Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  algextdeglem6 Structured version   Visualization version   GIF version

Theorem algextdeglem6 33719
Description: Lemma for algextdeg 33722. By r1pquslmic 33583, the univariate polynomial remainder ring (𝐻s 𝑃) is isomorphic with the quotient ring 𝑄. (Contributed by Thierry Arnoux, 2-Apr-2025.)
Hypotheses
Ref Expression
algextdeg.k 𝐾 = (𝐸s 𝐹)
algextdeg.l 𝐿 = (𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴})))
algextdeg.d 𝐷 = (deg1𝐸)
algextdeg.m 𝑀 = (𝐸 minPoly 𝐹)
algextdeg.f (𝜑𝐸 ∈ Field)
algextdeg.e (𝜑𝐹 ∈ (SubDRing‘𝐸))
algextdeg.a (𝜑𝐴 ∈ (𝐸 IntgRing 𝐹))
algextdeglem.o 𝑂 = (𝐸 evalSub1 𝐹)
algextdeglem.y 𝑃 = (Poly1𝐾)
algextdeglem.u 𝑈 = (Base‘𝑃)
algextdeglem.g 𝐺 = (𝑝𝑈 ↦ ((𝑂𝑝)‘𝐴))
algextdeglem.n 𝑁 = (𝑥𝑈 ↦ [𝑥](𝑃 ~QG 𝑍))
algextdeglem.z 𝑍 = (𝐺 “ {(0g𝐿)})
algextdeglem.q 𝑄 = (𝑃 /s (𝑃 ~QG 𝑍))
algextdeglem.j 𝐽 = (𝑝 ∈ (Base‘𝑄) ↦ (𝐺𝑝))
algextdeglem.r 𝑅 = (rem1p𝐾)
algextdeglem.h 𝐻 = (𝑝𝑈 ↦ (𝑝𝑅(𝑀𝐴)))
Assertion
Ref Expression
algextdeglem6 (𝜑 → (dim‘𝑄) = (dim‘(𝐻s 𝑃)))
Distinct variable groups:   𝐴,𝑝   𝐸,𝑝   𝐹,𝑝,𝑥   𝐺,𝑝,𝑥   𝐻,𝑝   𝐽,𝑝,𝑥   𝐾,𝑝   𝐿,𝑝,𝑥   𝑀,𝑝   𝑥,𝑁   𝑂,𝑝   𝑃,𝑝,𝑥   𝑄,𝑝,𝑥   𝑅,𝑝   𝑈,𝑝,𝑥   𝑍,𝑝,𝑥   𝜑,𝑝,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐷(𝑥,𝑝)   𝑅(𝑥)   𝐸(𝑥)   𝐻(𝑥)   𝐾(𝑥)   𝑀(𝑥)   𝑁(𝑝)   𝑂(𝑥)

Proof of Theorem algextdeglem6
StepHypRef Expression
1 algextdeglem.q . . . 4 𝑄 = (𝑃 /s (𝑃 ~QG 𝑍))
2 algextdeg.k . . . . . . . 8 𝐾 = (𝐸s 𝐹)
3 algextdeg.l . . . . . . . 8 𝐿 = (𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴})))
4 algextdeg.d . . . . . . . 8 𝐷 = (deg1𝐸)
5 algextdeg.m . . . . . . . 8 𝑀 = (𝐸 minPoly 𝐹)
6 algextdeg.f . . . . . . . 8 (𝜑𝐸 ∈ Field)
7 algextdeg.e . . . . . . . 8 (𝜑𝐹 ∈ (SubDRing‘𝐸))
8 algextdeg.a . . . . . . . 8 (𝜑𝐴 ∈ (𝐸 IntgRing 𝐹))
9 algextdeglem.o . . . . . . . 8 𝑂 = (𝐸 evalSub1 𝐹)
10 algextdeglem.y . . . . . . . 8 𝑃 = (Poly1𝐾)
11 algextdeglem.u . . . . . . . 8 𝑈 = (Base‘𝑃)
12 algextdeglem.g . . . . . . . 8 𝐺 = (𝑝𝑈 ↦ ((𝑂𝑝)‘𝐴))
13 algextdeglem.n . . . . . . . 8 𝑁 = (𝑥𝑈 ↦ [𝑥](𝑃 ~QG 𝑍))
14 algextdeglem.z . . . . . . . 8 𝑍 = (𝐺 “ {(0g𝐿)})
15 algextdeglem.j . . . . . . . 8 𝐽 = (𝑝 ∈ (Base‘𝑄) ↦ (𝐺𝑝))
162, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 1, 15algextdeglem5 33718 . . . . . . 7 (𝜑𝑍 = ((RSpan‘𝑃)‘{(𝑀𝐴)}))
17 sdrgsubrg 20707 . . . . . . . . . . 11 (𝐹 ∈ (SubDRing‘𝐸) → 𝐹 ∈ (SubRing‘𝐸))
187, 17syl 17 . . . . . . . . . 10 (𝜑𝐹 ∈ (SubRing‘𝐸))
192subrgring 20490 . . . . . . . . . 10 (𝐹 ∈ (SubRing‘𝐸) → 𝐾 ∈ Ring)
2018, 19syl 17 . . . . . . . . 9 (𝜑𝐾 ∈ Ring)
2110ply1ring 22139 . . . . . . . . 9 (𝐾 ∈ Ring → 𝑃 ∈ Ring)
2220, 21syl 17 . . . . . . . 8 (𝜑𝑃 ∈ Ring)
232fveq2i 6864 . . . . . . . . . . 11 (Poly1𝐾) = (Poly1‘(𝐸s 𝐹))
2410, 23eqtri 2753 . . . . . . . . . 10 𝑃 = (Poly1‘(𝐸s 𝐹))
25 eqid 2730 . . . . . . . . . 10 (Base‘𝐸) = (Base‘𝐸)
26 eqid 2730 . . . . . . . . . . . 12 (0g𝐸) = (0g𝐸)
276fldcrngd 20658 . . . . . . . . . . . 12 (𝜑𝐸 ∈ CRing)
289, 2, 25, 26, 27, 18irngssv 33690 . . . . . . . . . . 11 (𝜑 → (𝐸 IntgRing 𝐹) ⊆ (Base‘𝐸))
2928, 8sseldd 3950 . . . . . . . . . 10 (𝜑𝐴 ∈ (Base‘𝐸))
30 eqid 2730 . . . . . . . . . 10 {𝑝 ∈ dom 𝑂 ∣ ((𝑂𝑝)‘𝐴) = (0g𝐸)} = {𝑝 ∈ dom 𝑂 ∣ ((𝑂𝑝)‘𝐴) = (0g𝐸)}
31 eqid 2730 . . . . . . . . . 10 (RSpan‘𝑃) = (RSpan‘𝑃)
32 eqid 2730 . . . . . . . . . 10 (idlGen1p‘(𝐸s 𝐹)) = (idlGen1p‘(𝐸s 𝐹))
339, 24, 25, 6, 7, 29, 26, 30, 31, 32, 5minplycl 33703 . . . . . . . . 9 (𝜑 → (𝑀𝐴) ∈ (Base‘𝑃))
3433, 11eleqtrrdi 2840 . . . . . . . 8 (𝜑 → (𝑀𝐴) ∈ 𝑈)
35 eqid 2730 . . . . . . . . 9 (∥r𝑃) = (∥r𝑃)
3611, 31, 35rspsn 21250 . . . . . . . 8 ((𝑃 ∈ Ring ∧ (𝑀𝐴) ∈ 𝑈) → ((RSpan‘𝑃)‘{(𝑀𝐴)}) = {𝑝 ∣ (𝑀𝐴)(∥r𝑃)𝑝})
3722, 34, 36syl2anc 584 . . . . . . 7 (𝜑 → ((RSpan‘𝑃)‘{(𝑀𝐴)}) = {𝑝 ∣ (𝑀𝐴)(∥r𝑃)𝑝})
38 nfv 1914 . . . . . . . . 9 𝑝𝜑
39 nfab1 2894 . . . . . . . . 9 𝑝{𝑝 ∣ (𝑀𝐴)(∥r𝑃)𝑝}
40 nfrab1 3429 . . . . . . . . 9 𝑝{𝑝𝑈 ∣ (𝐻𝑝) = (0g𝑃)}
4111, 35dvdsrcl2 20282 . . . . . . . . . . . . . 14 ((𝑃 ∈ Ring ∧ (𝑀𝐴)(∥r𝑃)𝑝) → 𝑝𝑈)
4241ex 412 . . . . . . . . . . . . 13 (𝑃 ∈ Ring → ((𝑀𝐴)(∥r𝑃)𝑝𝑝𝑈))
4342pm4.71rd 562 . . . . . . . . . . . 12 (𝑃 ∈ Ring → ((𝑀𝐴)(∥r𝑃)𝑝 ↔ (𝑝𝑈 ∧ (𝑀𝐴)(∥r𝑃)𝑝)))
4422, 43syl 17 . . . . . . . . . . 11 (𝜑 → ((𝑀𝐴)(∥r𝑃)𝑝 ↔ (𝑝𝑈 ∧ (𝑀𝐴)(∥r𝑃)𝑝)))
4520adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑝𝑈) → 𝐾 ∈ Ring)
46 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑝𝑈) → 𝑝𝑈)
47 eqid 2730 . . . . . . . . . . . . . . . . 17 (0g‘(Poly1𝐸)) = (0g‘(Poly1𝐸))
482fveq2i 6864 . . . . . . . . . . . . . . . . 17 (Monic1p𝐾) = (Monic1p‘(𝐸s 𝐹))
4947, 6, 7, 5, 8, 48minplym1p 33710 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑀𝐴) ∈ (Monic1p𝐾))
50 eqid 2730 . . . . . . . . . . . . . . . . 17 (Unic1p𝐾) = (Unic1p𝐾)
51 eqid 2730 . . . . . . . . . . . . . . . . 17 (Monic1p𝐾) = (Monic1p𝐾)
5250, 51mon1puc1p 26063 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ Ring ∧ (𝑀𝐴) ∈ (Monic1p𝐾)) → (𝑀𝐴) ∈ (Unic1p𝐾))
5320, 49, 52syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀𝐴) ∈ (Unic1p𝐾))
5453adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑝𝑈) → (𝑀𝐴) ∈ (Unic1p𝐾))
55 eqid 2730 . . . . . . . . . . . . . . 15 (0g𝑃) = (0g𝑃)
56 algextdeglem.r . . . . . . . . . . . . . . 15 𝑅 = (rem1p𝐾)
5710, 35, 11, 50, 55, 56dvdsr1p 26076 . . . . . . . . . . . . . 14 ((𝐾 ∈ Ring ∧ 𝑝𝑈 ∧ (𝑀𝐴) ∈ (Unic1p𝐾)) → ((𝑀𝐴)(∥r𝑃)𝑝 ↔ (𝑝𝑅(𝑀𝐴)) = (0g𝑃)))
5845, 46, 54, 57syl3anc 1373 . . . . . . . . . . . . 13 ((𝜑𝑝𝑈) → ((𝑀𝐴)(∥r𝑃)𝑝 ↔ (𝑝𝑅(𝑀𝐴)) = (0g𝑃)))
59 ovexd 7425 . . . . . . . . . . . . . . 15 ((𝜑𝑝𝑈) → (𝑝𝑅(𝑀𝐴)) ∈ V)
60 algextdeglem.h . . . . . . . . . . . . . . . 16 𝐻 = (𝑝𝑈 ↦ (𝑝𝑅(𝑀𝐴)))
6160fvmpt2 6982 . . . . . . . . . . . . . . 15 ((𝑝𝑈 ∧ (𝑝𝑅(𝑀𝐴)) ∈ V) → (𝐻𝑝) = (𝑝𝑅(𝑀𝐴)))
6246, 59, 61syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑝𝑈) → (𝐻𝑝) = (𝑝𝑅(𝑀𝐴)))
6362eqeq1d 2732 . . . . . . . . . . . . 13 ((𝜑𝑝𝑈) → ((𝐻𝑝) = (0g𝑃) ↔ (𝑝𝑅(𝑀𝐴)) = (0g𝑃)))
6458, 63bitr4d 282 . . . . . . . . . . . 12 ((𝜑𝑝𝑈) → ((𝑀𝐴)(∥r𝑃)𝑝 ↔ (𝐻𝑝) = (0g𝑃)))
6564pm5.32da 579 . . . . . . . . . . 11 (𝜑 → ((𝑝𝑈 ∧ (𝑀𝐴)(∥r𝑃)𝑝) ↔ (𝑝𝑈 ∧ (𝐻𝑝) = (0g𝑃))))
6644, 65bitrd 279 . . . . . . . . . 10 (𝜑 → ((𝑀𝐴)(∥r𝑃)𝑝 ↔ (𝑝𝑈 ∧ (𝐻𝑝) = (0g𝑃))))
67 abid 2712 . . . . . . . . . 10 (𝑝 ∈ {𝑝 ∣ (𝑀𝐴)(∥r𝑃)𝑝} ↔ (𝑀𝐴)(∥r𝑃)𝑝)
68 rabid 3430 . . . . . . . . . 10 (𝑝 ∈ {𝑝𝑈 ∣ (𝐻𝑝) = (0g𝑃)} ↔ (𝑝𝑈 ∧ (𝐻𝑝) = (0g𝑃)))
6966, 67, 683bitr4g 314 . . . . . . . . 9 (𝜑 → (𝑝 ∈ {𝑝 ∣ (𝑀𝐴)(∥r𝑃)𝑝} ↔ 𝑝 ∈ {𝑝𝑈 ∣ (𝐻𝑝) = (0g𝑃)}))
7038, 39, 40, 69eqrd 3969 . . . . . . . 8 (𝜑 → {𝑝 ∣ (𝑀𝐴)(∥r𝑃)𝑝} = {𝑝𝑈 ∣ (𝐻𝑝) = (0g𝑃)})
7138, 59, 60fnmptd 6662 . . . . . . . . 9 (𝜑𝐻 Fn 𝑈)
72 fniniseg2 7037 . . . . . . . . 9 (𝐻 Fn 𝑈 → (𝐻 “ {(0g𝑃)}) = {𝑝𝑈 ∣ (𝐻𝑝) = (0g𝑃)})
7371, 72syl 17 . . . . . . . 8 (𝜑 → (𝐻 “ {(0g𝑃)}) = {𝑝𝑈 ∣ (𝐻𝑝) = (0g𝑃)})
7470, 73eqtr4d 2768 . . . . . . 7 (𝜑 → {𝑝 ∣ (𝑀𝐴)(∥r𝑃)𝑝} = (𝐻 “ {(0g𝑃)}))
7516, 37, 743eqtrd 2769 . . . . . 6 (𝜑𝑍 = (𝐻 “ {(0g𝑃)}))
7675oveq2d 7406 . . . . 5 (𝜑 → (𝑃 ~QG 𝑍) = (𝑃 ~QG (𝐻 “ {(0g𝑃)})))
7776oveq2d 7406 . . . 4 (𝜑 → (𝑃 /s (𝑃 ~QG 𝑍)) = (𝑃 /s (𝑃 ~QG (𝐻 “ {(0g𝑃)}))))
781, 77eqtrid 2777 . . 3 (𝜑𝑄 = (𝑃 /s (𝑃 ~QG (𝐻 “ {(0g𝑃)}))))
79 eqid 2730 . . . 4 (𝐻 “ {(0g𝑃)}) = (𝐻 “ {(0g𝑃)})
80 eqid 2730 . . . 4 (𝑃 /s (𝑃 ~QG (𝐻 “ {(0g𝑃)}))) = (𝑃 /s (𝑃 ~QG (𝐻 “ {(0g𝑃)})))
8110, 11, 56, 50, 60, 20, 53, 55, 79, 80r1pquslmic 33583 . . 3 (𝜑 → (𝑃 /s (𝑃 ~QG (𝐻 “ {(0g𝑃)}))) ≃𝑚 (𝐻s 𝑃))
8278, 81eqbrtrd 5132 . 2 (𝜑𝑄𝑚 (𝐻s 𝑃))
832, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 1, 15algextdeglem3 33716 . 2 (𝜑𝑄 ∈ LVec)
8482, 83lmicdim 33607 1 (𝜑 → (dim‘𝑄) = (dim‘(𝐻s 𝑃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2708  {crab 3408  Vcvv 3450  cun 3915  {csn 4592   cuni 4874   class class class wbr 5110  cmpt 5191  ccnv 5640  dom cdm 5641  cima 5644   Fn wfn 6509  cfv 6514  (class class class)co 7390  [cec 8672  Basecbs 17186  s cress 17207  0gc0g 17409  s cimas 17474   /s cqus 17475   ~QG cqg 19061  Ringcrg 20149  rcdsr 20270  SubRingcsubrg 20485  Fieldcfield 20646  SubDRingcsdrg 20702  𝑚 clmic 20935  RSpancrsp 21124  Poly1cpl1 22068   evalSub1 ces1 22207  deg1cdg1 25966  Monic1pcmn1 26038  Unic1pcuc1p 26039  rem1pcr1p 26041  idlGen1pcig1p 26042   fldGen cfldgen 33267  dimcldim 33601   IntgRing cirng 33685   minPoly cminply 33696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-reg 9552  ax-inf2 9601  ax-ac2 10423  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-ofr 7657  df-rpss 7702  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-er 8674  df-ec 8676  df-qs 8680  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-inf 9401  df-oi 9470  df-r1 9724  df-rank 9725  df-dju 9861  df-card 9899  df-acn 9902  df-ac 10076  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-xnn0 12523  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ocomp 17248  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-0g 17411  df-gsum 17412  df-prds 17417  df-pws 17419  df-imas 17478  df-qus 17479  df-mre 17554  df-mrc 17555  df-mri 17556  df-acs 17557  df-proset 18262  df-drs 18263  df-poset 18281  df-ipo 18494  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-nsg 19063  df-eqg 19064  df-ghm 19152  df-gim 19198  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-srg 20103  df-ring 20151  df-cring 20152  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-dvr 20317  df-rhm 20388  df-subrng 20462  df-subrg 20486  df-rlreg 20610  df-drng 20647  df-field 20648  df-sdrg 20703  df-lmod 20775  df-lss 20845  df-lsp 20885  df-lmhm 20936  df-lmim 20937  df-lmic 20938  df-lbs 20989  df-lvec 21017  df-sra 21087  df-rgmod 21088  df-lidl 21125  df-rsp 21126  df-cnfld 21272  df-lindf 21722  df-linds 21723  df-assa 21769  df-asp 21770  df-ascl 21771  df-psr 21825  df-mvr 21826  df-mpl 21827  df-opsr 21829  df-evls 21988  df-evl 21989  df-psr1 22071  df-vr1 22072  df-ply1 22073  df-coe1 22074  df-evls1 22209  df-evl1 22210  df-mdeg 25967  df-deg1 25968  df-mon1 26043  df-uc1p 26044  df-q1p 26045  df-r1p 26046  df-ig1p 26047  df-fldgen 33268  df-dim 33602  df-irng 33686  df-minply 33697
This theorem is referenced by:  algextdeg  33722
  Copyright terms: Public domain W3C validator