Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  algextdeglem6 Structured version   Visualization version   GIF version

Theorem algextdeglem6 33756
Description: Lemma for algextdeg 33759. By r1pquslmic 33620, the univariate polynomial remainder ring (𝐻s 𝑃) is isomorphic with the quotient ring 𝑄. (Contributed by Thierry Arnoux, 2-Apr-2025.)
Hypotheses
Ref Expression
algextdeg.k 𝐾 = (𝐸s 𝐹)
algextdeg.l 𝐿 = (𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴})))
algextdeg.d 𝐷 = (deg1𝐸)
algextdeg.m 𝑀 = (𝐸 minPoly 𝐹)
algextdeg.f (𝜑𝐸 ∈ Field)
algextdeg.e (𝜑𝐹 ∈ (SubDRing‘𝐸))
algextdeg.a (𝜑𝐴 ∈ (𝐸 IntgRing 𝐹))
algextdeglem.o 𝑂 = (𝐸 evalSub1 𝐹)
algextdeglem.y 𝑃 = (Poly1𝐾)
algextdeglem.u 𝑈 = (Base‘𝑃)
algextdeglem.g 𝐺 = (𝑝𝑈 ↦ ((𝑂𝑝)‘𝐴))
algextdeglem.n 𝑁 = (𝑥𝑈 ↦ [𝑥](𝑃 ~QG 𝑍))
algextdeglem.z 𝑍 = (𝐺 “ {(0g𝐿)})
algextdeglem.q 𝑄 = (𝑃 /s (𝑃 ~QG 𝑍))
algextdeglem.j 𝐽 = (𝑝 ∈ (Base‘𝑄) ↦ (𝐺𝑝))
algextdeglem.r 𝑅 = (rem1p𝐾)
algextdeglem.h 𝐻 = (𝑝𝑈 ↦ (𝑝𝑅(𝑀𝐴)))
Assertion
Ref Expression
algextdeglem6 (𝜑 → (dim‘𝑄) = (dim‘(𝐻s 𝑃)))
Distinct variable groups:   𝐴,𝑝   𝐸,𝑝   𝐹,𝑝,𝑥   𝐺,𝑝,𝑥   𝐻,𝑝   𝐽,𝑝,𝑥   𝐾,𝑝   𝐿,𝑝,𝑥   𝑀,𝑝   𝑥,𝑁   𝑂,𝑝   𝑃,𝑝,𝑥   𝑄,𝑝,𝑥   𝑅,𝑝   𝑈,𝑝,𝑥   𝑍,𝑝,𝑥   𝜑,𝑝,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐷(𝑥,𝑝)   𝑅(𝑥)   𝐸(𝑥)   𝐻(𝑥)   𝐾(𝑥)   𝑀(𝑥)   𝑁(𝑝)   𝑂(𝑥)

Proof of Theorem algextdeglem6
StepHypRef Expression
1 algextdeglem.q . . . 4 𝑄 = (𝑃 /s (𝑃 ~QG 𝑍))
2 algextdeg.k . . . . . . . 8 𝐾 = (𝐸s 𝐹)
3 algextdeg.l . . . . . . . 8 𝐿 = (𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴})))
4 algextdeg.d . . . . . . . 8 𝐷 = (deg1𝐸)
5 algextdeg.m . . . . . . . 8 𝑀 = (𝐸 minPoly 𝐹)
6 algextdeg.f . . . . . . . 8 (𝜑𝐸 ∈ Field)
7 algextdeg.e . . . . . . . 8 (𝜑𝐹 ∈ (SubDRing‘𝐸))
8 algextdeg.a . . . . . . . 8 (𝜑𝐴 ∈ (𝐸 IntgRing 𝐹))
9 algextdeglem.o . . . . . . . 8 𝑂 = (𝐸 evalSub1 𝐹)
10 algextdeglem.y . . . . . . . 8 𝑃 = (Poly1𝐾)
11 algextdeglem.u . . . . . . . 8 𝑈 = (Base‘𝑃)
12 algextdeglem.g . . . . . . . 8 𝐺 = (𝑝𝑈 ↦ ((𝑂𝑝)‘𝐴))
13 algextdeglem.n . . . . . . . 8 𝑁 = (𝑥𝑈 ↦ [𝑥](𝑃 ~QG 𝑍))
14 algextdeglem.z . . . . . . . 8 𝑍 = (𝐺 “ {(0g𝐿)})
15 algextdeglem.j . . . . . . . 8 𝐽 = (𝑝 ∈ (Base‘𝑄) ↦ (𝐺𝑝))
162, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 1, 15algextdeglem5 33755 . . . . . . 7 (𝜑𝑍 = ((RSpan‘𝑃)‘{(𝑀𝐴)}))
17 sdrgsubrg 20751 . . . . . . . . . . 11 (𝐹 ∈ (SubDRing‘𝐸) → 𝐹 ∈ (SubRing‘𝐸))
187, 17syl 17 . . . . . . . . . 10 (𝜑𝐹 ∈ (SubRing‘𝐸))
192subrgring 20534 . . . . . . . . . 10 (𝐹 ∈ (SubRing‘𝐸) → 𝐾 ∈ Ring)
2018, 19syl 17 . . . . . . . . 9 (𝜑𝐾 ∈ Ring)
2110ply1ring 22183 . . . . . . . . 9 (𝐾 ∈ Ring → 𝑃 ∈ Ring)
2220, 21syl 17 . . . . . . . 8 (𝜑𝑃 ∈ Ring)
232fveq2i 6879 . . . . . . . . . . 11 (Poly1𝐾) = (Poly1‘(𝐸s 𝐹))
2410, 23eqtri 2758 . . . . . . . . . 10 𝑃 = (Poly1‘(𝐸s 𝐹))
25 eqid 2735 . . . . . . . . . 10 (Base‘𝐸) = (Base‘𝐸)
26 eqid 2735 . . . . . . . . . . . 12 (0g𝐸) = (0g𝐸)
276fldcrngd 20702 . . . . . . . . . . . 12 (𝜑𝐸 ∈ CRing)
289, 2, 25, 26, 27, 18irngssv 33729 . . . . . . . . . . 11 (𝜑 → (𝐸 IntgRing 𝐹) ⊆ (Base‘𝐸))
2928, 8sseldd 3959 . . . . . . . . . 10 (𝜑𝐴 ∈ (Base‘𝐸))
30 eqid 2735 . . . . . . . . . 10 {𝑝 ∈ dom 𝑂 ∣ ((𝑂𝑝)‘𝐴) = (0g𝐸)} = {𝑝 ∈ dom 𝑂 ∣ ((𝑂𝑝)‘𝐴) = (0g𝐸)}
31 eqid 2735 . . . . . . . . . 10 (RSpan‘𝑃) = (RSpan‘𝑃)
32 eqid 2735 . . . . . . . . . 10 (idlGen1p‘(𝐸s 𝐹)) = (idlGen1p‘(𝐸s 𝐹))
339, 24, 25, 6, 7, 29, 26, 30, 31, 32, 5minplycl 33740 . . . . . . . . 9 (𝜑 → (𝑀𝐴) ∈ (Base‘𝑃))
3433, 11eleqtrrdi 2845 . . . . . . . 8 (𝜑 → (𝑀𝐴) ∈ 𝑈)
35 eqid 2735 . . . . . . . . 9 (∥r𝑃) = (∥r𝑃)
3611, 31, 35rspsn 21294 . . . . . . . 8 ((𝑃 ∈ Ring ∧ (𝑀𝐴) ∈ 𝑈) → ((RSpan‘𝑃)‘{(𝑀𝐴)}) = {𝑝 ∣ (𝑀𝐴)(∥r𝑃)𝑝})
3722, 34, 36syl2anc 584 . . . . . . 7 (𝜑 → ((RSpan‘𝑃)‘{(𝑀𝐴)}) = {𝑝 ∣ (𝑀𝐴)(∥r𝑃)𝑝})
38 nfv 1914 . . . . . . . . 9 𝑝𝜑
39 nfab1 2900 . . . . . . . . 9 𝑝{𝑝 ∣ (𝑀𝐴)(∥r𝑃)𝑝}
40 nfrab1 3436 . . . . . . . . 9 𝑝{𝑝𝑈 ∣ (𝐻𝑝) = (0g𝑃)}
4111, 35dvdsrcl2 20326 . . . . . . . . . . . . . 14 ((𝑃 ∈ Ring ∧ (𝑀𝐴)(∥r𝑃)𝑝) → 𝑝𝑈)
4241ex 412 . . . . . . . . . . . . 13 (𝑃 ∈ Ring → ((𝑀𝐴)(∥r𝑃)𝑝𝑝𝑈))
4342pm4.71rd 562 . . . . . . . . . . . 12 (𝑃 ∈ Ring → ((𝑀𝐴)(∥r𝑃)𝑝 ↔ (𝑝𝑈 ∧ (𝑀𝐴)(∥r𝑃)𝑝)))
4422, 43syl 17 . . . . . . . . . . 11 (𝜑 → ((𝑀𝐴)(∥r𝑃)𝑝 ↔ (𝑝𝑈 ∧ (𝑀𝐴)(∥r𝑃)𝑝)))
4520adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑝𝑈) → 𝐾 ∈ Ring)
46 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑝𝑈) → 𝑝𝑈)
47 eqid 2735 . . . . . . . . . . . . . . . . 17 (0g‘(Poly1𝐸)) = (0g‘(Poly1𝐸))
482fveq2i 6879 . . . . . . . . . . . . . . . . 17 (Monic1p𝐾) = (Monic1p‘(𝐸s 𝐹))
4947, 6, 7, 5, 8, 48minplym1p 33747 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑀𝐴) ∈ (Monic1p𝐾))
50 eqid 2735 . . . . . . . . . . . . . . . . 17 (Unic1p𝐾) = (Unic1p𝐾)
51 eqid 2735 . . . . . . . . . . . . . . . . 17 (Monic1p𝐾) = (Monic1p𝐾)
5250, 51mon1puc1p 26108 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ Ring ∧ (𝑀𝐴) ∈ (Monic1p𝐾)) → (𝑀𝐴) ∈ (Unic1p𝐾))
5320, 49, 52syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀𝐴) ∈ (Unic1p𝐾))
5453adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑝𝑈) → (𝑀𝐴) ∈ (Unic1p𝐾))
55 eqid 2735 . . . . . . . . . . . . . . 15 (0g𝑃) = (0g𝑃)
56 algextdeglem.r . . . . . . . . . . . . . . 15 𝑅 = (rem1p𝐾)
5710, 35, 11, 50, 55, 56dvdsr1p 26121 . . . . . . . . . . . . . 14 ((𝐾 ∈ Ring ∧ 𝑝𝑈 ∧ (𝑀𝐴) ∈ (Unic1p𝐾)) → ((𝑀𝐴)(∥r𝑃)𝑝 ↔ (𝑝𝑅(𝑀𝐴)) = (0g𝑃)))
5845, 46, 54, 57syl3anc 1373 . . . . . . . . . . . . 13 ((𝜑𝑝𝑈) → ((𝑀𝐴)(∥r𝑃)𝑝 ↔ (𝑝𝑅(𝑀𝐴)) = (0g𝑃)))
59 ovexd 7440 . . . . . . . . . . . . . . 15 ((𝜑𝑝𝑈) → (𝑝𝑅(𝑀𝐴)) ∈ V)
60 algextdeglem.h . . . . . . . . . . . . . . . 16 𝐻 = (𝑝𝑈 ↦ (𝑝𝑅(𝑀𝐴)))
6160fvmpt2 6997 . . . . . . . . . . . . . . 15 ((𝑝𝑈 ∧ (𝑝𝑅(𝑀𝐴)) ∈ V) → (𝐻𝑝) = (𝑝𝑅(𝑀𝐴)))
6246, 59, 61syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑝𝑈) → (𝐻𝑝) = (𝑝𝑅(𝑀𝐴)))
6362eqeq1d 2737 . . . . . . . . . . . . 13 ((𝜑𝑝𝑈) → ((𝐻𝑝) = (0g𝑃) ↔ (𝑝𝑅(𝑀𝐴)) = (0g𝑃)))
6458, 63bitr4d 282 . . . . . . . . . . . 12 ((𝜑𝑝𝑈) → ((𝑀𝐴)(∥r𝑃)𝑝 ↔ (𝐻𝑝) = (0g𝑃)))
6564pm5.32da 579 . . . . . . . . . . 11 (𝜑 → ((𝑝𝑈 ∧ (𝑀𝐴)(∥r𝑃)𝑝) ↔ (𝑝𝑈 ∧ (𝐻𝑝) = (0g𝑃))))
6644, 65bitrd 279 . . . . . . . . . 10 (𝜑 → ((𝑀𝐴)(∥r𝑃)𝑝 ↔ (𝑝𝑈 ∧ (𝐻𝑝) = (0g𝑃))))
67 abid 2717 . . . . . . . . . 10 (𝑝 ∈ {𝑝 ∣ (𝑀𝐴)(∥r𝑃)𝑝} ↔ (𝑀𝐴)(∥r𝑃)𝑝)
68 rabid 3437 . . . . . . . . . 10 (𝑝 ∈ {𝑝𝑈 ∣ (𝐻𝑝) = (0g𝑃)} ↔ (𝑝𝑈 ∧ (𝐻𝑝) = (0g𝑃)))
6966, 67, 683bitr4g 314 . . . . . . . . 9 (𝜑 → (𝑝 ∈ {𝑝 ∣ (𝑀𝐴)(∥r𝑃)𝑝} ↔ 𝑝 ∈ {𝑝𝑈 ∣ (𝐻𝑝) = (0g𝑃)}))
7038, 39, 40, 69eqrd 3978 . . . . . . . 8 (𝜑 → {𝑝 ∣ (𝑀𝐴)(∥r𝑃)𝑝} = {𝑝𝑈 ∣ (𝐻𝑝) = (0g𝑃)})
7138, 59, 60fnmptd 6679 . . . . . . . . 9 (𝜑𝐻 Fn 𝑈)
72 fniniseg2 7052 . . . . . . . . 9 (𝐻 Fn 𝑈 → (𝐻 “ {(0g𝑃)}) = {𝑝𝑈 ∣ (𝐻𝑝) = (0g𝑃)})
7371, 72syl 17 . . . . . . . 8 (𝜑 → (𝐻 “ {(0g𝑃)}) = {𝑝𝑈 ∣ (𝐻𝑝) = (0g𝑃)})
7470, 73eqtr4d 2773 . . . . . . 7 (𝜑 → {𝑝 ∣ (𝑀𝐴)(∥r𝑃)𝑝} = (𝐻 “ {(0g𝑃)}))
7516, 37, 743eqtrd 2774 . . . . . 6 (𝜑𝑍 = (𝐻 “ {(0g𝑃)}))
7675oveq2d 7421 . . . . 5 (𝜑 → (𝑃 ~QG 𝑍) = (𝑃 ~QG (𝐻 “ {(0g𝑃)})))
7776oveq2d 7421 . . . 4 (𝜑 → (𝑃 /s (𝑃 ~QG 𝑍)) = (𝑃 /s (𝑃 ~QG (𝐻 “ {(0g𝑃)}))))
781, 77eqtrid 2782 . . 3 (𝜑𝑄 = (𝑃 /s (𝑃 ~QG (𝐻 “ {(0g𝑃)}))))
79 eqid 2735 . . . 4 (𝐻 “ {(0g𝑃)}) = (𝐻 “ {(0g𝑃)})
80 eqid 2735 . . . 4 (𝑃 /s (𝑃 ~QG (𝐻 “ {(0g𝑃)}))) = (𝑃 /s (𝑃 ~QG (𝐻 “ {(0g𝑃)})))
8110, 11, 56, 50, 60, 20, 53, 55, 79, 80r1pquslmic 33620 . . 3 (𝜑 → (𝑃 /s (𝑃 ~QG (𝐻 “ {(0g𝑃)}))) ≃𝑚 (𝐻s 𝑃))
8278, 81eqbrtrd 5141 . 2 (𝜑𝑄𝑚 (𝐻s 𝑃))
832, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 1, 15algextdeglem3 33753 . 2 (𝜑𝑄 ∈ LVec)
8482, 83lmicdim 33644 1 (𝜑 → (dim‘𝑄) = (dim‘(𝐻s 𝑃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  {cab 2713  {crab 3415  Vcvv 3459  cun 3924  {csn 4601   cuni 4883   class class class wbr 5119  cmpt 5201  ccnv 5653  dom cdm 5654  cima 5657   Fn wfn 6526  cfv 6531  (class class class)co 7405  [cec 8717  Basecbs 17228  s cress 17251  0gc0g 17453  s cimas 17518   /s cqus 17519   ~QG cqg 19105  Ringcrg 20193  rcdsr 20314  SubRingcsubrg 20529  Fieldcfield 20690  SubDRingcsdrg 20746  𝑚 clmic 20979  RSpancrsp 21168  Poly1cpl1 22112   evalSub1 ces1 22251  deg1cdg1 26011  Monic1pcmn1 26083  Unic1pcuc1p 26084  rem1pcr1p 26086  idlGen1pcig1p 26087   fldGen cfldgen 33304  dimcldim 33638   IntgRing cirng 33724   minPoly cminply 33733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-reg 9606  ax-inf2 9655  ax-ac2 10477  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-ofr 7672  df-rpss 7717  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-er 8719  df-ec 8721  df-qs 8725  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-sup 9454  df-inf 9455  df-oi 9524  df-r1 9778  df-rank 9779  df-dju 9915  df-card 9953  df-acn 9956  df-ac 10130  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-xnn0 12575  df-z 12589  df-dec 12709  df-uz 12853  df-fz 13525  df-fzo 13672  df-seq 14020  df-hash 14349  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ocomp 17292  df-ds 17293  df-unif 17294  df-hom 17295  df-cco 17296  df-0g 17455  df-gsum 17456  df-prds 17461  df-pws 17463  df-imas 17522  df-qus 17523  df-mre 17598  df-mrc 17599  df-mri 17600  df-acs 17601  df-proset 18306  df-drs 18307  df-poset 18325  df-ipo 18538  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-mhm 18761  df-submnd 18762  df-grp 18919  df-minusg 18920  df-sbg 18921  df-mulg 19051  df-subg 19106  df-nsg 19107  df-eqg 19108  df-ghm 19196  df-gim 19242  df-cntz 19300  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-srg 20147  df-ring 20195  df-cring 20196  df-oppr 20297  df-dvdsr 20317  df-unit 20318  df-invr 20348  df-dvr 20361  df-rhm 20432  df-subrng 20506  df-subrg 20530  df-rlreg 20654  df-drng 20691  df-field 20692  df-sdrg 20747  df-lmod 20819  df-lss 20889  df-lsp 20929  df-lmhm 20980  df-lmim 20981  df-lmic 20982  df-lbs 21033  df-lvec 21061  df-sra 21131  df-rgmod 21132  df-lidl 21169  df-rsp 21170  df-cnfld 21316  df-lindf 21766  df-linds 21767  df-assa 21813  df-asp 21814  df-ascl 21815  df-psr 21869  df-mvr 21870  df-mpl 21871  df-opsr 21873  df-evls 22032  df-evl 22033  df-psr1 22115  df-vr1 22116  df-ply1 22117  df-coe1 22118  df-evls1 22253  df-evl1 22254  df-mdeg 26012  df-deg1 26013  df-mon1 26088  df-uc1p 26089  df-q1p 26090  df-r1p 26091  df-ig1p 26092  df-fldgen 33305  df-dim 33639  df-irng 33725  df-minply 33734
This theorem is referenced by:  algextdeg  33759
  Copyright terms: Public domain W3C validator