MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmphl Structured version   Visualization version   GIF version

Theorem frlmphl 21559
Description: Conditions for a free module to be a pre-Hilbert space. (Contributed by Thierry Arnoux, 21-Jun-2019.) (Proof shortened by AV, 21-Jul-2019.)
Hypotheses
Ref Expression
frlmphl.y 𝑌 = (𝑅 freeLMod 𝐼)
frlmphl.b 𝐵 = (Base‘𝑅)
frlmphl.t · = (.r𝑅)
frlmphl.v 𝑉 = (Base‘𝑌)
frlmphl.j , = (·𝑖𝑌)
frlmphl.o 𝑂 = (0g𝑌)
frlmphl.0 0 = (0g𝑅)
frlmphl.s = (*𝑟𝑅)
frlmphl.f (𝜑𝑅 ∈ Field)
frlmphl.m ((𝜑𝑔𝑉 ∧ (𝑔 , 𝑔) = 0 ) → 𝑔 = 𝑂)
frlmphl.u ((𝜑𝑥𝐵) → ( 𝑥) = 𝑥)
frlmphl.i (𝜑𝐼𝑊)
Assertion
Ref Expression
frlmphl (𝜑𝑌 ∈ PreHil)
Distinct variable groups:   𝐵,𝑔,𝑥   𝑔,𝐼,𝑥   𝑅,𝑔,𝑥   𝑔,𝑉,𝑥   𝑔,𝑊,𝑥   · ,𝑔,𝑥   𝑔,𝑌,𝑥   0 ,𝑔,𝑥   𝜑,𝑔,𝑥   , ,𝑔,𝑥   𝑔,𝑂   𝑥,
Allowed substitution hints:   (𝑔)   𝑂(𝑥)

Proof of Theorem frlmphl
Dummy variables 𝑓 𝑒 𝑖 𝑦 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frlmphl.v . . 3 𝑉 = (Base‘𝑌)
21a1i 11 . 2 (𝜑𝑉 = (Base‘𝑌))
3 eqidd 2732 . 2 (𝜑 → (+g𝑌) = (+g𝑌))
4 eqidd 2732 . 2 (𝜑 → ( ·𝑠𝑌) = ( ·𝑠𝑌))
5 frlmphl.j . . 3 , = (·𝑖𝑌)
65a1i 11 . 2 (𝜑, = (·𝑖𝑌))
7 frlmphl.o . . 3 𝑂 = (0g𝑌)
87a1i 11 . 2 (𝜑𝑂 = (0g𝑌))
9 frlmphl.f . . . . 5 (𝜑𝑅 ∈ Field)
10 isfld 20515 . . . . 5 (𝑅 ∈ Field ↔ (𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing))
119, 10sylib 217 . . . 4 (𝜑 → (𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing))
1211simpld 494 . . 3 (𝜑𝑅 ∈ DivRing)
13 frlmphl.i . . 3 (𝜑𝐼𝑊)
14 frlmphl.y . . . 4 𝑌 = (𝑅 freeLMod 𝐼)
1514frlmsca 21531 . . 3 ((𝑅 ∈ DivRing ∧ 𝐼𝑊) → 𝑅 = (Scalar‘𝑌))
1612, 13, 15syl2anc 583 . 2 (𝜑𝑅 = (Scalar‘𝑌))
17 frlmphl.b . . 3 𝐵 = (Base‘𝑅)
1817a1i 11 . 2 (𝜑𝐵 = (Base‘𝑅))
19 eqidd 2732 . 2 (𝜑 → (+g𝑅) = (+g𝑅))
20 frlmphl.t . . 3 · = (.r𝑅)
2120a1i 11 . 2 (𝜑· = (.r𝑅))
22 frlmphl.s . . 3 = (*𝑟𝑅)
2322a1i 11 . 2 (𝜑 = (*𝑟𝑅))
24 frlmphl.0 . . 3 0 = (0g𝑅)
2524a1i 11 . 2 (𝜑0 = (0g𝑅))
2612drngringd 20512 . . . 4 (𝜑𝑅 ∈ Ring)
2714frlmlmod 21527 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝑌 ∈ LMod)
2826, 13, 27syl2anc 583 . . 3 (𝜑𝑌 ∈ LMod)
2916, 12eqeltrrd 2833 . . 3 (𝜑 → (Scalar‘𝑌) ∈ DivRing)
30 eqid 2731 . . . 4 (Scalar‘𝑌) = (Scalar‘𝑌)
3130islvec 20863 . . 3 (𝑌 ∈ LVec ↔ (𝑌 ∈ LMod ∧ (Scalar‘𝑌) ∈ DivRing))
3228, 29, 31sylanbrc 582 . 2 (𝜑𝑌 ∈ LVec)
339fldcrngd 20517 . . 3 (𝜑𝑅 ∈ CRing)
34 frlmphl.u . . 3 ((𝜑𝑥𝐵) → ( 𝑥) = 𝑥)
3517, 22, 33, 34idsrngd 20617 . 2 (𝜑𝑅 ∈ *-Ring)
36133ad2ant1 1132 . . . . 5 ((𝜑𝑔𝑉𝑉) → 𝐼𝑊)
37263ad2ant1 1132 . . . . 5 ((𝜑𝑔𝑉𝑉) → 𝑅 ∈ Ring)
38 simp2 1136 . . . . 5 ((𝜑𝑔𝑉𝑉) → 𝑔𝑉)
39 simp3 1137 . . . . 5 ((𝜑𝑔𝑉𝑉) → 𝑉)
4014, 17, 20, 1, 5frlmipval 21557 . . . . 5 (((𝐼𝑊𝑅 ∈ Ring) ∧ (𝑔𝑉𝑉)) → (𝑔 , ) = (𝑅 Σg (𝑔f · )))
4136, 37, 38, 39, 40syl22anc 836 . . . 4 ((𝜑𝑔𝑉𝑉) → (𝑔 , ) = (𝑅 Σg (𝑔f · )))
4214, 17, 1frlmbasmap 21537 . . . . . . . . 9 ((𝐼𝑊𝑔𝑉) → 𝑔 ∈ (𝐵m 𝐼))
4336, 38, 42syl2anc 583 . . . . . . . 8 ((𝜑𝑔𝑉𝑉) → 𝑔 ∈ (𝐵m 𝐼))
44 elmapi 8849 . . . . . . . 8 (𝑔 ∈ (𝐵m 𝐼) → 𝑔:𝐼𝐵)
4543, 44syl 17 . . . . . . 7 ((𝜑𝑔𝑉𝑉) → 𝑔:𝐼𝐵)
4645ffnd 6718 . . . . . 6 ((𝜑𝑔𝑉𝑉) → 𝑔 Fn 𝐼)
4714, 17, 1frlmbasmap 21537 . . . . . . . . 9 ((𝐼𝑊𝑉) → ∈ (𝐵m 𝐼))
4836, 39, 47syl2anc 583 . . . . . . . 8 ((𝜑𝑔𝑉𝑉) → ∈ (𝐵m 𝐼))
49 elmapi 8849 . . . . . . . 8 ( ∈ (𝐵m 𝐼) → :𝐼𝐵)
5048, 49syl 17 . . . . . . 7 ((𝜑𝑔𝑉𝑉) → :𝐼𝐵)
5150ffnd 6718 . . . . . 6 ((𝜑𝑔𝑉𝑉) → Fn 𝐼)
52 inidm 4218 . . . . . 6 (𝐼𝐼) = 𝐼
53 eqidd 2732 . . . . . 6 (((𝜑𝑔𝑉𝑉) ∧ 𝑥𝐼) → (𝑔𝑥) = (𝑔𝑥))
54 eqidd 2732 . . . . . 6 (((𝜑𝑔𝑉𝑉) ∧ 𝑥𝐼) → (𝑥) = (𝑥))
5546, 51, 36, 36, 52, 53, 54offval 7683 . . . . 5 ((𝜑𝑔𝑉𝑉) → (𝑔f · ) = (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))))
5655oveq2d 7428 . . . 4 ((𝜑𝑔𝑉𝑉) → (𝑅 Σg (𝑔f · )) = (𝑅 Σg (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥)))))
5741, 56eqtrd 2771 . . 3 ((𝜑𝑔𝑉𝑉) → (𝑔 , ) = (𝑅 Σg (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥)))))
5826ringcmnd 20176 . . . . 5 (𝜑𝑅 ∈ CMnd)
59583ad2ant1 1132 . . . 4 ((𝜑𝑔𝑉𝑉) → 𝑅 ∈ CMnd)
6037adantr 480 . . . . . 6 (((𝜑𝑔𝑉𝑉) ∧ 𝑥𝐼) → 𝑅 ∈ Ring)
6145ffvelcdmda 7086 . . . . . 6 (((𝜑𝑔𝑉𝑉) ∧ 𝑥𝐼) → (𝑔𝑥) ∈ 𝐵)
6250ffvelcdmda 7086 . . . . . 6 (((𝜑𝑔𝑉𝑉) ∧ 𝑥𝐼) → (𝑥) ∈ 𝐵)
6317, 20, 60, 61, 62ringcld 20155 . . . . 5 (((𝜑𝑔𝑉𝑉) ∧ 𝑥𝐼) → ((𝑔𝑥) · (𝑥)) ∈ 𝐵)
6463fmpttd 7116 . . . 4 ((𝜑𝑔𝑉𝑉) → (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))):𝐼𝐵)
65 frlmphl.m . . . . 5 ((𝜑𝑔𝑉 ∧ (𝑔 , 𝑔) = 0 ) → 𝑔 = 𝑂)
6614, 17, 20, 1, 5, 7, 24, 22, 9, 65, 34, 13frlmphllem 21558 . . . 4 ((𝜑𝑔𝑉𝑉) → (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))) finSupp 0 )
6717, 24, 59, 36, 64, 66gsumcl 19828 . . 3 ((𝜑𝑔𝑉𝑉) → (𝑅 Σg (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥)))) ∈ 𝐵)
6857, 67eqeltrd 2832 . 2 ((𝜑𝑔𝑉𝑉) → (𝑔 , ) ∈ 𝐵)
69 eqid 2731 . . . 4 (+g𝑅) = (+g𝑅)
70583ad2ant1 1132 . . . 4 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝑅 ∈ CMnd)
71133ad2ant1 1132 . . . 4 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝐼𝑊)
72263ad2ant1 1132 . . . . . 6 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝑅 ∈ Ring)
7372adantr 480 . . . . 5 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → 𝑅 ∈ Ring)
74 simp2 1136 . . . . . 6 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝑘𝐵)
7574adantr 480 . . . . 5 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → 𝑘𝐵)
76 simp31 1208 . . . . . . . . 9 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝑔𝑉)
7771, 76, 42syl2anc 583 . . . . . . . 8 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝑔 ∈ (𝐵m 𝐼))
7877, 44syl 17 . . . . . . 7 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝑔:𝐼𝐵)
7978ffvelcdmda 7086 . . . . . 6 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → (𝑔𝑥) ∈ 𝐵)
80 simp33 1210 . . . . . . . . 9 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝑖𝑉)
8114, 17, 1frlmbasmap 21537 . . . . . . . . 9 ((𝐼𝑊𝑖𝑉) → 𝑖 ∈ (𝐵m 𝐼))
8271, 80, 81syl2anc 583 . . . . . . . 8 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝑖 ∈ (𝐵m 𝐼))
83 elmapi 8849 . . . . . . . 8 (𝑖 ∈ (𝐵m 𝐼) → 𝑖:𝐼𝐵)
8482, 83syl 17 . . . . . . 7 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝑖:𝐼𝐵)
8584ffvelcdmda 7086 . . . . . 6 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → (𝑖𝑥) ∈ 𝐵)
8617, 20, 73, 79, 85ringcld 20155 . . . . 5 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → ((𝑔𝑥) · (𝑖𝑥)) ∈ 𝐵)
8717, 20, 73, 75, 86ringcld 20155 . . . 4 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → (𝑘 · ((𝑔𝑥) · (𝑖𝑥))) ∈ 𝐵)
88 simp32 1209 . . . . . . . 8 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝑉)
8971, 88, 47syl2anc 583 . . . . . . 7 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → ∈ (𝐵m 𝐼))
9089, 49syl 17 . . . . . 6 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → :𝐼𝐵)
9190ffvelcdmda 7086 . . . . 5 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → (𝑥) ∈ 𝐵)
9217, 20, 73, 91, 85ringcld 20155 . . . 4 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → ((𝑥) · (𝑖𝑥)) ∈ 𝐵)
93 eqidd 2732 . . . 4 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑥𝐼 ↦ (𝑘 · ((𝑔𝑥) · (𝑖𝑥)))) = (𝑥𝐼 ↦ (𝑘 · ((𝑔𝑥) · (𝑖𝑥)))))
94 eqidd 2732 . . . 4 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑥𝐼 ↦ ((𝑥) · (𝑖𝑥))) = (𝑥𝐼 ↦ ((𝑥) · (𝑖𝑥))))
95 fveq2 6891 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑔𝑥) = (𝑔𝑦))
9695oveq2d 7428 . . . . . . . 8 (𝑥 = 𝑦 → (𝑘 · (𝑔𝑥)) = (𝑘 · (𝑔𝑦)))
9796cbvmptv 5261 . . . . . . 7 (𝑥𝐼 ↦ (𝑘 · (𝑔𝑥))) = (𝑦𝐼 ↦ (𝑘 · (𝑔𝑦)))
9897oveq1i 7422 . . . . . 6 ((𝑥𝐼 ↦ (𝑘 · (𝑔𝑥))) ∘f · 𝑖) = ((𝑦𝐼 ↦ (𝑘 · (𝑔𝑦))) ∘f · 𝑖)
9917, 20, 73, 75, 79ringcld 20155 . . . . . . . . . . 11 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → (𝑘 · (𝑔𝑥)) ∈ 𝐵)
10099fmpttd 7116 . . . . . . . . . 10 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑥𝐼 ↦ (𝑘 · (𝑔𝑥))):𝐼𝐵)
101100ffnd 6718 . . . . . . . . 9 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑥𝐼 ↦ (𝑘 · (𝑔𝑥))) Fn 𝐼)
10297fneq1i 6646 . . . . . . . . 9 ((𝑥𝐼 ↦ (𝑘 · (𝑔𝑥))) Fn 𝐼 ↔ (𝑦𝐼 ↦ (𝑘 · (𝑔𝑦))) Fn 𝐼)
103101, 102sylib 217 . . . . . . . 8 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑦𝐼 ↦ (𝑘 · (𝑔𝑦))) Fn 𝐼)
10484ffnd 6718 . . . . . . . 8 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝑖 Fn 𝐼)
105 eqidd 2732 . . . . . . . . 9 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → (𝑦𝐼 ↦ (𝑘 · (𝑔𝑦))) = (𝑦𝐼 ↦ (𝑘 · (𝑔𝑦))))
106 simpr 484 . . . . . . . . . . 11 ((((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) ∧ 𝑦 = 𝑥) → 𝑦 = 𝑥)
107106fveq2d 6895 . . . . . . . . . 10 ((((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) ∧ 𝑦 = 𝑥) → (𝑔𝑦) = (𝑔𝑥))
108107oveq2d 7428 . . . . . . . . 9 ((((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) ∧ 𝑦 = 𝑥) → (𝑘 · (𝑔𝑦)) = (𝑘 · (𝑔𝑥)))
109 simpr 484 . . . . . . . . 9 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → 𝑥𝐼)
110 ovexd 7447 . . . . . . . . 9 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → (𝑘 · (𝑔𝑥)) ∈ V)
111105, 108, 109, 110fvmptd 7005 . . . . . . . 8 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → ((𝑦𝐼 ↦ (𝑘 · (𝑔𝑦)))‘𝑥) = (𝑘 · (𝑔𝑥)))
112 eqidd 2732 . . . . . . . 8 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → (𝑖𝑥) = (𝑖𝑥))
113103, 104, 71, 71, 52, 111, 112offval 7683 . . . . . . 7 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → ((𝑦𝐼 ↦ (𝑘 · (𝑔𝑦))) ∘f · 𝑖) = (𝑥𝐼 ↦ ((𝑘 · (𝑔𝑥)) · (𝑖𝑥))))
11417, 20ringass 20151 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑘𝐵 ∧ (𝑔𝑥) ∈ 𝐵 ∧ (𝑖𝑥) ∈ 𝐵)) → ((𝑘 · (𝑔𝑥)) · (𝑖𝑥)) = (𝑘 · ((𝑔𝑥) · (𝑖𝑥))))
11573, 75, 79, 85, 114syl13anc 1371 . . . . . . . 8 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → ((𝑘 · (𝑔𝑥)) · (𝑖𝑥)) = (𝑘 · ((𝑔𝑥) · (𝑖𝑥))))
116115mpteq2dva 5248 . . . . . . 7 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑥𝐼 ↦ ((𝑘 · (𝑔𝑥)) · (𝑖𝑥))) = (𝑥𝐼 ↦ (𝑘 · ((𝑔𝑥) · (𝑖𝑥)))))
117113, 116eqtrd 2771 . . . . . 6 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → ((𝑦𝐼 ↦ (𝑘 · (𝑔𝑦))) ∘f · 𝑖) = (𝑥𝐼 ↦ (𝑘 · ((𝑔𝑥) · (𝑖𝑥)))))
11898, 117eqtrid 2783 . . . . 5 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → ((𝑥𝐼 ↦ (𝑘 · (𝑔𝑥))) ∘f · 𝑖) = (𝑥𝐼 ↦ (𝑘 · ((𝑔𝑥) · (𝑖𝑥)))))
119 ovexd 7447 . . . . . 6 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → ((𝑥𝐼 ↦ (𝑘 · (𝑔𝑥))) ∘f · 𝑖) ∈ V)
120101, 104, 71, 71offun 7688 . . . . . 6 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → Fun ((𝑥𝐼 ↦ (𝑘 · (𝑔𝑥))) ∘f · 𝑖))
121 simp3 1137 . . . . . . . . 9 ((𝑔𝑉𝑉𝑖𝑉) → 𝑖𝑉)
12213, 121anim12i 612 . . . . . . . 8 ((𝜑 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝐼𝑊𝑖𝑉))
1231223adant2 1130 . . . . . . 7 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝐼𝑊𝑖𝑉))
12414, 24, 1frlmbasfsupp 21536 . . . . . . 7 ((𝐼𝑊𝑖𝑉) → 𝑖 finSupp 0 )
125123, 124syl 17 . . . . . 6 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝑖 finSupp 0 )
12617, 24ring0cl 20159 . . . . . . . 8 (𝑅 ∈ Ring → 0𝐵)
12772, 126syl 17 . . . . . . 7 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 0𝐵)
12817, 20, 24ringrz 20186 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑦𝐵) → (𝑦 · 0 ) = 0 )
12972, 128sylan 579 . . . . . . 7 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑦𝐵) → (𝑦 · 0 ) = 0 )
13071, 127, 100, 84, 129suppofss2d 8196 . . . . . 6 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (((𝑥𝐼 ↦ (𝑘 · (𝑔𝑥))) ∘f · 𝑖) supp 0 ) ⊆ (𝑖 supp 0 ))
131 fsuppsssupp 9385 . . . . . 6 (((((𝑥𝐼 ↦ (𝑘 · (𝑔𝑥))) ∘f · 𝑖) ∈ V ∧ Fun ((𝑥𝐼 ↦ (𝑘 · (𝑔𝑥))) ∘f · 𝑖)) ∧ (𝑖 finSupp 0 ∧ (((𝑥𝐼 ↦ (𝑘 · (𝑔𝑥))) ∘f · 𝑖) supp 0 ) ⊆ (𝑖 supp 0 ))) → ((𝑥𝐼 ↦ (𝑘 · (𝑔𝑥))) ∘f · 𝑖) finSupp 0 )
132119, 120, 125, 130, 131syl22anc 836 . . . . 5 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → ((𝑥𝐼 ↦ (𝑘 · (𝑔𝑥))) ∘f · 𝑖) finSupp 0 )
133118, 132eqbrtrrd 5172 . . . 4 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑥𝐼 ↦ (𝑘 · ((𝑔𝑥) · (𝑖𝑥)))) finSupp 0 )
134 simp1 1135 . . . . 5 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝜑)
135 eleq1w 2815 . . . . . . . . 9 (𝑔 = → (𝑔𝑉𝑉))
136 id 22 . . . . . . . . . . 11 (𝑔 = 𝑔 = )
137136, 136oveq12d 7430 . . . . . . . . . 10 (𝑔 = → (𝑔 , 𝑔) = ( , ))
138137eqeq1d 2733 . . . . . . . . 9 (𝑔 = → ((𝑔 , 𝑔) = 0 ↔ ( , ) = 0 ))
139135, 1383anbi23d 1438 . . . . . . . 8 (𝑔 = → ((𝜑𝑔𝑉 ∧ (𝑔 , 𝑔) = 0 ) ↔ (𝜑𝑉 ∧ ( , ) = 0 )))
140 eqeq1 2735 . . . . . . . 8 (𝑔 = → (𝑔 = 𝑂 = 𝑂))
141139, 140imbi12d 344 . . . . . . 7 (𝑔 = → (((𝜑𝑔𝑉 ∧ (𝑔 , 𝑔) = 0 ) → 𝑔 = 𝑂) ↔ ((𝜑𝑉 ∧ ( , ) = 0 ) → = 𝑂)))
142141, 65chvarvv 2001 . . . . . 6 ((𝜑𝑉 ∧ ( , ) = 0 ) → = 𝑂)
14314, 17, 20, 1, 5, 7, 24, 22, 9, 142, 34, 13frlmphllem 21558 . . . . 5 ((𝜑𝑉𝑖𝑉) → (𝑥𝐼 ↦ ((𝑥) · (𝑖𝑥))) finSupp 0 )
144134, 88, 80, 143syl3anc 1370 . . . 4 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑥𝐼 ↦ ((𝑥) · (𝑖𝑥))) finSupp 0 )
14517, 24, 69, 70, 71, 87, 92, 93, 94, 133, 144gsummptfsadd 19837 . . 3 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑅 Σg (𝑥𝐼 ↦ ((𝑘 · ((𝑔𝑥) · (𝑖𝑥)))(+g𝑅)((𝑥) · (𝑖𝑥))))) = ((𝑅 Σg (𝑥𝐼 ↦ (𝑘 · ((𝑔𝑥) · (𝑖𝑥)))))(+g𝑅)(𝑅 Σg (𝑥𝐼 ↦ ((𝑥) · (𝑖𝑥))))))
14614, 17, 20frlmip 21556 . . . . . . . . 9 ((𝐼𝑊𝑅 ∈ DivRing) → (𝑔 ∈ (𝐵m 𝐼), ∈ (𝐵m 𝐼) ↦ (𝑅 Σg (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))))) = (·𝑖𝑌))
14713, 12, 146syl2anc 583 . . . . . . . 8 (𝜑 → (𝑔 ∈ (𝐵m 𝐼), ∈ (𝐵m 𝐼) ↦ (𝑅 Σg (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))))) = (·𝑖𝑌))
1485, 147eqtr4id 2790 . . . . . . 7 (𝜑, = (𝑔 ∈ (𝐵m 𝐼), ∈ (𝐵m 𝐼) ↦ (𝑅 Σg (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))))))
149 fveq1 6890 . . . . . . . . . . 11 (𝑒 = 𝑔 → (𝑒𝑥) = (𝑔𝑥))
150149oveq1d 7427 . . . . . . . . . 10 (𝑒 = 𝑔 → ((𝑒𝑥) · (𝑓𝑥)) = ((𝑔𝑥) · (𝑓𝑥)))
151150mpteq2dv 5250 . . . . . . . . 9 (𝑒 = 𝑔 → (𝑥𝐼 ↦ ((𝑒𝑥) · (𝑓𝑥))) = (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑓𝑥))))
152151oveq2d 7428 . . . . . . . 8 (𝑒 = 𝑔 → (𝑅 Σg (𝑥𝐼 ↦ ((𝑒𝑥) · (𝑓𝑥)))) = (𝑅 Σg (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑓𝑥)))))
153 fveq1 6890 . . . . . . . . . . 11 (𝑓 = → (𝑓𝑥) = (𝑥))
154153oveq2d 7428 . . . . . . . . . 10 (𝑓 = → ((𝑔𝑥) · (𝑓𝑥)) = ((𝑔𝑥) · (𝑥)))
155154mpteq2dv 5250 . . . . . . . . 9 (𝑓 = → (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑓𝑥))) = (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))))
156155oveq2d 7428 . . . . . . . 8 (𝑓 = → (𝑅 Σg (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑓𝑥)))) = (𝑅 Σg (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥)))))
157152, 156cbvmpov 7507 . . . . . . 7 (𝑒 ∈ (𝐵m 𝐼), 𝑓 ∈ (𝐵m 𝐼) ↦ (𝑅 Σg (𝑥𝐼 ↦ ((𝑒𝑥) · (𝑓𝑥))))) = (𝑔 ∈ (𝐵m 𝐼), ∈ (𝐵m 𝐼) ↦ (𝑅 Σg (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥)))))
158148, 157eqtr4di 2789 . . . . . 6 (𝜑, = (𝑒 ∈ (𝐵m 𝐼), 𝑓 ∈ (𝐵m 𝐼) ↦ (𝑅 Σg (𝑥𝐼 ↦ ((𝑒𝑥) · (𝑓𝑥))))))
1591583ad2ant1 1132 . . . . 5 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → , = (𝑒 ∈ (𝐵m 𝐼), 𝑓 ∈ (𝐵m 𝐼) ↦ (𝑅 Σg (𝑥𝐼 ↦ ((𝑒𝑥) · (𝑓𝑥))))))
160 simprl 768 . . . . . . . . 9 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = ((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)) ∧ 𝑓 = 𝑖)) → 𝑒 = ((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)))
161160fveq1d 6893 . . . . . . . 8 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = ((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)) ∧ 𝑓 = 𝑖)) → (𝑒𝑥) = (((𝑘( ·𝑠𝑌)𝑔)(+g𝑌))‘𝑥))
162 simprr 770 . . . . . . . . 9 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = ((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)) ∧ 𝑓 = 𝑖)) → 𝑓 = 𝑖)
163162fveq1d 6893 . . . . . . . 8 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = ((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)) ∧ 𝑓 = 𝑖)) → (𝑓𝑥) = (𝑖𝑥))
164161, 163oveq12d 7430 . . . . . . 7 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = ((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)) ∧ 𝑓 = 𝑖)) → ((𝑒𝑥) · (𝑓𝑥)) = ((((𝑘( ·𝑠𝑌)𝑔)(+g𝑌))‘𝑥) · (𝑖𝑥)))
165164mpteq2dv 5250 . . . . . 6 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = ((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)) ∧ 𝑓 = 𝑖)) → (𝑥𝐼 ↦ ((𝑒𝑥) · (𝑓𝑥))) = (𝑥𝐼 ↦ ((((𝑘( ·𝑠𝑌)𝑔)(+g𝑌))‘𝑥) · (𝑖𝑥))))
166165oveq2d 7428 . . . . 5 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = ((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)) ∧ 𝑓 = 𝑖)) → (𝑅 Σg (𝑥𝐼 ↦ ((𝑒𝑥) · (𝑓𝑥)))) = (𝑅 Σg (𝑥𝐼 ↦ ((((𝑘( ·𝑠𝑌)𝑔)(+g𝑌))‘𝑥) · (𝑖𝑥)))))
167283ad2ant1 1132 . . . . . . 7 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝑌 ∈ LMod)
168163ad2ant1 1132 . . . . . . . . . . 11 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝑅 = (Scalar‘𝑌))
169168fveq2d 6895 . . . . . . . . . 10 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (Base‘𝑅) = (Base‘(Scalar‘𝑌)))
17017, 169eqtrid 2783 . . . . . . . . 9 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝐵 = (Base‘(Scalar‘𝑌)))
17174, 170eleqtrd 2834 . . . . . . . 8 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝑘 ∈ (Base‘(Scalar‘𝑌)))
172 eqid 2731 . . . . . . . . 9 ( ·𝑠𝑌) = ( ·𝑠𝑌)
173 eqid 2731 . . . . . . . . 9 (Base‘(Scalar‘𝑌)) = (Base‘(Scalar‘𝑌))
1741, 30, 172, 173lmodvscl 20636 . . . . . . . 8 ((𝑌 ∈ LMod ∧ 𝑘 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑔𝑉) → (𝑘( ·𝑠𝑌)𝑔) ∈ 𝑉)
175167, 171, 76, 174syl3anc 1370 . . . . . . 7 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑘( ·𝑠𝑌)𝑔) ∈ 𝑉)
176 eqid 2731 . . . . . . . 8 (+g𝑌) = (+g𝑌)
1771, 176lmodvacl 20633 . . . . . . 7 ((𝑌 ∈ LMod ∧ (𝑘( ·𝑠𝑌)𝑔) ∈ 𝑉𝑉) → ((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)) ∈ 𝑉)
178167, 175, 88, 177syl3anc 1370 . . . . . 6 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → ((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)) ∈ 𝑉)
17914, 17, 1frlmbasmap 21537 . . . . . 6 ((𝐼𝑊 ∧ ((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)) ∈ 𝑉) → ((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)) ∈ (𝐵m 𝐼))
18071, 178, 179syl2anc 583 . . . . 5 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → ((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)) ∈ (𝐵m 𝐼))
181 ovexd 7447 . . . . 5 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑅 Σg (𝑥𝐼 ↦ ((((𝑘( ·𝑠𝑌)𝑔)(+g𝑌))‘𝑥) · (𝑖𝑥)))) ∈ V)
182159, 166, 180, 82, 181ovmpod 7563 . . . 4 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)) , 𝑖) = (𝑅 Σg (𝑥𝐼 ↦ ((((𝑘( ·𝑠𝑌)𝑔)(+g𝑌))‘𝑥) · (𝑖𝑥)))))
18314, 1, 72, 71, 175, 88, 69, 176frlmplusgval 21542 . . . . . . . . . 10 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → ((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)) = ((𝑘( ·𝑠𝑌)𝑔) ∘f (+g𝑅)))
18414, 17, 1frlmbasmap 21537 . . . . . . . . . . . . 13 ((𝐼𝑊 ∧ (𝑘( ·𝑠𝑌)𝑔) ∈ 𝑉) → (𝑘( ·𝑠𝑌)𝑔) ∈ (𝐵m 𝐼))
18571, 175, 184syl2anc 583 . . . . . . . . . . . 12 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑘( ·𝑠𝑌)𝑔) ∈ (𝐵m 𝐼))
186 elmapi 8849 . . . . . . . . . . . 12 ((𝑘( ·𝑠𝑌)𝑔) ∈ (𝐵m 𝐼) → (𝑘( ·𝑠𝑌)𝑔):𝐼𝐵)
187 ffn 6717 . . . . . . . . . . . 12 ((𝑘( ·𝑠𝑌)𝑔):𝐼𝐵 → (𝑘( ·𝑠𝑌)𝑔) Fn 𝐼)
188185, 186, 1873syl 18 . . . . . . . . . . 11 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑘( ·𝑠𝑌)𝑔) Fn 𝐼)
18990ffnd 6718 . . . . . . . . . . 11 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → Fn 𝐼)
19071adantr 480 . . . . . . . . . . . 12 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → 𝐼𝑊)
19176adantr 480 . . . . . . . . . . . 12 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → 𝑔𝑉)
19214, 1, 17, 190, 75, 191, 109, 172, 20frlmvscaval 21546 . . . . . . . . . . 11 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → ((𝑘( ·𝑠𝑌)𝑔)‘𝑥) = (𝑘 · (𝑔𝑥)))
193 eqidd 2732 . . . . . . . . . . 11 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → (𝑥) = (𝑥))
194188, 189, 71, 71, 52, 192, 193offval 7683 . . . . . . . . . 10 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → ((𝑘( ·𝑠𝑌)𝑔) ∘f (+g𝑅)) = (𝑥𝐼 ↦ ((𝑘 · (𝑔𝑥))(+g𝑅)(𝑥))))
195183, 194eqtrd 2771 . . . . . . . . 9 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → ((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)) = (𝑥𝐼 ↦ ((𝑘 · (𝑔𝑥))(+g𝑅)(𝑥))))
196 ovexd 7447 . . . . . . . . 9 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → ((𝑘 · (𝑔𝑥))(+g𝑅)(𝑥)) ∈ V)
197195, 196fvmpt2d 7011 . . . . . . . 8 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → (((𝑘( ·𝑠𝑌)𝑔)(+g𝑌))‘𝑥) = ((𝑘 · (𝑔𝑥))(+g𝑅)(𝑥)))
198197oveq1d 7427 . . . . . . 7 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → ((((𝑘( ·𝑠𝑌)𝑔)(+g𝑌))‘𝑥) · (𝑖𝑥)) = (((𝑘 · (𝑔𝑥))(+g𝑅)(𝑥)) · (𝑖𝑥)))
19917, 69, 20ringdir 20157 . . . . . . . 8 ((𝑅 ∈ Ring ∧ ((𝑘 · (𝑔𝑥)) ∈ 𝐵 ∧ (𝑥) ∈ 𝐵 ∧ (𝑖𝑥) ∈ 𝐵)) → (((𝑘 · (𝑔𝑥))(+g𝑅)(𝑥)) · (𝑖𝑥)) = (((𝑘 · (𝑔𝑥)) · (𝑖𝑥))(+g𝑅)((𝑥) · (𝑖𝑥))))
20073, 99, 91, 85, 199syl13anc 1371 . . . . . . 7 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → (((𝑘 · (𝑔𝑥))(+g𝑅)(𝑥)) · (𝑖𝑥)) = (((𝑘 · (𝑔𝑥)) · (𝑖𝑥))(+g𝑅)((𝑥) · (𝑖𝑥))))
201115oveq1d 7427 . . . . . . 7 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → (((𝑘 · (𝑔𝑥)) · (𝑖𝑥))(+g𝑅)((𝑥) · (𝑖𝑥))) = ((𝑘 · ((𝑔𝑥) · (𝑖𝑥)))(+g𝑅)((𝑥) · (𝑖𝑥))))
202198, 200, 2013eqtrd 2775 . . . . . 6 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → ((((𝑘( ·𝑠𝑌)𝑔)(+g𝑌))‘𝑥) · (𝑖𝑥)) = ((𝑘 · ((𝑔𝑥) · (𝑖𝑥)))(+g𝑅)((𝑥) · (𝑖𝑥))))
203202mpteq2dva 5248 . . . . 5 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑥𝐼 ↦ ((((𝑘( ·𝑠𝑌)𝑔)(+g𝑌))‘𝑥) · (𝑖𝑥))) = (𝑥𝐼 ↦ ((𝑘 · ((𝑔𝑥) · (𝑖𝑥)))(+g𝑅)((𝑥) · (𝑖𝑥)))))
204203oveq2d 7428 . . . 4 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑅 Σg (𝑥𝐼 ↦ ((((𝑘( ·𝑠𝑌)𝑔)(+g𝑌))‘𝑥) · (𝑖𝑥)))) = (𝑅 Σg (𝑥𝐼 ↦ ((𝑘 · ((𝑔𝑥) · (𝑖𝑥)))(+g𝑅)((𝑥) · (𝑖𝑥))))))
205182, 204eqtrd 2771 . . 3 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)) , 𝑖) = (𝑅 Σg (𝑥𝐼 ↦ ((𝑘 · ((𝑔𝑥) · (𝑖𝑥)))(+g𝑅)((𝑥) · (𝑖𝑥))))))
206 simprl 768 . . . . . . . . . . 11 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = 𝑔𝑓 = 𝑖)) → 𝑒 = 𝑔)
207206fveq1d 6893 . . . . . . . . . 10 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = 𝑔𝑓 = 𝑖)) → (𝑒𝑥) = (𝑔𝑥))
208 simprr 770 . . . . . . . . . . 11 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = 𝑔𝑓 = 𝑖)) → 𝑓 = 𝑖)
209208fveq1d 6893 . . . . . . . . . 10 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = 𝑔𝑓 = 𝑖)) → (𝑓𝑥) = (𝑖𝑥))
210207, 209oveq12d 7430 . . . . . . . . 9 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = 𝑔𝑓 = 𝑖)) → ((𝑒𝑥) · (𝑓𝑥)) = ((𝑔𝑥) · (𝑖𝑥)))
211210mpteq2dv 5250 . . . . . . . 8 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = 𝑔𝑓 = 𝑖)) → (𝑥𝐼 ↦ ((𝑒𝑥) · (𝑓𝑥))) = (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑖𝑥))))
212211oveq2d 7428 . . . . . . 7 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = 𝑔𝑓 = 𝑖)) → (𝑅 Σg (𝑥𝐼 ↦ ((𝑒𝑥) · (𝑓𝑥)))) = (𝑅 Σg (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑖𝑥)))))
213 ovexd 7447 . . . . . . 7 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑅 Σg (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑖𝑥)))) ∈ V)
214159, 212, 77, 82, 213ovmpod 7563 . . . . . 6 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑔 , 𝑖) = (𝑅 Σg (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑖𝑥)))))
215214oveq2d 7428 . . . . 5 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑘 · (𝑔 , 𝑖)) = (𝑘 · (𝑅 Σg (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑖𝑥))))))
21614, 17, 20, 1, 5, 7, 24, 22, 9, 65, 34, 13frlmphllem 21558 . . . . . . 7 ((𝜑𝑔𝑉𝑖𝑉) → (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑖𝑥))) finSupp 0 )
217134, 76, 80, 216syl3anc 1370 . . . . . 6 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑖𝑥))) finSupp 0 )
21817, 24, 20, 72, 71, 74, 86, 217gsummulc2 20209 . . . . 5 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑅 Σg (𝑥𝐼 ↦ (𝑘 · ((𝑔𝑥) · (𝑖𝑥))))) = (𝑘 · (𝑅 Σg (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑖𝑥))))))
219215, 218eqtr4d 2774 . . . 4 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑘 · (𝑔 , 𝑖)) = (𝑅 Σg (𝑥𝐼 ↦ (𝑘 · ((𝑔𝑥) · (𝑖𝑥))))))
220 simprl 768 . . . . . . . . 9 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = 𝑓 = 𝑖)) → 𝑒 = )
221220fveq1d 6893 . . . . . . . 8 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = 𝑓 = 𝑖)) → (𝑒𝑥) = (𝑥))
222 simprr 770 . . . . . . . . 9 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = 𝑓 = 𝑖)) → 𝑓 = 𝑖)
223222fveq1d 6893 . . . . . . . 8 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = 𝑓 = 𝑖)) → (𝑓𝑥) = (𝑖𝑥))
224221, 223oveq12d 7430 . . . . . . 7 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = 𝑓 = 𝑖)) → ((𝑒𝑥) · (𝑓𝑥)) = ((𝑥) · (𝑖𝑥)))
225224mpteq2dv 5250 . . . . . 6 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = 𝑓 = 𝑖)) → (𝑥𝐼 ↦ ((𝑒𝑥) · (𝑓𝑥))) = (𝑥𝐼 ↦ ((𝑥) · (𝑖𝑥))))
226225oveq2d 7428 . . . . 5 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = 𝑓 = 𝑖)) → (𝑅 Σg (𝑥𝐼 ↦ ((𝑒𝑥) · (𝑓𝑥)))) = (𝑅 Σg (𝑥𝐼 ↦ ((𝑥) · (𝑖𝑥)))))
227 ovexd 7447 . . . . 5 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑅 Σg (𝑥𝐼 ↦ ((𝑥) · (𝑖𝑥)))) ∈ V)
228159, 226, 89, 82, 227ovmpod 7563 . . . 4 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → ( , 𝑖) = (𝑅 Σg (𝑥𝐼 ↦ ((𝑥) · (𝑖𝑥)))))
229219, 228oveq12d 7430 . . 3 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → ((𝑘 · (𝑔 , 𝑖))(+g𝑅)( , 𝑖)) = ((𝑅 Σg (𝑥𝐼 ↦ (𝑘 · ((𝑔𝑥) · (𝑖𝑥)))))(+g𝑅)(𝑅 Σg (𝑥𝐼 ↦ ((𝑥) · (𝑖𝑥))))))
230145, 205, 2293eqtr4d 2781 . 2 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)) , 𝑖) = ((𝑘 · (𝑔 , 𝑖))(+g𝑅)( , 𝑖)))
231333ad2ant1 1132 . . . . . . 7 ((𝜑𝑔𝑉𝑉) → 𝑅 ∈ CRing)
232231adantr 480 . . . . . 6 (((𝜑𝑔𝑉𝑉) ∧ 𝑥𝐼) → 𝑅 ∈ CRing)
23317, 20crngcom 20149 . . . . . 6 ((𝑅 ∈ CRing ∧ (𝑥) ∈ 𝐵 ∧ (𝑔𝑥) ∈ 𝐵) → ((𝑥) · (𝑔𝑥)) = ((𝑔𝑥) · (𝑥)))
234232, 62, 61, 233syl3anc 1370 . . . . 5 (((𝜑𝑔𝑉𝑉) ∧ 𝑥𝐼) → ((𝑥) · (𝑔𝑥)) = ((𝑔𝑥) · (𝑥)))
235234mpteq2dva 5248 . . . 4 ((𝜑𝑔𝑉𝑉) → (𝑥𝐼 ↦ ((𝑥) · (𝑔𝑥))) = (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))))
236235oveq2d 7428 . . 3 ((𝜑𝑔𝑉𝑉) → (𝑅 Σg (𝑥𝐼 ↦ ((𝑥) · (𝑔𝑥)))) = (𝑅 Σg (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥)))))
2371583ad2ant1 1132 . . . 4 ((𝜑𝑔𝑉𝑉) → , = (𝑒 ∈ (𝐵m 𝐼), 𝑓 ∈ (𝐵m 𝐼) ↦ (𝑅 Σg (𝑥𝐼 ↦ ((𝑒𝑥) · (𝑓𝑥))))))
238 simprl 768 . . . . . . . 8 (((𝜑𝑔𝑉𝑉) ∧ (𝑒 = 𝑓 = 𝑔)) → 𝑒 = )
239238fveq1d 6893 . . . . . . 7 (((𝜑𝑔𝑉𝑉) ∧ (𝑒 = 𝑓 = 𝑔)) → (𝑒𝑥) = (𝑥))
240 simprr 770 . . . . . . . 8 (((𝜑𝑔𝑉𝑉) ∧ (𝑒 = 𝑓 = 𝑔)) → 𝑓 = 𝑔)
241240fveq1d 6893 . . . . . . 7 (((𝜑𝑔𝑉𝑉) ∧ (𝑒 = 𝑓 = 𝑔)) → (𝑓𝑥) = (𝑔𝑥))
242239, 241oveq12d 7430 . . . . . 6 (((𝜑𝑔𝑉𝑉) ∧ (𝑒 = 𝑓 = 𝑔)) → ((𝑒𝑥) · (𝑓𝑥)) = ((𝑥) · (𝑔𝑥)))
243242mpteq2dv 5250 . . . . 5 (((𝜑𝑔𝑉𝑉) ∧ (𝑒 = 𝑓 = 𝑔)) → (𝑥𝐼 ↦ ((𝑒𝑥) · (𝑓𝑥))) = (𝑥𝐼 ↦ ((𝑥) · (𝑔𝑥))))
244243oveq2d 7428 . . . 4 (((𝜑𝑔𝑉𝑉) ∧ (𝑒 = 𝑓 = 𝑔)) → (𝑅 Σg (𝑥𝐼 ↦ ((𝑒𝑥) · (𝑓𝑥)))) = (𝑅 Σg (𝑥𝐼 ↦ ((𝑥) · (𝑔𝑥)))))
245 ovexd 7447 . . . 4 ((𝜑𝑔𝑉𝑉) → (𝑅 Σg (𝑥𝐼 ↦ ((𝑥) · (𝑔𝑥)))) ∈ V)
246237, 244, 48, 43, 245ovmpod 7563 . . 3 ((𝜑𝑔𝑉𝑉) → ( , 𝑔) = (𝑅 Σg (𝑥𝐼 ↦ ((𝑥) · (𝑔𝑥)))))
247 fveq2 6891 . . . . . 6 (𝑥 = (𝑔 , ) → ( 𝑥) = ( ‘(𝑔 , )))
248 id 22 . . . . . 6 (𝑥 = (𝑔 , ) → 𝑥 = (𝑔 , ))
249247, 248eqeq12d 2747 . . . . 5 (𝑥 = (𝑔 , ) → (( 𝑥) = 𝑥 ↔ ( ‘(𝑔 , )) = (𝑔 , )))
25034ralrimiva 3145 . . . . . 6 (𝜑 → ∀𝑥𝐵 ( 𝑥) = 𝑥)
2512503ad2ant1 1132 . . . . 5 ((𝜑𝑔𝑉𝑉) → ∀𝑥𝐵 ( 𝑥) = 𝑥)
252249, 251, 68rspcdva 3613 . . . 4 ((𝜑𝑔𝑉𝑉) → ( ‘(𝑔 , )) = (𝑔 , ))
253252, 57eqtrd 2771 . . 3 ((𝜑𝑔𝑉𝑉) → ( ‘(𝑔 , )) = (𝑅 Σg (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥)))))
254236, 246, 2533eqtr4rd 2782 . 2 ((𝜑𝑔𝑉𝑉) → ( ‘(𝑔 , )) = ( , 𝑔))
2552, 3, 4, 6, 8, 16, 18, 19, 21, 23, 25, 32, 35, 68, 230, 65, 254isphld 21430 1 (𝜑𝑌 ∈ PreHil)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2105  wral 3060  Vcvv 3473  wss 3948   class class class wbr 5148  cmpt 5231  Fun wfun 6537   Fn wfn 6538  wf 6539  cfv 6543  (class class class)co 7412  cmpo 7414  f cof 7672   supp csupp 8151  m cmap 8826   finSupp cfsupp 9367  Basecbs 17151  +gcplusg 17204  .rcmulr 17205  *𝑟cstv 17206  Scalarcsca 17207   ·𝑠 cvsca 17208  ·𝑖cip 17209  0gc0g 17392   Σg cgsu 17393  CMndccmn 19693  Ringcrg 20131  CRingccrg 20132  DivRingcdr 20504  Fieldcfield 20505  LModclmod 20618  LVecclvec 20861  PreHilcphl 21400   freeLMod cfrlm 21524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-of 7674  df-om 7860  df-1st 7979  df-2nd 7980  df-supp 8152  df-tpos 8217  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-er 8709  df-map 8828  df-ixp 8898  df-en 8946  df-dom 8947  df-sdom 8948  df-fin 8949  df-fsupp 9368  df-sup 9443  df-oi 9511  df-card 9940  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-nn 12220  df-2 12282  df-3 12283  df-4 12284  df-5 12285  df-6 12286  df-7 12287  df-8 12288  df-9 12289  df-n0 12480  df-z 12566  df-dec 12685  df-uz 12830  df-fz 13492  df-fzo 13635  df-seq 13974  df-hash 14298  df-struct 17087  df-sets 17104  df-slot 17122  df-ndx 17134  df-base 17152  df-ress 17181  df-plusg 17217  df-mulr 17218  df-sca 17220  df-vsca 17221  df-ip 17222  df-tset 17223  df-ple 17224  df-ds 17226  df-hom 17228  df-cco 17229  df-0g 17394  df-gsum 17395  df-prds 17400  df-pws 17402  df-mgm 18568  df-sgrp 18647  df-mnd 18663  df-mhm 18708  df-submnd 18709  df-grp 18861  df-minusg 18862  df-sbg 18863  df-subg 19043  df-ghm 19132  df-cntz 19226  df-cmn 19695  df-abl 19696  df-mgp 20033  df-rng 20051  df-ur 20080  df-ring 20133  df-cring 20134  df-oppr 20229  df-rhm 20367  df-subrg 20463  df-drng 20506  df-field 20507  df-staf 20600  df-srng 20601  df-lmod 20620  df-lss 20691  df-lmhm 20781  df-lvec 20862  df-sra 20934  df-rgmod 20935  df-phl 21402  df-dsmm 21510  df-frlm 21525
This theorem is referenced by:  rrxcph  25153
  Copyright terms: Public domain W3C validator