‘𝑧) · (𝑖‘𝑧))) |
128 | | eqidd 2738 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) ∧ 𝑧 ∈ 𝐼) → ((𝑥 ∈ 𝐼 ↦ (𝑘 · (𝑔‘𝑥)))‘𝑧) = ((𝑥 ∈ 𝐼 ↦ (𝑘 · (𝑔‘𝑥)))‘𝑧)) |
129 | | eqidd 2738 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) ∧ 𝑧 ∈ 𝐼) → (𝑖‘𝑧) = (𝑖‘𝑧)) |
130 | 108, 111,
74, 74, 53, 128, 129 | offval 7477 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) → ((𝑥 ∈ 𝐼 ↦ (𝑘 · (𝑔‘𝑥))) ∘f · 𝑖) = (𝑧 ∈ 𝐼 ↦ (((𝑥 ∈ 𝐼 ↦ (𝑘 · (𝑔‘𝑥)))‘𝑧) · (𝑖‘𝑧)))) |
131 | 130 | funeqd 6402 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) → (Fun ((𝑥 ∈ 𝐼 ↦ (𝑘 · (𝑔‘𝑥))) ∘f · 𝑖) ↔ Fun (𝑧 ∈ 𝐼 ↦ (((𝑥 ∈ 𝐼 ↦ (𝑘 · (𝑔‘𝑥)))‘𝑧) · (𝑖‘𝑧))))) |
132 | 127, 131 | mpbiri 261 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) → Fun ((𝑥 ∈ 𝐼 ↦ (𝑘 · (𝑔‘𝑥))) ∘f · 𝑖)) |
133 | | simp3 1140 |
. . . . . . . . 9
⊢ ((𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉) → 𝑖 ∈ 𝑉) |
134 | 13, 133 | anim12i 616 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) → (𝐼 ∈ 𝑊 ∧ 𝑖 ∈ 𝑉)) |
135 | 134 | 3adant2 1133 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) → (𝐼 ∈ 𝑊 ∧ 𝑖 ∈ 𝑉)) |
136 | 14, 24, 1 | frlmbasfsupp 20720 |
. . . . . . 7
⊢ ((𝐼 ∈ 𝑊 ∧ 𝑖 ∈ 𝑉) → 𝑖 finSupp 0 ) |
137 | 135, 136 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) → 𝑖 finSupp 0 ) |
138 | 17, 24 | ring0cl 19587 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring → 0 ∈ 𝐵) |
139 | 75, 138 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) → 0 ∈ 𝐵) |
140 | 17, 20, 24 | ringrz 19606 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐵) → (𝑦 · 0 ) = 0 ) |
141 | 75, 140 | sylan 583 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) ∧ 𝑦 ∈ 𝐵) → (𝑦 · 0 ) = 0 ) |
142 | 74, 139, 107, 87, 141 | suppofss2d 7947 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) → (((𝑥 ∈ 𝐼 ↦ (𝑘 · (𝑔‘𝑥))) ∘f · 𝑖) supp 0 ) ⊆ (𝑖 supp 0 )) |
143 | | fsuppsssupp 9001 |
. . . . . 6
⊢
(((((𝑥 ∈ 𝐼 ↦ (𝑘 · (𝑔‘𝑥))) ∘f · 𝑖) ∈ V ∧ Fun ((𝑥 ∈ 𝐼 ↦ (𝑘 · (𝑔‘𝑥))) ∘f · 𝑖)) ∧ (𝑖 finSupp 0 ∧ (((𝑥 ∈ 𝐼 ↦ (𝑘 · (𝑔‘𝑥))) ∘f · 𝑖) supp 0 ) ⊆ (𝑖 supp 0 ))) → ((𝑥 ∈ 𝐼 ↦ (𝑘 · (𝑔‘𝑥))) ∘f · 𝑖) finSupp 0 ) |
144 | 126, 132,
137, 142, 143 | syl22anc 839 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) → ((𝑥 ∈ 𝐼 ↦ (𝑘 · (𝑔‘𝑥))) ∘f · 𝑖) finSupp 0 ) |
145 | 125, 144 | eqbrtrrd 5077 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) → (𝑥 ∈ 𝐼 ↦ (𝑘 · ((𝑔‘𝑥) · (𝑖‘𝑥)))) finSupp 0 ) |
146 | | simp1 1138 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) → 𝜑) |
147 | | eleq1w 2820 |
. . . . . . . . 9
⊢ (𝑔 = ℎ → (𝑔 ∈ 𝑉 ↔ ℎ ∈ 𝑉)) |
148 | | id 22 |
. . . . . . . . . . 11
⊢ (𝑔 = ℎ → 𝑔 = ℎ) |
149 | 148, 148 | oveq12d 7231 |
. . . . . . . . . 10
⊢ (𝑔 = ℎ → (𝑔 , 𝑔) = (ℎ , ℎ)) |
150 | 149 | eqeq1d 2739 |
. . . . . . . . 9
⊢ (𝑔 = ℎ → ((𝑔 , 𝑔) = 0 ↔ (ℎ , ℎ) = 0 )) |
151 | 147, 150 | 3anbi23d 1441 |
. . . . . . . 8
⊢ (𝑔 = ℎ → ((𝜑 ∧ 𝑔 ∈ 𝑉 ∧ (𝑔 , 𝑔) = 0 ) ↔ (𝜑 ∧ ℎ ∈ 𝑉 ∧ (ℎ , ℎ) = 0 ))) |
152 | | eqeq1 2741 |
. . . . . . . 8
⊢ (𝑔 = ℎ → (𝑔 = 𝑂 ↔ ℎ = 𝑂)) |
153 | 151, 152 | imbi12d 348 |
. . . . . . 7
⊢ (𝑔 = ℎ → (((𝜑 ∧ 𝑔 ∈ 𝑉 ∧ (𝑔 , 𝑔) = 0 ) → 𝑔 = 𝑂) ↔ ((𝜑 ∧ ℎ ∈ 𝑉 ∧ (ℎ , ℎ) = 0 ) → ℎ = 𝑂))) |
154 | 153, 68 | chvarvv 2007 |
. . . . . 6
⊢ ((𝜑 ∧ ℎ ∈ 𝑉 ∧ (ℎ , ℎ) = 0 ) → ℎ = 𝑂) |
155 | 14, 17, 20, 1, 5, 7,
24, 22, 9, 154, 35, 13 | frlmphllem 20742 |
. . . . 5
⊢ ((𝜑 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉) → (𝑥 ∈ 𝐼 ↦ ((ℎ‘𝑥) · (𝑖‘𝑥))) finSupp 0 ) |
156 | 146, 93, 83, 155 | syl3anc 1373 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) → (𝑥 ∈ 𝐼 ↦ ((ℎ‘𝑥) · (𝑖‘𝑥))) finSupp 0 ) |
157 | 17, 24, 72, 73, 74, 92, 98, 99, 100, 145, 156 | gsummptfsadd 19309 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) → (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((𝑘 · ((𝑔‘𝑥) · (𝑖‘𝑥)))(+g‘𝑅)((ℎ‘𝑥) · (𝑖‘𝑥))))) = ((𝑅 Σg (𝑥 ∈ 𝐼 ↦ (𝑘 · ((𝑔‘𝑥) · (𝑖‘𝑥)))))(+g‘𝑅)(𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((ℎ‘𝑥) · (𝑖‘𝑥)))))) |
158 | 14, 17, 20 | frlmip 20740 |
. . . . . . . . 9
⊢ ((𝐼 ∈ 𝑊 ∧ 𝑅 ∈ DivRing) → (𝑔 ∈ (𝐵 ↑m 𝐼), ℎ ∈ (𝐵 ↑m 𝐼) ↦ (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((𝑔‘𝑥) · (ℎ‘𝑥))))) =
(·𝑖‘𝑌)) |
159 | 13, 12, 158 | syl2anc 587 |
. . . . . . . 8
⊢ (𝜑 → (𝑔 ∈ (𝐵 ↑m 𝐼), ℎ ∈ (𝐵 ↑m 𝐼) ↦ (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((𝑔‘𝑥) · (ℎ‘𝑥))))) =
(·𝑖‘𝑌)) |
160 | 5, 159 | eqtr4id 2797 |
. . . . . . 7
⊢ (𝜑 → , = (𝑔 ∈ (𝐵 ↑m 𝐼), ℎ ∈ (𝐵 ↑m 𝐼) ↦ (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((𝑔‘𝑥) · (ℎ‘𝑥)))))) |
161 | | fveq1 6716 |
. . . . . . . . . . 11
⊢ (𝑒 = 𝑔 → (𝑒‘𝑥) = (𝑔‘𝑥)) |
162 | 161 | oveq1d 7228 |
. . . . . . . . . 10
⊢ (𝑒 = 𝑔 → ((𝑒‘𝑥) · (𝑓‘𝑥)) = ((𝑔‘𝑥) · (𝑓‘𝑥))) |
163 | 162 | mpteq2dv 5151 |
. . . . . . . . 9
⊢ (𝑒 = 𝑔 → (𝑥 ∈ 𝐼 ↦ ((𝑒‘𝑥) · (𝑓‘𝑥))) = (𝑥 ∈ 𝐼 ↦ ((𝑔‘𝑥) · (𝑓‘𝑥)))) |
164 | 163 | oveq2d 7229 |
. . . . . . . 8
⊢ (𝑒 = 𝑔 → (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((𝑒‘𝑥) · (𝑓‘𝑥)))) = (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((𝑔‘𝑥) · (𝑓‘𝑥))))) |
165 | | fveq1 6716 |
. . . . . . . . . . 11
⊢ (𝑓 = ℎ → (𝑓‘𝑥) = (ℎ‘𝑥)) |
166 | 165 | oveq2d 7229 |
. . . . . . . . . 10
⊢ (𝑓 = ℎ → ((𝑔‘𝑥) · (𝑓‘𝑥)) = ((𝑔‘𝑥) · (ℎ‘𝑥))) |
167 | 166 | mpteq2dv 5151 |
. . . . . . . . 9
⊢ (𝑓 = ℎ → (𝑥 ∈ 𝐼 ↦ ((𝑔‘𝑥) · (𝑓‘𝑥))) = (𝑥 ∈ 𝐼 ↦ ((𝑔‘𝑥) · (ℎ‘𝑥)))) |
168 | 167 | oveq2d 7229 |
. . . . . . . 8
⊢ (𝑓 = ℎ → (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((𝑔‘𝑥) · (𝑓‘𝑥)))) = (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((𝑔‘𝑥) · (ℎ‘𝑥))))) |
169 | 164, 168 | cbvmpov 7306 |
. . . . . . 7
⊢ (𝑒 ∈ (𝐵 ↑m 𝐼), 𝑓 ∈ (𝐵 ↑m 𝐼) ↦ (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((𝑒‘𝑥) · (𝑓‘𝑥))))) = (𝑔 ∈ (𝐵 ↑m 𝐼), ℎ ∈ (𝐵 ↑m 𝐼) ↦ (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((𝑔‘𝑥) · (ℎ‘𝑥))))) |
170 | 160, 169 | eqtr4di 2796 |
. . . . . 6
⊢ (𝜑 → , = (𝑒 ∈ (𝐵 ↑m 𝐼), 𝑓 ∈ (𝐵 ↑m 𝐼) ↦ (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((𝑒‘𝑥) · (𝑓‘𝑥)))))) |
171 | 170 | 3ad2ant1 1135 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) → , = (𝑒 ∈ (𝐵 ↑m 𝐼), 𝑓 ∈ (𝐵 ↑m 𝐼) ↦ (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((𝑒‘𝑥) · (𝑓‘𝑥)))))) |
172 | | simprl 771 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) ∧ (𝑒 = ((𝑘( ·𝑠
‘𝑌)𝑔)(+g‘𝑌)ℎ) ∧ 𝑓 = 𝑖)) → 𝑒 = ((𝑘( ·𝑠
‘𝑌)𝑔)(+g‘𝑌)ℎ)) |
173 | 172 | fveq1d 6719 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) ∧ (𝑒 = ((𝑘( ·𝑠
‘𝑌)𝑔)(+g‘𝑌)ℎ) ∧ 𝑓 = 𝑖)) → (𝑒‘𝑥) = (((𝑘( ·𝑠
‘𝑌)𝑔)(+g‘𝑌)ℎ)‘𝑥)) |
174 | | simprr 773 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) ∧ (𝑒 = ((𝑘( ·𝑠
‘𝑌)𝑔)(+g‘𝑌)ℎ) ∧ 𝑓 = 𝑖)) → 𝑓 = 𝑖) |
175 | 174 | fveq1d 6719 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) ∧ (𝑒 = ((𝑘( ·𝑠
‘𝑌)𝑔)(+g‘𝑌)ℎ) ∧ 𝑓 = 𝑖)) → (𝑓‘𝑥) = (𝑖‘𝑥)) |
176 | 173, 175 | oveq12d 7231 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) ∧ (𝑒 = ((𝑘( ·𝑠
‘𝑌)𝑔)(+g‘𝑌)ℎ) ∧ 𝑓 = 𝑖)) → ((𝑒‘𝑥) · (𝑓‘𝑥)) = ((((𝑘( ·𝑠
‘𝑌)𝑔)(+g‘𝑌)ℎ)‘𝑥) · (𝑖‘𝑥))) |
177 | 176 | mpteq2dv 5151 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) ∧ (𝑒 = ((𝑘( ·𝑠
‘𝑌)𝑔)(+g‘𝑌)ℎ) ∧ 𝑓 = 𝑖)) → (𝑥 ∈ 𝐼 ↦ ((𝑒‘𝑥) · (𝑓‘𝑥))) = (𝑥 ∈ 𝐼 ↦ ((((𝑘( ·𝑠
‘𝑌)𝑔)(+g‘𝑌)ℎ)‘𝑥) · (𝑖‘𝑥)))) |
178 | 177 | oveq2d 7229 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) ∧ (𝑒 = ((𝑘( ·𝑠
‘𝑌)𝑔)(+g‘𝑌)ℎ) ∧ 𝑓 = 𝑖)) → (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((𝑒‘𝑥) · (𝑓‘𝑥)))) = (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((((𝑘( ·𝑠
‘𝑌)𝑔)(+g‘𝑌)ℎ)‘𝑥) · (𝑖‘𝑥))))) |
179 | 29 | 3ad2ant1 1135 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) → 𝑌 ∈ LMod) |
180 | 16 | 3ad2ant1 1135 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) → 𝑅 = (Scalar‘𝑌)) |
181 | 180 | fveq2d 6721 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) → (Base‘𝑅) = (Base‘(Scalar‘𝑌))) |
182 | 17, 181 | syl5eq 2790 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) → 𝐵 = (Base‘(Scalar‘𝑌))) |
183 | 77, 182 | eleqtrd 2840 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) → 𝑘 ∈ (Base‘(Scalar‘𝑌))) |
184 | | eqid 2737 |
. . . . . . . . 9
⊢ (
·𝑠 ‘𝑌) = ( ·𝑠
‘𝑌) |
185 | | eqid 2737 |
. . . . . . . . 9
⊢
(Base‘(Scalar‘𝑌)) = (Base‘(Scalar‘𝑌)) |
186 | 1, 31, 184, 185 | lmodvscl 19916 |
. . . . . . . 8
⊢ ((𝑌 ∈ LMod ∧ 𝑘 ∈
(Base‘(Scalar‘𝑌)) ∧ 𝑔 ∈ 𝑉) → (𝑘( ·𝑠
‘𝑌)𝑔) ∈ 𝑉) |
187 | 179, 183,
79, 186 | syl3anc 1373 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) → (𝑘( ·𝑠
‘𝑌)𝑔) ∈ 𝑉) |
188 | | eqid 2737 |
. . . . . . . 8
⊢
(+g‘𝑌) = (+g‘𝑌) |
189 | 1, 188 | lmodvacl 19913 |
. . . . . . 7
⊢ ((𝑌 ∈ LMod ∧ (𝑘(
·𝑠 ‘𝑌)𝑔) ∈ 𝑉 ∧ ℎ ∈ 𝑉) → ((𝑘( ·𝑠
‘𝑌)𝑔)(+g‘𝑌)ℎ) ∈ 𝑉) |
190 | 179, 187,
93, 189 | syl3anc 1373 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) → ((𝑘( ·𝑠
‘𝑌)𝑔)(+g‘𝑌)ℎ) ∈ 𝑉) |
191 | 14, 17, 1 | frlmbasmap 20721 |
. . . . . 6
⊢ ((𝐼 ∈ 𝑊 ∧ ((𝑘( ·𝑠
‘𝑌)𝑔)(+g‘𝑌)ℎ) ∈ 𝑉) → ((𝑘( ·𝑠
‘𝑌)𝑔)(+g‘𝑌)ℎ) ∈ (𝐵 ↑m 𝐼)) |
192 | 74, 190, 191 | syl2anc 587 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) → ((𝑘( ·𝑠
‘𝑌)𝑔)(+g‘𝑌)ℎ) ∈ (𝐵 ↑m 𝐼)) |
193 | | ovexd 7248 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) → (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((((𝑘( ·𝑠
‘𝑌)𝑔)(+g‘𝑌)ℎ)‘𝑥) · (𝑖‘𝑥)))) ∈ V) |
194 | 171, 178,
192, 85, 193 | ovmpod 7361 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) → (((𝑘( ·𝑠
‘𝑌)𝑔)(+g‘𝑌)ℎ) , 𝑖) = (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((((𝑘( ·𝑠
‘𝑌)𝑔)(+g‘𝑌)ℎ)‘𝑥) · (𝑖‘𝑥))))) |
195 | 14, 1, 75, 74, 187, 93, 72, 188 | frlmplusgval 20726 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) → ((𝑘( ·𝑠
‘𝑌)𝑔)(+g‘𝑌)ℎ) = ((𝑘( ·𝑠
‘𝑌)𝑔) ∘f
(+g‘𝑅)ℎ)) |
196 | 14, 17, 1 | frlmbasmap 20721 |
. . . . . . . . . . . . 13
⊢ ((𝐼 ∈ 𝑊 ∧ (𝑘( ·𝑠
‘𝑌)𝑔) ∈ 𝑉) → (𝑘( ·𝑠
‘𝑌)𝑔) ∈ (𝐵 ↑m 𝐼)) |
197 | 74, 187, 196 | syl2anc 587 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) → (𝑘( ·𝑠
‘𝑌)𝑔) ∈ (𝐵 ↑m 𝐼)) |
198 | | elmapi 8530 |
. . . . . . . . . . . 12
⊢ ((𝑘(
·𝑠 ‘𝑌)𝑔) ∈ (𝐵 ↑m 𝐼) → (𝑘( ·𝑠
‘𝑌)𝑔):𝐼⟶𝐵) |
199 | | ffn 6545 |
. . . . . . . . . . . 12
⊢ ((𝑘(
·𝑠 ‘𝑌)𝑔):𝐼⟶𝐵 → (𝑘( ·𝑠
‘𝑌)𝑔) Fn 𝐼) |
200 | 197, 198,
199 | 3syl 18 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) → (𝑘( ·𝑠
‘𝑌)𝑔) Fn 𝐼) |
201 | 95 | ffnd 6546 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) → ℎ Fn 𝐼) |
202 | 74 | adantr 484 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) ∧ 𝑥 ∈ 𝐼) → 𝐼 ∈ 𝑊) |
203 | 79 | adantr 484 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) ∧ 𝑥 ∈ 𝐼) → 𝑔 ∈ 𝑉) |
204 | 14, 1, 17, 202, 78, 203, 116, 184, 20 | frlmvscaval 20730 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) ∧ 𝑥 ∈ 𝐼) → ((𝑘( ·𝑠
‘𝑌)𝑔)‘𝑥) = (𝑘 · (𝑔‘𝑥))) |
205 | | eqidd 2738 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) ∧ 𝑥 ∈ 𝐼) → (ℎ‘𝑥) = (ℎ‘𝑥)) |
206 | 200, 201,
74, 74, 53, 204, 205 | offval 7477 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) → ((𝑘( ·𝑠
‘𝑌)𝑔) ∘f
(+g‘𝑅)ℎ) = (𝑥 ∈ 𝐼 ↦ ((𝑘 · (𝑔‘𝑥))(+g‘𝑅)(ℎ‘𝑥)))) |
207 | 195, 206 | eqtrd 2777 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) → ((𝑘( ·𝑠
‘𝑌)𝑔)(+g‘𝑌)ℎ) = (𝑥 ∈ 𝐼 ↦ ((𝑘 · (𝑔‘𝑥))(+g‘𝑅)(ℎ‘𝑥)))) |
208 | | ovexd 7248 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) ∧ 𝑥 ∈ 𝐼) → ((𝑘 · (𝑔‘𝑥))(+g‘𝑅)(ℎ‘𝑥)) ∈ V) |
209 | 207, 208 | fvmpt2d 6831 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) ∧ 𝑥 ∈ 𝐼) → (((𝑘( ·𝑠
‘𝑌)𝑔)(+g‘𝑌)ℎ)‘𝑥) = ((𝑘 · (𝑔‘𝑥))(+g‘𝑅)(ℎ‘𝑥))) |
210 | 209 | oveq1d 7228 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) ∧ 𝑥 ∈ 𝐼) → ((((𝑘( ·𝑠
‘𝑌)𝑔)(+g‘𝑌)ℎ)‘𝑥) · (𝑖‘𝑥)) = (((𝑘 · (𝑔‘𝑥))(+g‘𝑅)(ℎ‘𝑥)) · (𝑖‘𝑥))) |
211 | 17, 72, 20 | ringdir 19585 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ ((𝑘 · (𝑔‘𝑥)) ∈ 𝐵 ∧ (ℎ‘𝑥) ∈ 𝐵 ∧ (𝑖‘𝑥) ∈ 𝐵)) → (((𝑘 · (𝑔‘𝑥))(+g‘𝑅)(ℎ‘𝑥)) · (𝑖‘𝑥)) = (((𝑘 · (𝑔‘𝑥)) · (𝑖‘𝑥))(+g‘𝑅)((ℎ‘𝑥) · (𝑖‘𝑥)))) |
212 | 76, 106, 96, 88, 211 | syl13anc 1374 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) ∧ 𝑥 ∈ 𝐼) → (((𝑘 · (𝑔‘𝑥))(+g‘𝑅)(ℎ‘𝑥)) · (𝑖‘𝑥)) = (((𝑘 · (𝑔‘𝑥)) · (𝑖‘𝑥))(+g‘𝑅)((ℎ‘𝑥) · (𝑖‘𝑥)))) |
213 | 122 | oveq1d 7228 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) ∧ 𝑥 ∈ 𝐼) → (((𝑘 · (𝑔‘𝑥)) · (𝑖‘𝑥))(+g‘𝑅)((ℎ‘𝑥) · (𝑖‘𝑥))) = ((𝑘 · ((𝑔‘𝑥) · (𝑖‘𝑥)))(+g‘𝑅)((ℎ‘𝑥) · (𝑖‘𝑥)))) |
214 | 210, 212,
213 | 3eqtrd 2781 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) ∧ 𝑥 ∈ 𝐼) → ((((𝑘( ·𝑠
‘𝑌)𝑔)(+g‘𝑌)ℎ)‘𝑥) · (𝑖‘𝑥)) = ((𝑘 · ((𝑔‘𝑥) · (𝑖‘𝑥)))(+g‘𝑅)((ℎ‘𝑥) · (𝑖‘𝑥)))) |
215 | 214 | mpteq2dva 5150 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) → (𝑥 ∈ 𝐼 ↦ ((((𝑘( ·𝑠
‘𝑌)𝑔)(+g‘𝑌)ℎ)‘𝑥) · (𝑖‘𝑥))) = (𝑥 ∈ 𝐼 ↦ ((𝑘 · ((𝑔‘𝑥) · (𝑖‘𝑥)))(+g‘𝑅)((ℎ‘𝑥) · (𝑖‘𝑥))))) |
216 | 215 | oveq2d 7229 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) → (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((((𝑘( ·𝑠
‘𝑌)𝑔)(+g‘𝑌)ℎ)‘𝑥) · (𝑖‘𝑥)))) = (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((𝑘 · ((𝑔‘𝑥) · (𝑖‘𝑥)))(+g‘𝑅)((ℎ‘𝑥) · (𝑖‘𝑥)))))) |
217 | 194, 216 | eqtrd 2777 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) → (((𝑘( ·𝑠
‘𝑌)𝑔)(+g‘𝑌)ℎ) , 𝑖) = (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((𝑘 · ((𝑔‘𝑥) · (𝑖‘𝑥)))(+g‘𝑅)((ℎ‘𝑥) · (𝑖‘𝑥)))))) |
218 | | simprl 771 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) ∧ (𝑒 = 𝑔 ∧ 𝑓 = 𝑖)) → 𝑒 = 𝑔) |
219 | 218 | fveq1d 6719 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) ∧ (𝑒 = 𝑔 ∧ 𝑓 = 𝑖)) → (𝑒‘𝑥) = (𝑔‘𝑥)) |
220 | | simprr 773 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) ∧ (𝑒 = 𝑔 ∧ 𝑓 = 𝑖)) → 𝑓 = 𝑖) |
221 | 220 | fveq1d 6719 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) ∧ (𝑒 = 𝑔 ∧ 𝑓 = 𝑖)) → (𝑓‘𝑥) = (𝑖‘𝑥)) |
222 | 219, 221 | oveq12d 7231 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) ∧ (𝑒 = 𝑔 ∧ 𝑓 = 𝑖)) → ((𝑒‘𝑥) · (𝑓‘𝑥)) = ((𝑔‘𝑥) · (𝑖‘𝑥))) |
223 | 222 | mpteq2dv 5151 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) ∧ (𝑒 = 𝑔 ∧ 𝑓 = 𝑖)) → (𝑥 ∈ 𝐼 ↦ ((𝑒‘𝑥) · (𝑓‘𝑥))) = (𝑥 ∈ 𝐼 ↦ ((𝑔‘𝑥) · (𝑖‘𝑥)))) |
224 | 223 | oveq2d 7229 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) ∧ (𝑒 = 𝑔 ∧ 𝑓 = 𝑖)) → (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((𝑒‘𝑥) · (𝑓‘𝑥)))) = (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((𝑔‘𝑥) · (𝑖‘𝑥))))) |
225 | | ovexd 7248 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) → (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((𝑔‘𝑥) · (𝑖‘𝑥)))) ∈ V) |
226 | 171, 224,
80, 85, 225 | ovmpod 7361 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) → (𝑔 , 𝑖) = (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((𝑔‘𝑥) · (𝑖‘𝑥))))) |
227 | 226 | oveq2d 7229 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) → (𝑘 · (𝑔 , 𝑖)) = (𝑘 · (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((𝑔‘𝑥) · (𝑖‘𝑥)))))) |
228 | 14, 17, 20, 1, 5, 7,
24, 22, 9, 68, 35, 13 | frlmphllem 20742 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑉 ∧ 𝑖 ∈ 𝑉) → (𝑥 ∈ 𝐼 ↦ ((𝑔‘𝑥) · (𝑖‘𝑥))) finSupp 0 ) |
229 | 146, 79, 83, 228 | syl3anc 1373 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) → (𝑥 ∈ 𝐼 ↦ ((𝑔‘𝑥) · (𝑖‘𝑥))) finSupp 0 ) |
230 | 17, 24, 72, 20, 75, 74, 77, 90, 229 | gsummulc2 19625 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) → (𝑅 Σg (𝑥 ∈ 𝐼 ↦ (𝑘 · ((𝑔‘𝑥) · (𝑖‘𝑥))))) = (𝑘 · (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((𝑔‘𝑥) · (𝑖‘𝑥)))))) |
231 | 227, 230 | eqtr4d 2780 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) → (𝑘 · (𝑔 , 𝑖)) = (𝑅 Σg (𝑥 ∈ 𝐼 ↦ (𝑘 · ((𝑔‘𝑥) · (𝑖‘𝑥)))))) |
232 | | simprl 771 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) ∧ (𝑒 = ℎ ∧ 𝑓 = 𝑖)) → 𝑒 = ℎ) |
233 | 232 | fveq1d 6719 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) ∧ (𝑒 = ℎ ∧ 𝑓 = 𝑖)) → (𝑒‘𝑥) = (ℎ‘𝑥)) |
234 | | simprr 773 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) ∧ (𝑒 = ℎ ∧ 𝑓 = 𝑖)) → 𝑓 = 𝑖) |
235 | 234 | fveq1d 6719 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) ∧ (𝑒 = ℎ ∧ 𝑓 = 𝑖)) → (𝑓‘𝑥) = (𝑖‘𝑥)) |
236 | 233, 235 | oveq12d 7231 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) ∧ (𝑒 = ℎ ∧ 𝑓 = 𝑖)) → ((𝑒‘𝑥) · (𝑓‘𝑥)) = ((ℎ‘𝑥) · (𝑖‘𝑥))) |
237 | 236 | mpteq2dv 5151 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) ∧ (𝑒 = ℎ ∧ 𝑓 = 𝑖)) → (𝑥 ∈ 𝐼 ↦ ((𝑒‘𝑥) · (𝑓‘𝑥))) = (𝑥 ∈ 𝐼 ↦ ((ℎ‘𝑥) · (𝑖‘𝑥)))) |
238 | 237 | oveq2d 7229 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) ∧ (𝑒 = ℎ ∧ 𝑓 = 𝑖)) → (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((𝑒‘𝑥) · (𝑓‘𝑥)))) = (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((ℎ‘𝑥) · (𝑖‘𝑥))))) |
239 | | ovexd 7248 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) → (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((ℎ‘𝑥) · (𝑖‘𝑥)))) ∈ V) |
240 | 171, 238,
94, 85, 239 | ovmpod 7361 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) → (ℎ , 𝑖) = (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((ℎ‘𝑥) · (𝑖‘𝑥))))) |
241 | 231, 240 | oveq12d 7231 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) → ((𝑘 · (𝑔 , 𝑖))(+g‘𝑅)(ℎ , 𝑖)) = ((𝑅 Σg (𝑥 ∈ 𝐼 ↦ (𝑘 · ((𝑔‘𝑥) · (𝑖‘𝑥)))))(+g‘𝑅)(𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((ℎ‘𝑥) · (𝑖‘𝑥)))))) |
242 | 157, 217,
241 | 3eqtr4d 2787 |
. 2
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵 ∧ (𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉)) → (((𝑘( ·𝑠
‘𝑌)𝑔)(+g‘𝑌)ℎ) , 𝑖) = ((𝑘 · (𝑔 , 𝑖))(+g‘𝑅)(ℎ , 𝑖))) |
243 | 34 | 3ad2ant1 1135 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉) → 𝑅 ∈ CRing) |
244 | 243 | adantr 484 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉) ∧ 𝑥 ∈ 𝐼) → 𝑅 ∈ CRing) |
245 | 17, 20 | crngcom 19580 |
. . . . . 6
⊢ ((𝑅 ∈ CRing ∧ (ℎ‘𝑥) ∈ 𝐵 ∧ (𝑔‘𝑥) ∈ 𝐵) → ((ℎ‘𝑥) · (𝑔‘𝑥)) = ((𝑔‘𝑥) · (ℎ‘𝑥))) |
246 | 244, 64, 63, 245 | syl3anc 1373 |
. . . . 5
⊢ (((𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉) ∧ 𝑥 ∈ 𝐼) → ((ℎ‘𝑥) · (𝑔‘𝑥)) = ((𝑔‘𝑥) · (ℎ‘𝑥))) |
247 | 246 | mpteq2dva 5150 |
. . . 4
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉) → (𝑥 ∈ 𝐼 ↦ ((ℎ‘𝑥) · (𝑔‘𝑥))) = (𝑥 ∈ 𝐼 ↦ ((𝑔‘𝑥) · (ℎ‘𝑥)))) |
248 | 247 | oveq2d 7229 |
. . 3
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉) → (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((ℎ‘𝑥) · (𝑔‘𝑥)))) = (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((𝑔‘𝑥) · (ℎ‘𝑥))))) |
249 | 170 | 3ad2ant1 1135 |
. . . 4
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉) → , = (𝑒 ∈ (𝐵 ↑m 𝐼), 𝑓 ∈ (𝐵 ↑m 𝐼) ↦ (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((𝑒‘𝑥) · (𝑓‘𝑥)))))) |
250 | | simprl 771 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉) ∧ (𝑒 = ℎ ∧ 𝑓 = 𝑔)) → 𝑒 = ℎ) |
251 | 250 | fveq1d 6719 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉) ∧ (𝑒 = ℎ ∧ 𝑓 = 𝑔)) → (𝑒‘𝑥) = (ℎ‘𝑥)) |
252 | | simprr 773 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉) ∧ (𝑒 = ℎ ∧ 𝑓 = 𝑔)) → 𝑓 = 𝑔) |
253 | 252 | fveq1d 6719 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉) ∧ (𝑒 = ℎ ∧ 𝑓 = 𝑔)) → (𝑓‘𝑥) = (𝑔‘𝑥)) |
254 | 251, 253 | oveq12d 7231 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉) ∧ (𝑒 = ℎ ∧ 𝑓 = 𝑔)) → ((𝑒‘𝑥) · (𝑓‘𝑥)) = ((ℎ‘𝑥) · (𝑔‘𝑥))) |
255 | 254 | mpteq2dv 5151 |
. . . . 5
⊢ (((𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉) ∧ (𝑒 = ℎ ∧ 𝑓 = 𝑔)) → (𝑥 ∈ 𝐼 ↦ ((𝑒‘𝑥) · (𝑓‘𝑥))) = (𝑥 ∈ 𝐼 ↦ ((ℎ‘𝑥) · (𝑔‘𝑥)))) |
256 | 255 | oveq2d 7229 |
. . . 4
⊢ (((𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉) ∧ (𝑒 = ℎ ∧ 𝑓 = 𝑔)) → (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((𝑒‘𝑥) · (𝑓‘𝑥)))) = (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((ℎ‘𝑥) · (𝑔‘𝑥))))) |
257 | | ovexd 7248 |
. . . 4
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉) → (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((ℎ‘𝑥) · (𝑔‘𝑥)))) ∈ V) |
258 | 249, 256,
49, 44, 257 | ovmpod 7361 |
. . 3
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉) → (ℎ , 𝑔) = (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((ℎ‘𝑥) · (𝑔‘𝑥))))) |
259 | | fveq2 6717 |
. . . . . 6
⊢ (𝑥 = (𝑔 , ℎ) → ( ∗ ‘𝑥) = ( ∗ ‘(𝑔 , ℎ))) |
260 | | id 22 |
. . . . . 6
⊢ (𝑥 = (𝑔 , ℎ) → 𝑥 = (𝑔 , ℎ)) |
261 | 259, 260 | eqeq12d 2753 |
. . . . 5
⊢ (𝑥 = (𝑔 , ℎ) → (( ∗ ‘𝑥) = 𝑥 ↔ ( ∗ ‘(𝑔 , ℎ)) = (𝑔 , ℎ))) |
262 | 35 | ralrimiva 3105 |
. . . . . 6
⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ( ∗ ‘𝑥) = 𝑥) |
263 | 262 | 3ad2ant1 1135 |
. . . . 5
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉) → ∀𝑥 ∈ 𝐵 ( ∗ ‘𝑥) = 𝑥) |
264 | 261, 263,
71 | rspcdva 3539 |
. . . 4
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉) → ( ∗ ‘(𝑔 , ℎ)) = (𝑔 , ℎ)) |
265 | 264, 58 | eqtrd 2777 |
. . 3
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉) → ( ∗ ‘(𝑔 , ℎ)) = (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((𝑔‘𝑥) · (ℎ‘𝑥))))) |
266 | 248, 258,
265 | 3eqtr4rd 2788 |
. 2
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉) → ( ∗ ‘(𝑔 , ℎ)) = (ℎ , 𝑔)) |
267 | 2, 3, 4, 6, 8, 16,
18, 19, 21, 23, 25, 33, 36, 71, 242, 68, 266 | isphld 20616 |
1
⊢ (𝜑 → 𝑌 ∈ PreHil) |