MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmphl Structured version   Visualization version   GIF version

Theorem frlmphl 21718
Description: Conditions for a free module to be a pre-Hilbert space. (Contributed by Thierry Arnoux, 21-Jun-2019.) (Proof shortened by AV, 21-Jul-2019.)
Hypotheses
Ref Expression
frlmphl.y 𝑌 = (𝑅 freeLMod 𝐼)
frlmphl.b 𝐵 = (Base‘𝑅)
frlmphl.t · = (.r𝑅)
frlmphl.v 𝑉 = (Base‘𝑌)
frlmphl.j , = (·𝑖𝑌)
frlmphl.o 𝑂 = (0g𝑌)
frlmphl.0 0 = (0g𝑅)
frlmphl.s = (*𝑟𝑅)
frlmphl.f (𝜑𝑅 ∈ Field)
frlmphl.m ((𝜑𝑔𝑉 ∧ (𝑔 , 𝑔) = 0 ) → 𝑔 = 𝑂)
frlmphl.u ((𝜑𝑥𝐵) → ( 𝑥) = 𝑥)
frlmphl.i (𝜑𝐼𝑊)
Assertion
Ref Expression
frlmphl (𝜑𝑌 ∈ PreHil)
Distinct variable groups:   𝐵,𝑔,𝑥   𝑔,𝐼,𝑥   𝑅,𝑔,𝑥   𝑔,𝑉,𝑥   𝑔,𝑊,𝑥   · ,𝑔,𝑥   𝑔,𝑌,𝑥   0 ,𝑔,𝑥   𝜑,𝑔,𝑥   , ,𝑔,𝑥   𝑔,𝑂   𝑥,
Allowed substitution hints:   (𝑔)   𝑂(𝑥)

Proof of Theorem frlmphl
Dummy variables 𝑓 𝑒 𝑖 𝑦 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frlmphl.v . . 3 𝑉 = (Base‘𝑌)
21a1i 11 . 2 (𝜑𝑉 = (Base‘𝑌))
3 eqidd 2732 . 2 (𝜑 → (+g𝑌) = (+g𝑌))
4 eqidd 2732 . 2 (𝜑 → ( ·𝑠𝑌) = ( ·𝑠𝑌))
5 frlmphl.j . . 3 , = (·𝑖𝑌)
65a1i 11 . 2 (𝜑, = (·𝑖𝑌))
7 frlmphl.o . . 3 𝑂 = (0g𝑌)
87a1i 11 . 2 (𝜑𝑂 = (0g𝑌))
9 frlmphl.f . . . . 5 (𝜑𝑅 ∈ Field)
10 isfld 20655 . . . . 5 (𝑅 ∈ Field ↔ (𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing))
119, 10sylib 218 . . . 4 (𝜑 → (𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing))
1211simpld 494 . . 3 (𝜑𝑅 ∈ DivRing)
13 frlmphl.i . . 3 (𝜑𝐼𝑊)
14 frlmphl.y . . . 4 𝑌 = (𝑅 freeLMod 𝐼)
1514frlmsca 21690 . . 3 ((𝑅 ∈ DivRing ∧ 𝐼𝑊) → 𝑅 = (Scalar‘𝑌))
1612, 13, 15syl2anc 584 . 2 (𝜑𝑅 = (Scalar‘𝑌))
17 frlmphl.b . . 3 𝐵 = (Base‘𝑅)
1817a1i 11 . 2 (𝜑𝐵 = (Base‘𝑅))
19 eqidd 2732 . 2 (𝜑 → (+g𝑅) = (+g𝑅))
20 frlmphl.t . . 3 · = (.r𝑅)
2120a1i 11 . 2 (𝜑· = (.r𝑅))
22 frlmphl.s . . 3 = (*𝑟𝑅)
2322a1i 11 . 2 (𝜑 = (*𝑟𝑅))
24 frlmphl.0 . . 3 0 = (0g𝑅)
2524a1i 11 . 2 (𝜑0 = (0g𝑅))
2612drngringd 20652 . . . 4 (𝜑𝑅 ∈ Ring)
2714frlmlmod 21686 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝑌 ∈ LMod)
2826, 13, 27syl2anc 584 . . 3 (𝜑𝑌 ∈ LMod)
2916, 12eqeltrrd 2832 . . 3 (𝜑 → (Scalar‘𝑌) ∈ DivRing)
30 eqid 2731 . . . 4 (Scalar‘𝑌) = (Scalar‘𝑌)
3130islvec 21038 . . 3 (𝑌 ∈ LVec ↔ (𝑌 ∈ LMod ∧ (Scalar‘𝑌) ∈ DivRing))
3228, 29, 31sylanbrc 583 . 2 (𝜑𝑌 ∈ LVec)
339fldcrngd 20657 . . 3 (𝜑𝑅 ∈ CRing)
34 frlmphl.u . . 3 ((𝜑𝑥𝐵) → ( 𝑥) = 𝑥)
3517, 22, 33, 34idsrngd 20771 . 2 (𝜑𝑅 ∈ *-Ring)
36133ad2ant1 1133 . . . . 5 ((𝜑𝑔𝑉𝑉) → 𝐼𝑊)
37263ad2ant1 1133 . . . . 5 ((𝜑𝑔𝑉𝑉) → 𝑅 ∈ Ring)
38 simp2 1137 . . . . 5 ((𝜑𝑔𝑉𝑉) → 𝑔𝑉)
39 simp3 1138 . . . . 5 ((𝜑𝑔𝑉𝑉) → 𝑉)
4014, 17, 20, 1, 5frlmipval 21716 . . . . 5 (((𝐼𝑊𝑅 ∈ Ring) ∧ (𝑔𝑉𝑉)) → (𝑔 , ) = (𝑅 Σg (𝑔f · )))
4136, 37, 38, 39, 40syl22anc 838 . . . 4 ((𝜑𝑔𝑉𝑉) → (𝑔 , ) = (𝑅 Σg (𝑔f · )))
4214, 17, 1frlmbasmap 21696 . . . . . . . . 9 ((𝐼𝑊𝑔𝑉) → 𝑔 ∈ (𝐵m 𝐼))
4336, 38, 42syl2anc 584 . . . . . . . 8 ((𝜑𝑔𝑉𝑉) → 𝑔 ∈ (𝐵m 𝐼))
44 elmapi 8773 . . . . . . . 8 (𝑔 ∈ (𝐵m 𝐼) → 𝑔:𝐼𝐵)
4543, 44syl 17 . . . . . . 7 ((𝜑𝑔𝑉𝑉) → 𝑔:𝐼𝐵)
4645ffnd 6652 . . . . . 6 ((𝜑𝑔𝑉𝑉) → 𝑔 Fn 𝐼)
4714, 17, 1frlmbasmap 21696 . . . . . . . . 9 ((𝐼𝑊𝑉) → ∈ (𝐵m 𝐼))
4836, 39, 47syl2anc 584 . . . . . . . 8 ((𝜑𝑔𝑉𝑉) → ∈ (𝐵m 𝐼))
49 elmapi 8773 . . . . . . . 8 ( ∈ (𝐵m 𝐼) → :𝐼𝐵)
5048, 49syl 17 . . . . . . 7 ((𝜑𝑔𝑉𝑉) → :𝐼𝐵)
5150ffnd 6652 . . . . . 6 ((𝜑𝑔𝑉𝑉) → Fn 𝐼)
52 inidm 4174 . . . . . 6 (𝐼𝐼) = 𝐼
53 eqidd 2732 . . . . . 6 (((𝜑𝑔𝑉𝑉) ∧ 𝑥𝐼) → (𝑔𝑥) = (𝑔𝑥))
54 eqidd 2732 . . . . . 6 (((𝜑𝑔𝑉𝑉) ∧ 𝑥𝐼) → (𝑥) = (𝑥))
5546, 51, 36, 36, 52, 53, 54offval 7619 . . . . 5 ((𝜑𝑔𝑉𝑉) → (𝑔f · ) = (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))))
5655oveq2d 7362 . . . 4 ((𝜑𝑔𝑉𝑉) → (𝑅 Σg (𝑔f · )) = (𝑅 Σg (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥)))))
5741, 56eqtrd 2766 . . 3 ((𝜑𝑔𝑉𝑉) → (𝑔 , ) = (𝑅 Σg (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥)))))
5826ringcmnd 20202 . . . . 5 (𝜑𝑅 ∈ CMnd)
59583ad2ant1 1133 . . . 4 ((𝜑𝑔𝑉𝑉) → 𝑅 ∈ CMnd)
6037adantr 480 . . . . . 6 (((𝜑𝑔𝑉𝑉) ∧ 𝑥𝐼) → 𝑅 ∈ Ring)
6145ffvelcdmda 7017 . . . . . 6 (((𝜑𝑔𝑉𝑉) ∧ 𝑥𝐼) → (𝑔𝑥) ∈ 𝐵)
6250ffvelcdmda 7017 . . . . . 6 (((𝜑𝑔𝑉𝑉) ∧ 𝑥𝐼) → (𝑥) ∈ 𝐵)
6317, 20, 60, 61, 62ringcld 20178 . . . . 5 (((𝜑𝑔𝑉𝑉) ∧ 𝑥𝐼) → ((𝑔𝑥) · (𝑥)) ∈ 𝐵)
6463fmpttd 7048 . . . 4 ((𝜑𝑔𝑉𝑉) → (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))):𝐼𝐵)
65 frlmphl.m . . . . 5 ((𝜑𝑔𝑉 ∧ (𝑔 , 𝑔) = 0 ) → 𝑔 = 𝑂)
6614, 17, 20, 1, 5, 7, 24, 22, 9, 65, 34, 13frlmphllem 21717 . . . 4 ((𝜑𝑔𝑉𝑉) → (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))) finSupp 0 )
6717, 24, 59, 36, 64, 66gsumcl 19827 . . 3 ((𝜑𝑔𝑉𝑉) → (𝑅 Σg (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥)))) ∈ 𝐵)
6857, 67eqeltrd 2831 . 2 ((𝜑𝑔𝑉𝑉) → (𝑔 , ) ∈ 𝐵)
69 eqid 2731 . . . 4 (+g𝑅) = (+g𝑅)
70583ad2ant1 1133 . . . 4 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝑅 ∈ CMnd)
71133ad2ant1 1133 . . . 4 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝐼𝑊)
72263ad2ant1 1133 . . . . . 6 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝑅 ∈ Ring)
7372adantr 480 . . . . 5 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → 𝑅 ∈ Ring)
74 simp2 1137 . . . . . 6 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝑘𝐵)
7574adantr 480 . . . . 5 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → 𝑘𝐵)
76 simp31 1210 . . . . . . . . 9 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝑔𝑉)
7771, 76, 42syl2anc 584 . . . . . . . 8 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝑔 ∈ (𝐵m 𝐼))
7877, 44syl 17 . . . . . . 7 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝑔:𝐼𝐵)
7978ffvelcdmda 7017 . . . . . 6 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → (𝑔𝑥) ∈ 𝐵)
80 simp33 1212 . . . . . . . . 9 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝑖𝑉)
8114, 17, 1frlmbasmap 21696 . . . . . . . . 9 ((𝐼𝑊𝑖𝑉) → 𝑖 ∈ (𝐵m 𝐼))
8271, 80, 81syl2anc 584 . . . . . . . 8 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝑖 ∈ (𝐵m 𝐼))
83 elmapi 8773 . . . . . . . 8 (𝑖 ∈ (𝐵m 𝐼) → 𝑖:𝐼𝐵)
8482, 83syl 17 . . . . . . 7 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝑖:𝐼𝐵)
8584ffvelcdmda 7017 . . . . . 6 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → (𝑖𝑥) ∈ 𝐵)
8617, 20, 73, 79, 85ringcld 20178 . . . . 5 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → ((𝑔𝑥) · (𝑖𝑥)) ∈ 𝐵)
8717, 20, 73, 75, 86ringcld 20178 . . . 4 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → (𝑘 · ((𝑔𝑥) · (𝑖𝑥))) ∈ 𝐵)
88 simp32 1211 . . . . . . . 8 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝑉)
8971, 88, 47syl2anc 584 . . . . . . 7 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → ∈ (𝐵m 𝐼))
9089, 49syl 17 . . . . . 6 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → :𝐼𝐵)
9190ffvelcdmda 7017 . . . . 5 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → (𝑥) ∈ 𝐵)
9217, 20, 73, 91, 85ringcld 20178 . . . 4 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → ((𝑥) · (𝑖𝑥)) ∈ 𝐵)
93 eqidd 2732 . . . 4 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑥𝐼 ↦ (𝑘 · ((𝑔𝑥) · (𝑖𝑥)))) = (𝑥𝐼 ↦ (𝑘 · ((𝑔𝑥) · (𝑖𝑥)))))
94 eqidd 2732 . . . 4 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑥𝐼 ↦ ((𝑥) · (𝑖𝑥))) = (𝑥𝐼 ↦ ((𝑥) · (𝑖𝑥))))
95 fveq2 6822 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑔𝑥) = (𝑔𝑦))
9695oveq2d 7362 . . . . . . . 8 (𝑥 = 𝑦 → (𝑘 · (𝑔𝑥)) = (𝑘 · (𝑔𝑦)))
9796cbvmptv 5193 . . . . . . 7 (𝑥𝐼 ↦ (𝑘 · (𝑔𝑥))) = (𝑦𝐼 ↦ (𝑘 · (𝑔𝑦)))
9897oveq1i 7356 . . . . . 6 ((𝑥𝐼 ↦ (𝑘 · (𝑔𝑥))) ∘f · 𝑖) = ((𝑦𝐼 ↦ (𝑘 · (𝑔𝑦))) ∘f · 𝑖)
9917, 20, 73, 75, 79ringcld 20178 . . . . . . . . . . 11 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → (𝑘 · (𝑔𝑥)) ∈ 𝐵)
10099fmpttd 7048 . . . . . . . . . 10 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑥𝐼 ↦ (𝑘 · (𝑔𝑥))):𝐼𝐵)
101100ffnd 6652 . . . . . . . . 9 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑥𝐼 ↦ (𝑘 · (𝑔𝑥))) Fn 𝐼)
10297fneq1i 6578 . . . . . . . . 9 ((𝑥𝐼 ↦ (𝑘 · (𝑔𝑥))) Fn 𝐼 ↔ (𝑦𝐼 ↦ (𝑘 · (𝑔𝑦))) Fn 𝐼)
103101, 102sylib 218 . . . . . . . 8 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑦𝐼 ↦ (𝑘 · (𝑔𝑦))) Fn 𝐼)
10484ffnd 6652 . . . . . . . 8 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝑖 Fn 𝐼)
105 eqidd 2732 . . . . . . . . 9 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → (𝑦𝐼 ↦ (𝑘 · (𝑔𝑦))) = (𝑦𝐼 ↦ (𝑘 · (𝑔𝑦))))
106 simpr 484 . . . . . . . . . . 11 ((((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) ∧ 𝑦 = 𝑥) → 𝑦 = 𝑥)
107106fveq2d 6826 . . . . . . . . . 10 ((((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) ∧ 𝑦 = 𝑥) → (𝑔𝑦) = (𝑔𝑥))
108107oveq2d 7362 . . . . . . . . 9 ((((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) ∧ 𝑦 = 𝑥) → (𝑘 · (𝑔𝑦)) = (𝑘 · (𝑔𝑥)))
109 simpr 484 . . . . . . . . 9 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → 𝑥𝐼)
110 ovexd 7381 . . . . . . . . 9 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → (𝑘 · (𝑔𝑥)) ∈ V)
111105, 108, 109, 110fvmptd 6936 . . . . . . . 8 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → ((𝑦𝐼 ↦ (𝑘 · (𝑔𝑦)))‘𝑥) = (𝑘 · (𝑔𝑥)))
112 eqidd 2732 . . . . . . . 8 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → (𝑖𝑥) = (𝑖𝑥))
113103, 104, 71, 71, 52, 111, 112offval 7619 . . . . . . 7 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → ((𝑦𝐼 ↦ (𝑘 · (𝑔𝑦))) ∘f · 𝑖) = (𝑥𝐼 ↦ ((𝑘 · (𝑔𝑥)) · (𝑖𝑥))))
11417, 20ringass 20171 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑘𝐵 ∧ (𝑔𝑥) ∈ 𝐵 ∧ (𝑖𝑥) ∈ 𝐵)) → ((𝑘 · (𝑔𝑥)) · (𝑖𝑥)) = (𝑘 · ((𝑔𝑥) · (𝑖𝑥))))
11573, 75, 79, 85, 114syl13anc 1374 . . . . . . . 8 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → ((𝑘 · (𝑔𝑥)) · (𝑖𝑥)) = (𝑘 · ((𝑔𝑥) · (𝑖𝑥))))
116115mpteq2dva 5182 . . . . . . 7 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑥𝐼 ↦ ((𝑘 · (𝑔𝑥)) · (𝑖𝑥))) = (𝑥𝐼 ↦ (𝑘 · ((𝑔𝑥) · (𝑖𝑥)))))
117113, 116eqtrd 2766 . . . . . 6 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → ((𝑦𝐼 ↦ (𝑘 · (𝑔𝑦))) ∘f · 𝑖) = (𝑥𝐼 ↦ (𝑘 · ((𝑔𝑥) · (𝑖𝑥)))))
11898, 117eqtrid 2778 . . . . 5 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → ((𝑥𝐼 ↦ (𝑘 · (𝑔𝑥))) ∘f · 𝑖) = (𝑥𝐼 ↦ (𝑘 · ((𝑔𝑥) · (𝑖𝑥)))))
119 ovexd 7381 . . . . . 6 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → ((𝑥𝐼 ↦ (𝑘 · (𝑔𝑥))) ∘f · 𝑖) ∈ V)
120101, 104, 71, 71offun 7624 . . . . . 6 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → Fun ((𝑥𝐼 ↦ (𝑘 · (𝑔𝑥))) ∘f · 𝑖))
121 simp3 1138 . . . . . . . . 9 ((𝑔𝑉𝑉𝑖𝑉) → 𝑖𝑉)
12213, 121anim12i 613 . . . . . . . 8 ((𝜑 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝐼𝑊𝑖𝑉))
1231223adant2 1131 . . . . . . 7 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝐼𝑊𝑖𝑉))
12414, 24, 1frlmbasfsupp 21695 . . . . . . 7 ((𝐼𝑊𝑖𝑉) → 𝑖 finSupp 0 )
125123, 124syl 17 . . . . . 6 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝑖 finSupp 0 )
12617, 24ring0cl 20185 . . . . . . . 8 (𝑅 ∈ Ring → 0𝐵)
12772, 126syl 17 . . . . . . 7 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 0𝐵)
12817, 20, 24ringrz 20212 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑦𝐵) → (𝑦 · 0 ) = 0 )
12972, 128sylan 580 . . . . . . 7 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑦𝐵) → (𝑦 · 0 ) = 0 )
13071, 127, 100, 84, 129suppofss2d 8135 . . . . . 6 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (((𝑥𝐼 ↦ (𝑘 · (𝑔𝑥))) ∘f · 𝑖) supp 0 ) ⊆ (𝑖 supp 0 ))
131 fsuppsssupp 9265 . . . . . 6 (((((𝑥𝐼 ↦ (𝑘 · (𝑔𝑥))) ∘f · 𝑖) ∈ V ∧ Fun ((𝑥𝐼 ↦ (𝑘 · (𝑔𝑥))) ∘f · 𝑖)) ∧ (𝑖 finSupp 0 ∧ (((𝑥𝐼 ↦ (𝑘 · (𝑔𝑥))) ∘f · 𝑖) supp 0 ) ⊆ (𝑖 supp 0 ))) → ((𝑥𝐼 ↦ (𝑘 · (𝑔𝑥))) ∘f · 𝑖) finSupp 0 )
132119, 120, 125, 130, 131syl22anc 838 . . . . 5 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → ((𝑥𝐼 ↦ (𝑘 · (𝑔𝑥))) ∘f · 𝑖) finSupp 0 )
133118, 132eqbrtrrd 5113 . . . 4 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑥𝐼 ↦ (𝑘 · ((𝑔𝑥) · (𝑖𝑥)))) finSupp 0 )
134 simp1 1136 . . . . 5 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝜑)
135 eleq1w 2814 . . . . . . . . 9 (𝑔 = → (𝑔𝑉𝑉))
136 id 22 . . . . . . . . . . 11 (𝑔 = 𝑔 = )
137136, 136oveq12d 7364 . . . . . . . . . 10 (𝑔 = → (𝑔 , 𝑔) = ( , ))
138137eqeq1d 2733 . . . . . . . . 9 (𝑔 = → ((𝑔 , 𝑔) = 0 ↔ ( , ) = 0 ))
139135, 1383anbi23d 1441 . . . . . . . 8 (𝑔 = → ((𝜑𝑔𝑉 ∧ (𝑔 , 𝑔) = 0 ) ↔ (𝜑𝑉 ∧ ( , ) = 0 )))
140 eqeq1 2735 . . . . . . . 8 (𝑔 = → (𝑔 = 𝑂 = 𝑂))
141139, 140imbi12d 344 . . . . . . 7 (𝑔 = → (((𝜑𝑔𝑉 ∧ (𝑔 , 𝑔) = 0 ) → 𝑔 = 𝑂) ↔ ((𝜑𝑉 ∧ ( , ) = 0 ) → = 𝑂)))
142141, 65chvarvv 1990 . . . . . 6 ((𝜑𝑉 ∧ ( , ) = 0 ) → = 𝑂)
14314, 17, 20, 1, 5, 7, 24, 22, 9, 142, 34, 13frlmphllem 21717 . . . . 5 ((𝜑𝑉𝑖𝑉) → (𝑥𝐼 ↦ ((𝑥) · (𝑖𝑥))) finSupp 0 )
144134, 88, 80, 143syl3anc 1373 . . . 4 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑥𝐼 ↦ ((𝑥) · (𝑖𝑥))) finSupp 0 )
14517, 24, 69, 70, 71, 87, 92, 93, 94, 133, 144gsummptfsadd 19836 . . 3 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑅 Σg (𝑥𝐼 ↦ ((𝑘 · ((𝑔𝑥) · (𝑖𝑥)))(+g𝑅)((𝑥) · (𝑖𝑥))))) = ((𝑅 Σg (𝑥𝐼 ↦ (𝑘 · ((𝑔𝑥) · (𝑖𝑥)))))(+g𝑅)(𝑅 Σg (𝑥𝐼 ↦ ((𝑥) · (𝑖𝑥))))))
14614, 17, 20frlmip 21715 . . . . . . . . 9 ((𝐼𝑊𝑅 ∈ DivRing) → (𝑔 ∈ (𝐵m 𝐼), ∈ (𝐵m 𝐼) ↦ (𝑅 Σg (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))))) = (·𝑖𝑌))
14713, 12, 146syl2anc 584 . . . . . . . 8 (𝜑 → (𝑔 ∈ (𝐵m 𝐼), ∈ (𝐵m 𝐼) ↦ (𝑅 Σg (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))))) = (·𝑖𝑌))
1485, 147eqtr4id 2785 . . . . . . 7 (𝜑, = (𝑔 ∈ (𝐵m 𝐼), ∈ (𝐵m 𝐼) ↦ (𝑅 Σg (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))))))
149 fveq1 6821 . . . . . . . . . . 11 (𝑒 = 𝑔 → (𝑒𝑥) = (𝑔𝑥))
150149oveq1d 7361 . . . . . . . . . 10 (𝑒 = 𝑔 → ((𝑒𝑥) · (𝑓𝑥)) = ((𝑔𝑥) · (𝑓𝑥)))
151150mpteq2dv 5183 . . . . . . . . 9 (𝑒 = 𝑔 → (𝑥𝐼 ↦ ((𝑒𝑥) · (𝑓𝑥))) = (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑓𝑥))))
152151oveq2d 7362 . . . . . . . 8 (𝑒 = 𝑔 → (𝑅 Σg (𝑥𝐼 ↦ ((𝑒𝑥) · (𝑓𝑥)))) = (𝑅 Σg (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑓𝑥)))))
153 fveq1 6821 . . . . . . . . . . 11 (𝑓 = → (𝑓𝑥) = (𝑥))
154153oveq2d 7362 . . . . . . . . . 10 (𝑓 = → ((𝑔𝑥) · (𝑓𝑥)) = ((𝑔𝑥) · (𝑥)))
155154mpteq2dv 5183 . . . . . . . . 9 (𝑓 = → (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑓𝑥))) = (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))))
156155oveq2d 7362 . . . . . . . 8 (𝑓 = → (𝑅 Σg (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑓𝑥)))) = (𝑅 Σg (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥)))))
157152, 156cbvmpov 7441 . . . . . . 7 (𝑒 ∈ (𝐵m 𝐼), 𝑓 ∈ (𝐵m 𝐼) ↦ (𝑅 Σg (𝑥𝐼 ↦ ((𝑒𝑥) · (𝑓𝑥))))) = (𝑔 ∈ (𝐵m 𝐼), ∈ (𝐵m 𝐼) ↦ (𝑅 Σg (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥)))))
158148, 157eqtr4di 2784 . . . . . 6 (𝜑, = (𝑒 ∈ (𝐵m 𝐼), 𝑓 ∈ (𝐵m 𝐼) ↦ (𝑅 Σg (𝑥𝐼 ↦ ((𝑒𝑥) · (𝑓𝑥))))))
1591583ad2ant1 1133 . . . . 5 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → , = (𝑒 ∈ (𝐵m 𝐼), 𝑓 ∈ (𝐵m 𝐼) ↦ (𝑅 Σg (𝑥𝐼 ↦ ((𝑒𝑥) · (𝑓𝑥))))))
160 simprl 770 . . . . . . . . 9 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = ((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)) ∧ 𝑓 = 𝑖)) → 𝑒 = ((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)))
161160fveq1d 6824 . . . . . . . 8 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = ((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)) ∧ 𝑓 = 𝑖)) → (𝑒𝑥) = (((𝑘( ·𝑠𝑌)𝑔)(+g𝑌))‘𝑥))
162 simprr 772 . . . . . . . . 9 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = ((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)) ∧ 𝑓 = 𝑖)) → 𝑓 = 𝑖)
163162fveq1d 6824 . . . . . . . 8 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = ((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)) ∧ 𝑓 = 𝑖)) → (𝑓𝑥) = (𝑖𝑥))
164161, 163oveq12d 7364 . . . . . . 7 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = ((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)) ∧ 𝑓 = 𝑖)) → ((𝑒𝑥) · (𝑓𝑥)) = ((((𝑘( ·𝑠𝑌)𝑔)(+g𝑌))‘𝑥) · (𝑖𝑥)))
165164mpteq2dv 5183 . . . . . 6 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = ((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)) ∧ 𝑓 = 𝑖)) → (𝑥𝐼 ↦ ((𝑒𝑥) · (𝑓𝑥))) = (𝑥𝐼 ↦ ((((𝑘( ·𝑠𝑌)𝑔)(+g𝑌))‘𝑥) · (𝑖𝑥))))
166165oveq2d 7362 . . . . 5 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = ((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)) ∧ 𝑓 = 𝑖)) → (𝑅 Σg (𝑥𝐼 ↦ ((𝑒𝑥) · (𝑓𝑥)))) = (𝑅 Σg (𝑥𝐼 ↦ ((((𝑘( ·𝑠𝑌)𝑔)(+g𝑌))‘𝑥) · (𝑖𝑥)))))
167283ad2ant1 1133 . . . . . . 7 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝑌 ∈ LMod)
168163ad2ant1 1133 . . . . . . . . . . 11 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝑅 = (Scalar‘𝑌))
169168fveq2d 6826 . . . . . . . . . 10 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (Base‘𝑅) = (Base‘(Scalar‘𝑌)))
17017, 169eqtrid 2778 . . . . . . . . 9 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝐵 = (Base‘(Scalar‘𝑌)))
17174, 170eleqtrd 2833 . . . . . . . 8 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝑘 ∈ (Base‘(Scalar‘𝑌)))
172 eqid 2731 . . . . . . . . 9 ( ·𝑠𝑌) = ( ·𝑠𝑌)
173 eqid 2731 . . . . . . . . 9 (Base‘(Scalar‘𝑌)) = (Base‘(Scalar‘𝑌))
1741, 30, 172, 173lmodvscl 20811 . . . . . . . 8 ((𝑌 ∈ LMod ∧ 𝑘 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑔𝑉) → (𝑘( ·𝑠𝑌)𝑔) ∈ 𝑉)
175167, 171, 76, 174syl3anc 1373 . . . . . . 7 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑘( ·𝑠𝑌)𝑔) ∈ 𝑉)
176 eqid 2731 . . . . . . . 8 (+g𝑌) = (+g𝑌)
1771, 176lmodvacl 20808 . . . . . . 7 ((𝑌 ∈ LMod ∧ (𝑘( ·𝑠𝑌)𝑔) ∈ 𝑉𝑉) → ((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)) ∈ 𝑉)
178167, 175, 88, 177syl3anc 1373 . . . . . 6 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → ((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)) ∈ 𝑉)
17914, 17, 1frlmbasmap 21696 . . . . . 6 ((𝐼𝑊 ∧ ((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)) ∈ 𝑉) → ((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)) ∈ (𝐵m 𝐼))
18071, 178, 179syl2anc 584 . . . . 5 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → ((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)) ∈ (𝐵m 𝐼))
181 ovexd 7381 . . . . 5 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑅 Σg (𝑥𝐼 ↦ ((((𝑘( ·𝑠𝑌)𝑔)(+g𝑌))‘𝑥) · (𝑖𝑥)))) ∈ V)
182159, 166, 180, 82, 181ovmpod 7498 . . . 4 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)) , 𝑖) = (𝑅 Σg (𝑥𝐼 ↦ ((((𝑘( ·𝑠𝑌)𝑔)(+g𝑌))‘𝑥) · (𝑖𝑥)))))
18314, 1, 72, 71, 175, 88, 69, 176frlmplusgval 21701 . . . . . . . . . 10 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → ((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)) = ((𝑘( ·𝑠𝑌)𝑔) ∘f (+g𝑅)))
18414, 17, 1frlmbasmap 21696 . . . . . . . . . . . . 13 ((𝐼𝑊 ∧ (𝑘( ·𝑠𝑌)𝑔) ∈ 𝑉) → (𝑘( ·𝑠𝑌)𝑔) ∈ (𝐵m 𝐼))
18571, 175, 184syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑘( ·𝑠𝑌)𝑔) ∈ (𝐵m 𝐼))
186 elmapi 8773 . . . . . . . . . . . 12 ((𝑘( ·𝑠𝑌)𝑔) ∈ (𝐵m 𝐼) → (𝑘( ·𝑠𝑌)𝑔):𝐼𝐵)
187 ffn 6651 . . . . . . . . . . . 12 ((𝑘( ·𝑠𝑌)𝑔):𝐼𝐵 → (𝑘( ·𝑠𝑌)𝑔) Fn 𝐼)
188185, 186, 1873syl 18 . . . . . . . . . . 11 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑘( ·𝑠𝑌)𝑔) Fn 𝐼)
18990ffnd 6652 . . . . . . . . . . 11 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → Fn 𝐼)
19071adantr 480 . . . . . . . . . . . 12 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → 𝐼𝑊)
19176adantr 480 . . . . . . . . . . . 12 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → 𝑔𝑉)
19214, 1, 17, 190, 75, 191, 109, 172, 20frlmvscaval 21705 . . . . . . . . . . 11 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → ((𝑘( ·𝑠𝑌)𝑔)‘𝑥) = (𝑘 · (𝑔𝑥)))
193 eqidd 2732 . . . . . . . . . . 11 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → (𝑥) = (𝑥))
194188, 189, 71, 71, 52, 192, 193offval 7619 . . . . . . . . . 10 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → ((𝑘( ·𝑠𝑌)𝑔) ∘f (+g𝑅)) = (𝑥𝐼 ↦ ((𝑘 · (𝑔𝑥))(+g𝑅)(𝑥))))
195183, 194eqtrd 2766 . . . . . . . . 9 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → ((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)) = (𝑥𝐼 ↦ ((𝑘 · (𝑔𝑥))(+g𝑅)(𝑥))))
196 ovexd 7381 . . . . . . . . 9 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → ((𝑘 · (𝑔𝑥))(+g𝑅)(𝑥)) ∈ V)
197195, 196fvmpt2d 6942 . . . . . . . 8 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → (((𝑘( ·𝑠𝑌)𝑔)(+g𝑌))‘𝑥) = ((𝑘 · (𝑔𝑥))(+g𝑅)(𝑥)))
198197oveq1d 7361 . . . . . . 7 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → ((((𝑘( ·𝑠𝑌)𝑔)(+g𝑌))‘𝑥) · (𝑖𝑥)) = (((𝑘 · (𝑔𝑥))(+g𝑅)(𝑥)) · (𝑖𝑥)))
19917, 69, 20ringdir 20180 . . . . . . . 8 ((𝑅 ∈ Ring ∧ ((𝑘 · (𝑔𝑥)) ∈ 𝐵 ∧ (𝑥) ∈ 𝐵 ∧ (𝑖𝑥) ∈ 𝐵)) → (((𝑘 · (𝑔𝑥))(+g𝑅)(𝑥)) · (𝑖𝑥)) = (((𝑘 · (𝑔𝑥)) · (𝑖𝑥))(+g𝑅)((𝑥) · (𝑖𝑥))))
20073, 99, 91, 85, 199syl13anc 1374 . . . . . . 7 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → (((𝑘 · (𝑔𝑥))(+g𝑅)(𝑥)) · (𝑖𝑥)) = (((𝑘 · (𝑔𝑥)) · (𝑖𝑥))(+g𝑅)((𝑥) · (𝑖𝑥))))
201115oveq1d 7361 . . . . . . 7 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → (((𝑘 · (𝑔𝑥)) · (𝑖𝑥))(+g𝑅)((𝑥) · (𝑖𝑥))) = ((𝑘 · ((𝑔𝑥) · (𝑖𝑥)))(+g𝑅)((𝑥) · (𝑖𝑥))))
202198, 200, 2013eqtrd 2770 . . . . . 6 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → ((((𝑘( ·𝑠𝑌)𝑔)(+g𝑌))‘𝑥) · (𝑖𝑥)) = ((𝑘 · ((𝑔𝑥) · (𝑖𝑥)))(+g𝑅)((𝑥) · (𝑖𝑥))))
203202mpteq2dva 5182 . . . . 5 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑥𝐼 ↦ ((((𝑘( ·𝑠𝑌)𝑔)(+g𝑌))‘𝑥) · (𝑖𝑥))) = (𝑥𝐼 ↦ ((𝑘 · ((𝑔𝑥) · (𝑖𝑥)))(+g𝑅)((𝑥) · (𝑖𝑥)))))
204203oveq2d 7362 . . . 4 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑅 Σg (𝑥𝐼 ↦ ((((𝑘( ·𝑠𝑌)𝑔)(+g𝑌))‘𝑥) · (𝑖𝑥)))) = (𝑅 Σg (𝑥𝐼 ↦ ((𝑘 · ((𝑔𝑥) · (𝑖𝑥)))(+g𝑅)((𝑥) · (𝑖𝑥))))))
205182, 204eqtrd 2766 . . 3 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)) , 𝑖) = (𝑅 Σg (𝑥𝐼 ↦ ((𝑘 · ((𝑔𝑥) · (𝑖𝑥)))(+g𝑅)((𝑥) · (𝑖𝑥))))))
206 simprl 770 . . . . . . . . . . 11 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = 𝑔𝑓 = 𝑖)) → 𝑒 = 𝑔)
207206fveq1d 6824 . . . . . . . . . 10 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = 𝑔𝑓 = 𝑖)) → (𝑒𝑥) = (𝑔𝑥))
208 simprr 772 . . . . . . . . . . 11 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = 𝑔𝑓 = 𝑖)) → 𝑓 = 𝑖)
209208fveq1d 6824 . . . . . . . . . 10 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = 𝑔𝑓 = 𝑖)) → (𝑓𝑥) = (𝑖𝑥))
210207, 209oveq12d 7364 . . . . . . . . 9 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = 𝑔𝑓 = 𝑖)) → ((𝑒𝑥) · (𝑓𝑥)) = ((𝑔𝑥) · (𝑖𝑥)))
211210mpteq2dv 5183 . . . . . . . 8 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = 𝑔𝑓 = 𝑖)) → (𝑥𝐼 ↦ ((𝑒𝑥) · (𝑓𝑥))) = (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑖𝑥))))
212211oveq2d 7362 . . . . . . 7 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = 𝑔𝑓 = 𝑖)) → (𝑅 Σg (𝑥𝐼 ↦ ((𝑒𝑥) · (𝑓𝑥)))) = (𝑅 Σg (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑖𝑥)))))
213 ovexd 7381 . . . . . . 7 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑅 Σg (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑖𝑥)))) ∈ V)
214159, 212, 77, 82, 213ovmpod 7498 . . . . . 6 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑔 , 𝑖) = (𝑅 Σg (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑖𝑥)))))
215214oveq2d 7362 . . . . 5 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑘 · (𝑔 , 𝑖)) = (𝑘 · (𝑅 Σg (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑖𝑥))))))
21614, 17, 20, 1, 5, 7, 24, 22, 9, 65, 34, 13frlmphllem 21717 . . . . . . 7 ((𝜑𝑔𝑉𝑖𝑉) → (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑖𝑥))) finSupp 0 )
217134, 76, 80, 216syl3anc 1373 . . . . . 6 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑖𝑥))) finSupp 0 )
21817, 24, 20, 72, 71, 74, 86, 217gsummulc2 20235 . . . . 5 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑅 Σg (𝑥𝐼 ↦ (𝑘 · ((𝑔𝑥) · (𝑖𝑥))))) = (𝑘 · (𝑅 Σg (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑖𝑥))))))
219215, 218eqtr4d 2769 . . . 4 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑘 · (𝑔 , 𝑖)) = (𝑅 Σg (𝑥𝐼 ↦ (𝑘 · ((𝑔𝑥) · (𝑖𝑥))))))
220 simprl 770 . . . . . . . . 9 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = 𝑓 = 𝑖)) → 𝑒 = )
221220fveq1d 6824 . . . . . . . 8 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = 𝑓 = 𝑖)) → (𝑒𝑥) = (𝑥))
222 simprr 772 . . . . . . . . 9 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = 𝑓 = 𝑖)) → 𝑓 = 𝑖)
223222fveq1d 6824 . . . . . . . 8 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = 𝑓 = 𝑖)) → (𝑓𝑥) = (𝑖𝑥))
224221, 223oveq12d 7364 . . . . . . 7 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = 𝑓 = 𝑖)) → ((𝑒𝑥) · (𝑓𝑥)) = ((𝑥) · (𝑖𝑥)))
225224mpteq2dv 5183 . . . . . 6 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = 𝑓 = 𝑖)) → (𝑥𝐼 ↦ ((𝑒𝑥) · (𝑓𝑥))) = (𝑥𝐼 ↦ ((𝑥) · (𝑖𝑥))))
226225oveq2d 7362 . . . . 5 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = 𝑓 = 𝑖)) → (𝑅 Σg (𝑥𝐼 ↦ ((𝑒𝑥) · (𝑓𝑥)))) = (𝑅 Σg (𝑥𝐼 ↦ ((𝑥) · (𝑖𝑥)))))
227 ovexd 7381 . . . . 5 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑅 Σg (𝑥𝐼 ↦ ((𝑥) · (𝑖𝑥)))) ∈ V)
228159, 226, 89, 82, 227ovmpod 7498 . . . 4 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → ( , 𝑖) = (𝑅 Σg (𝑥𝐼 ↦ ((𝑥) · (𝑖𝑥)))))
229219, 228oveq12d 7364 . . 3 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → ((𝑘 · (𝑔 , 𝑖))(+g𝑅)( , 𝑖)) = ((𝑅 Σg (𝑥𝐼 ↦ (𝑘 · ((𝑔𝑥) · (𝑖𝑥)))))(+g𝑅)(𝑅 Σg (𝑥𝐼 ↦ ((𝑥) · (𝑖𝑥))))))
230145, 205, 2293eqtr4d 2776 . 2 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)) , 𝑖) = ((𝑘 · (𝑔 , 𝑖))(+g𝑅)( , 𝑖)))
231333ad2ant1 1133 . . . . . . 7 ((𝜑𝑔𝑉𝑉) → 𝑅 ∈ CRing)
232231adantr 480 . . . . . 6 (((𝜑𝑔𝑉𝑉) ∧ 𝑥𝐼) → 𝑅 ∈ CRing)
23317, 20crngcom 20169 . . . . . 6 ((𝑅 ∈ CRing ∧ (𝑥) ∈ 𝐵 ∧ (𝑔𝑥) ∈ 𝐵) → ((𝑥) · (𝑔𝑥)) = ((𝑔𝑥) · (𝑥)))
234232, 62, 61, 233syl3anc 1373 . . . . 5 (((𝜑𝑔𝑉𝑉) ∧ 𝑥𝐼) → ((𝑥) · (𝑔𝑥)) = ((𝑔𝑥) · (𝑥)))
235234mpteq2dva 5182 . . . 4 ((𝜑𝑔𝑉𝑉) → (𝑥𝐼 ↦ ((𝑥) · (𝑔𝑥))) = (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))))
236235oveq2d 7362 . . 3 ((𝜑𝑔𝑉𝑉) → (𝑅 Σg (𝑥𝐼 ↦ ((𝑥) · (𝑔𝑥)))) = (𝑅 Σg (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥)))))
2371583ad2ant1 1133 . . . 4 ((𝜑𝑔𝑉𝑉) → , = (𝑒 ∈ (𝐵m 𝐼), 𝑓 ∈ (𝐵m 𝐼) ↦ (𝑅 Σg (𝑥𝐼 ↦ ((𝑒𝑥) · (𝑓𝑥))))))
238 simprl 770 . . . . . . . 8 (((𝜑𝑔𝑉𝑉) ∧ (𝑒 = 𝑓 = 𝑔)) → 𝑒 = )
239238fveq1d 6824 . . . . . . 7 (((𝜑𝑔𝑉𝑉) ∧ (𝑒 = 𝑓 = 𝑔)) → (𝑒𝑥) = (𝑥))
240 simprr 772 . . . . . . . 8 (((𝜑𝑔𝑉𝑉) ∧ (𝑒 = 𝑓 = 𝑔)) → 𝑓 = 𝑔)
241240fveq1d 6824 . . . . . . 7 (((𝜑𝑔𝑉𝑉) ∧ (𝑒 = 𝑓 = 𝑔)) → (𝑓𝑥) = (𝑔𝑥))
242239, 241oveq12d 7364 . . . . . 6 (((𝜑𝑔𝑉𝑉) ∧ (𝑒 = 𝑓 = 𝑔)) → ((𝑒𝑥) · (𝑓𝑥)) = ((𝑥) · (𝑔𝑥)))
243242mpteq2dv 5183 . . . . 5 (((𝜑𝑔𝑉𝑉) ∧ (𝑒 = 𝑓 = 𝑔)) → (𝑥𝐼 ↦ ((𝑒𝑥) · (𝑓𝑥))) = (𝑥𝐼 ↦ ((𝑥) · (𝑔𝑥))))
244243oveq2d 7362 . . . 4 (((𝜑𝑔𝑉𝑉) ∧ (𝑒 = 𝑓 = 𝑔)) → (𝑅 Σg (𝑥𝐼 ↦ ((𝑒𝑥) · (𝑓𝑥)))) = (𝑅 Σg (𝑥𝐼 ↦ ((𝑥) · (𝑔𝑥)))))
245 ovexd 7381 . . . 4 ((𝜑𝑔𝑉𝑉) → (𝑅 Σg (𝑥𝐼 ↦ ((𝑥) · (𝑔𝑥)))) ∈ V)
246237, 244, 48, 43, 245ovmpod 7498 . . 3 ((𝜑𝑔𝑉𝑉) → ( , 𝑔) = (𝑅 Σg (𝑥𝐼 ↦ ((𝑥) · (𝑔𝑥)))))
247 fveq2 6822 . . . . . 6 (𝑥 = (𝑔 , ) → ( 𝑥) = ( ‘(𝑔 , )))
248 id 22 . . . . . 6 (𝑥 = (𝑔 , ) → 𝑥 = (𝑔 , ))
249247, 248eqeq12d 2747 . . . . 5 (𝑥 = (𝑔 , ) → (( 𝑥) = 𝑥 ↔ ( ‘(𝑔 , )) = (𝑔 , )))
25034ralrimiva 3124 . . . . . 6 (𝜑 → ∀𝑥𝐵 ( 𝑥) = 𝑥)
2512503ad2ant1 1133 . . . . 5 ((𝜑𝑔𝑉𝑉) → ∀𝑥𝐵 ( 𝑥) = 𝑥)
252249, 251, 68rspcdva 3573 . . . 4 ((𝜑𝑔𝑉𝑉) → ( ‘(𝑔 , )) = (𝑔 , ))
253252, 57eqtrd 2766 . . 3 ((𝜑𝑔𝑉𝑉) → ( ‘(𝑔 , )) = (𝑅 Σg (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥)))))
254236, 246, 2533eqtr4rd 2777 . 2 ((𝜑𝑔𝑉𝑉) → ( ‘(𝑔 , )) = ( , 𝑔))
2552, 3, 4, 6, 8, 16, 18, 19, 21, 23, 25, 32, 35, 68, 230, 65, 254isphld 21591 1 (𝜑𝑌 ∈ PreHil)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  Vcvv 3436  wss 3897   class class class wbr 5089  cmpt 5170  Fun wfun 6475   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  cmpo 7348  f cof 7608   supp csupp 8090  m cmap 8750   finSupp cfsupp 9245  Basecbs 17120  +gcplusg 17161  .rcmulr 17162  *𝑟cstv 17163  Scalarcsca 17164   ·𝑠 cvsca 17165  ·𝑖cip 17166  0gc0g 17343   Σg cgsu 17344  CMndccmn 19692  Ringcrg 20151  CRingccrg 20152  DivRingcdr 20644  Fieldcfield 20645  LModclmod 20793  LVecclvec 21036  PreHilcphl 21561   freeLMod cfrlm 21683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-fzo 13555  df-seq 13909  df-hash 14238  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-subg 19036  df-ghm 19125  df-cntz 19229  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-cring 20154  df-oppr 20255  df-rhm 20390  df-subrg 20485  df-drng 20646  df-field 20647  df-staf 20754  df-srng 20755  df-lmod 20795  df-lss 20865  df-lmhm 20956  df-lvec 21037  df-sra 21107  df-rgmod 21108  df-phl 21563  df-dsmm 21669  df-frlm 21684
This theorem is referenced by:  rrxcph  25319
  Copyright terms: Public domain W3C validator