Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  algextdeglem6 Structured version   Visualization version   GIF version

Theorem algextdeglem6 33728
Description: Lemma for algextdeg 33731. By r1pquslmic 33611, the univariate polynomial remainder ring (𝐻s 𝑃) is isomorphic with the quotient ring 𝑄. (Contributed by Thierry Arnoux, 2-Apr-2025.)
Hypotheses
Ref Expression
algextdeg.k 𝐾 = (𝐸s 𝐹)
algextdeg.l 𝐿 = (𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴})))
algextdeg.d 𝐷 = (deg1𝐸)
algextdeg.m 𝑀 = (𝐸 minPoly 𝐹)
algextdeg.f (𝜑𝐸 ∈ Field)
algextdeg.e (𝜑𝐹 ∈ (SubDRing‘𝐸))
algextdeg.a (𝜑𝐴 ∈ (𝐸 IntgRing 𝐹))
algextdeglem.o 𝑂 = (𝐸 evalSub1 𝐹)
algextdeglem.y 𝑃 = (Poly1𝐾)
algextdeglem.u 𝑈 = (Base‘𝑃)
algextdeglem.g 𝐺 = (𝑝𝑈 ↦ ((𝑂𝑝)‘𝐴))
algextdeglem.n 𝑁 = (𝑥𝑈 ↦ [𝑥](𝑃 ~QG 𝑍))
algextdeglem.z 𝑍 = (𝐺 “ {(0g𝐿)})
algextdeglem.q 𝑄 = (𝑃 /s (𝑃 ~QG 𝑍))
algextdeglem.j 𝐽 = (𝑝 ∈ (Base‘𝑄) ↦ (𝐺𝑝))
algextdeglem.r 𝑅 = (rem1p𝐾)
algextdeglem.h 𝐻 = (𝑝𝑈 ↦ (𝑝𝑅(𝑀𝐴)))
Assertion
Ref Expression
algextdeglem6 (𝜑 → (dim‘𝑄) = (dim‘(𝐻s 𝑃)))
Distinct variable groups:   𝐴,𝑝   𝐸,𝑝   𝐹,𝑝,𝑥   𝐺,𝑝,𝑥   𝐻,𝑝   𝐽,𝑝,𝑥   𝐾,𝑝   𝐿,𝑝,𝑥   𝑀,𝑝   𝑥,𝑁   𝑂,𝑝   𝑃,𝑝,𝑥   𝑄,𝑝,𝑥   𝑅,𝑝   𝑈,𝑝,𝑥   𝑍,𝑝,𝑥   𝜑,𝑝,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐷(𝑥,𝑝)   𝑅(𝑥)   𝐸(𝑥)   𝐻(𝑥)   𝐾(𝑥)   𝑀(𝑥)   𝑁(𝑝)   𝑂(𝑥)

Proof of Theorem algextdeglem6
StepHypRef Expression
1 algextdeglem.q . . . 4 𝑄 = (𝑃 /s (𝑃 ~QG 𝑍))
2 algextdeg.k . . . . . . . 8 𝐾 = (𝐸s 𝐹)
3 algextdeg.l . . . . . . . 8 𝐿 = (𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴})))
4 algextdeg.d . . . . . . . 8 𝐷 = (deg1𝐸)
5 algextdeg.m . . . . . . . 8 𝑀 = (𝐸 minPoly 𝐹)
6 algextdeg.f . . . . . . . 8 (𝜑𝐸 ∈ Field)
7 algextdeg.e . . . . . . . 8 (𝜑𝐹 ∈ (SubDRing‘𝐸))
8 algextdeg.a . . . . . . . 8 (𝜑𝐴 ∈ (𝐸 IntgRing 𝐹))
9 algextdeglem.o . . . . . . . 8 𝑂 = (𝐸 evalSub1 𝐹)
10 algextdeglem.y . . . . . . . 8 𝑃 = (Poly1𝐾)
11 algextdeglem.u . . . . . . . 8 𝑈 = (Base‘𝑃)
12 algextdeglem.g . . . . . . . 8 𝐺 = (𝑝𝑈 ↦ ((𝑂𝑝)‘𝐴))
13 algextdeglem.n . . . . . . . 8 𝑁 = (𝑥𝑈 ↦ [𝑥](𝑃 ~QG 𝑍))
14 algextdeglem.z . . . . . . . 8 𝑍 = (𝐺 “ {(0g𝐿)})
15 algextdeglem.j . . . . . . . 8 𝐽 = (𝑝 ∈ (Base‘𝑄) ↦ (𝐺𝑝))
162, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 1, 15algextdeglem5 33727 . . . . . . 7 (𝜑𝑍 = ((RSpan‘𝑃)‘{(𝑀𝐴)}))
17 sdrgsubrg 20809 . . . . . . . . . . 11 (𝐹 ∈ (SubDRing‘𝐸) → 𝐹 ∈ (SubRing‘𝐸))
187, 17syl 17 . . . . . . . . . 10 (𝜑𝐹 ∈ (SubRing‘𝐸))
192subrgring 20591 . . . . . . . . . 10 (𝐹 ∈ (SubRing‘𝐸) → 𝐾 ∈ Ring)
2018, 19syl 17 . . . . . . . . 9 (𝜑𝐾 ∈ Ring)
2110ply1ring 22265 . . . . . . . . 9 (𝐾 ∈ Ring → 𝑃 ∈ Ring)
2220, 21syl 17 . . . . . . . 8 (𝜑𝑃 ∈ Ring)
232fveq2i 6910 . . . . . . . . . . 11 (Poly1𝐾) = (Poly1‘(𝐸s 𝐹))
2410, 23eqtri 2763 . . . . . . . . . 10 𝑃 = (Poly1‘(𝐸s 𝐹))
25 eqid 2735 . . . . . . . . . 10 (Base‘𝐸) = (Base‘𝐸)
26 eqid 2735 . . . . . . . . . . . 12 (0g𝐸) = (0g𝐸)
276fldcrngd 20759 . . . . . . . . . . . 12 (𝜑𝐸 ∈ CRing)
289, 2, 25, 26, 27, 18irngssv 33703 . . . . . . . . . . 11 (𝜑 → (𝐸 IntgRing 𝐹) ⊆ (Base‘𝐸))
2928, 8sseldd 3996 . . . . . . . . . 10 (𝜑𝐴 ∈ (Base‘𝐸))
30 eqid 2735 . . . . . . . . . 10 {𝑝 ∈ dom 𝑂 ∣ ((𝑂𝑝)‘𝐴) = (0g𝐸)} = {𝑝 ∈ dom 𝑂 ∣ ((𝑂𝑝)‘𝐴) = (0g𝐸)}
31 eqid 2735 . . . . . . . . . 10 (RSpan‘𝑃) = (RSpan‘𝑃)
32 eqid 2735 . . . . . . . . . 10 (idlGen1p‘(𝐸s 𝐹)) = (idlGen1p‘(𝐸s 𝐹))
339, 24, 25, 6, 7, 29, 26, 30, 31, 32, 5minplycl 33714 . . . . . . . . 9 (𝜑 → (𝑀𝐴) ∈ (Base‘𝑃))
3433, 11eleqtrrdi 2850 . . . . . . . 8 (𝜑 → (𝑀𝐴) ∈ 𝑈)
35 eqid 2735 . . . . . . . . 9 (∥r𝑃) = (∥r𝑃)
3611, 31, 35rspsn 21361 . . . . . . . 8 ((𝑃 ∈ Ring ∧ (𝑀𝐴) ∈ 𝑈) → ((RSpan‘𝑃)‘{(𝑀𝐴)}) = {𝑝 ∣ (𝑀𝐴)(∥r𝑃)𝑝})
3722, 34, 36syl2anc 584 . . . . . . 7 (𝜑 → ((RSpan‘𝑃)‘{(𝑀𝐴)}) = {𝑝 ∣ (𝑀𝐴)(∥r𝑃)𝑝})
38 nfv 1912 . . . . . . . . 9 𝑝𝜑
39 nfab1 2905 . . . . . . . . 9 𝑝{𝑝 ∣ (𝑀𝐴)(∥r𝑃)𝑝}
40 nfrab1 3454 . . . . . . . . 9 𝑝{𝑝𝑈 ∣ (𝐻𝑝) = (0g𝑃)}
4111, 35dvdsrcl2 20383 . . . . . . . . . . . . . 14 ((𝑃 ∈ Ring ∧ (𝑀𝐴)(∥r𝑃)𝑝) → 𝑝𝑈)
4241ex 412 . . . . . . . . . . . . 13 (𝑃 ∈ Ring → ((𝑀𝐴)(∥r𝑃)𝑝𝑝𝑈))
4342pm4.71rd 562 . . . . . . . . . . . 12 (𝑃 ∈ Ring → ((𝑀𝐴)(∥r𝑃)𝑝 ↔ (𝑝𝑈 ∧ (𝑀𝐴)(∥r𝑃)𝑝)))
4422, 43syl 17 . . . . . . . . . . 11 (𝜑 → ((𝑀𝐴)(∥r𝑃)𝑝 ↔ (𝑝𝑈 ∧ (𝑀𝐴)(∥r𝑃)𝑝)))
4520adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑝𝑈) → 𝐾 ∈ Ring)
46 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑝𝑈) → 𝑝𝑈)
47 eqid 2735 . . . . . . . . . . . . . . . . 17 (0g‘(Poly1𝐸)) = (0g‘(Poly1𝐸))
482fveq2i 6910 . . . . . . . . . . . . . . . . 17 (Monic1p𝐾) = (Monic1p‘(𝐸s 𝐹))
4947, 6, 7, 5, 8, 48minplym1p 33721 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑀𝐴) ∈ (Monic1p𝐾))
50 eqid 2735 . . . . . . . . . . . . . . . . 17 (Unic1p𝐾) = (Unic1p𝐾)
51 eqid 2735 . . . . . . . . . . . . . . . . 17 (Monic1p𝐾) = (Monic1p𝐾)
5250, 51mon1puc1p 26205 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ Ring ∧ (𝑀𝐴) ∈ (Monic1p𝐾)) → (𝑀𝐴) ∈ (Unic1p𝐾))
5320, 49, 52syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀𝐴) ∈ (Unic1p𝐾))
5453adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑝𝑈) → (𝑀𝐴) ∈ (Unic1p𝐾))
55 eqid 2735 . . . . . . . . . . . . . . 15 (0g𝑃) = (0g𝑃)
56 algextdeglem.r . . . . . . . . . . . . . . 15 𝑅 = (rem1p𝐾)
5710, 35, 11, 50, 55, 56dvdsr1p 26218 . . . . . . . . . . . . . 14 ((𝐾 ∈ Ring ∧ 𝑝𝑈 ∧ (𝑀𝐴) ∈ (Unic1p𝐾)) → ((𝑀𝐴)(∥r𝑃)𝑝 ↔ (𝑝𝑅(𝑀𝐴)) = (0g𝑃)))
5845, 46, 54, 57syl3anc 1370 . . . . . . . . . . . . 13 ((𝜑𝑝𝑈) → ((𝑀𝐴)(∥r𝑃)𝑝 ↔ (𝑝𝑅(𝑀𝐴)) = (0g𝑃)))
59 ovexd 7466 . . . . . . . . . . . . . . 15 ((𝜑𝑝𝑈) → (𝑝𝑅(𝑀𝐴)) ∈ V)
60 algextdeglem.h . . . . . . . . . . . . . . . 16 𝐻 = (𝑝𝑈 ↦ (𝑝𝑅(𝑀𝐴)))
6160fvmpt2 7027 . . . . . . . . . . . . . . 15 ((𝑝𝑈 ∧ (𝑝𝑅(𝑀𝐴)) ∈ V) → (𝐻𝑝) = (𝑝𝑅(𝑀𝐴)))
6246, 59, 61syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑝𝑈) → (𝐻𝑝) = (𝑝𝑅(𝑀𝐴)))
6362eqeq1d 2737 . . . . . . . . . . . . 13 ((𝜑𝑝𝑈) → ((𝐻𝑝) = (0g𝑃) ↔ (𝑝𝑅(𝑀𝐴)) = (0g𝑃)))
6458, 63bitr4d 282 . . . . . . . . . . . 12 ((𝜑𝑝𝑈) → ((𝑀𝐴)(∥r𝑃)𝑝 ↔ (𝐻𝑝) = (0g𝑃)))
6564pm5.32da 579 . . . . . . . . . . 11 (𝜑 → ((𝑝𝑈 ∧ (𝑀𝐴)(∥r𝑃)𝑝) ↔ (𝑝𝑈 ∧ (𝐻𝑝) = (0g𝑃))))
6644, 65bitrd 279 . . . . . . . . . 10 (𝜑 → ((𝑀𝐴)(∥r𝑃)𝑝 ↔ (𝑝𝑈 ∧ (𝐻𝑝) = (0g𝑃))))
67 abid 2716 . . . . . . . . . 10 (𝑝 ∈ {𝑝 ∣ (𝑀𝐴)(∥r𝑃)𝑝} ↔ (𝑀𝐴)(∥r𝑃)𝑝)
68 rabid 3455 . . . . . . . . . 10 (𝑝 ∈ {𝑝𝑈 ∣ (𝐻𝑝) = (0g𝑃)} ↔ (𝑝𝑈 ∧ (𝐻𝑝) = (0g𝑃)))
6966, 67, 683bitr4g 314 . . . . . . . . 9 (𝜑 → (𝑝 ∈ {𝑝 ∣ (𝑀𝐴)(∥r𝑃)𝑝} ↔ 𝑝 ∈ {𝑝𝑈 ∣ (𝐻𝑝) = (0g𝑃)}))
7038, 39, 40, 69eqrd 4015 . . . . . . . 8 (𝜑 → {𝑝 ∣ (𝑀𝐴)(∥r𝑃)𝑝} = {𝑝𝑈 ∣ (𝐻𝑝) = (0g𝑃)})
7138, 59, 60fnmptd 6710 . . . . . . . . 9 (𝜑𝐻 Fn 𝑈)
72 fniniseg2 7082 . . . . . . . . 9 (𝐻 Fn 𝑈 → (𝐻 “ {(0g𝑃)}) = {𝑝𝑈 ∣ (𝐻𝑝) = (0g𝑃)})
7371, 72syl 17 . . . . . . . 8 (𝜑 → (𝐻 “ {(0g𝑃)}) = {𝑝𝑈 ∣ (𝐻𝑝) = (0g𝑃)})
7470, 73eqtr4d 2778 . . . . . . 7 (𝜑 → {𝑝 ∣ (𝑀𝐴)(∥r𝑃)𝑝} = (𝐻 “ {(0g𝑃)}))
7516, 37, 743eqtrd 2779 . . . . . 6 (𝜑𝑍 = (𝐻 “ {(0g𝑃)}))
7675oveq2d 7447 . . . . 5 (𝜑 → (𝑃 ~QG 𝑍) = (𝑃 ~QG (𝐻 “ {(0g𝑃)})))
7776oveq2d 7447 . . . 4 (𝜑 → (𝑃 /s (𝑃 ~QG 𝑍)) = (𝑃 /s (𝑃 ~QG (𝐻 “ {(0g𝑃)}))))
781, 77eqtrid 2787 . . 3 (𝜑𝑄 = (𝑃 /s (𝑃 ~QG (𝐻 “ {(0g𝑃)}))))
79 eqid 2735 . . . 4 (𝐻 “ {(0g𝑃)}) = (𝐻 “ {(0g𝑃)})
80 eqid 2735 . . . 4 (𝑃 /s (𝑃 ~QG (𝐻 “ {(0g𝑃)}))) = (𝑃 /s (𝑃 ~QG (𝐻 “ {(0g𝑃)})))
8110, 11, 56, 50, 60, 20, 53, 55, 79, 80r1pquslmic 33611 . . 3 (𝜑 → (𝑃 /s (𝑃 ~QG (𝐻 “ {(0g𝑃)}))) ≃𝑚 (𝐻s 𝑃))
8278, 81eqbrtrd 5170 . 2 (𝜑𝑄𝑚 (𝐻s 𝑃))
832, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 1, 15algextdeglem3 33725 . 2 (𝜑𝑄 ∈ LVec)
8482, 83lmicdim 33632 1 (𝜑 → (dim‘𝑄) = (dim‘(𝐻s 𝑃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  {cab 2712  {crab 3433  Vcvv 3478  cun 3961  {csn 4631   cuni 4912   class class class wbr 5148  cmpt 5231  ccnv 5688  dom cdm 5689  cima 5692   Fn wfn 6558  cfv 6563  (class class class)co 7431  [cec 8742  Basecbs 17245  s cress 17274  0gc0g 17486  s cimas 17551   /s cqus 17552   ~QG cqg 19153  Ringcrg 20251  rcdsr 20371  SubRingcsubrg 20586  Fieldcfield 20747  SubDRingcsdrg 20804  𝑚 clmic 21038  RSpancrsp 21235  Poly1cpl1 22194   evalSub1 ces1 22333  deg1cdg1 26108  Monic1pcmn1 26180  Unic1pcuc1p 26181  rem1pcr1p 26183  idlGen1pcig1p 26184   fldGen cfldgen 33292  dimcldim 33626   IntgRing cirng 33698   minPoly cminply 33707
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-reg 9630  ax-inf2 9679  ax-ac2 10501  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-rpss 7742  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-er 8744  df-ec 8746  df-qs 8750  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-sup 9480  df-inf 9481  df-oi 9548  df-r1 9802  df-rank 9803  df-dju 9939  df-card 9977  df-acn 9980  df-ac 10154  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-xnn0 12598  df-z 12612  df-dec 12732  df-uz 12877  df-fz 13545  df-fzo 13692  df-seq 14040  df-hash 14367  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ocomp 17319  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-0g 17488  df-gsum 17489  df-prds 17494  df-pws 17496  df-imas 17555  df-qus 17556  df-mre 17631  df-mrc 17632  df-mri 17633  df-acs 17634  df-proset 18352  df-drs 18353  df-poset 18371  df-ipo 18586  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-submnd 18810  df-grp 18967  df-minusg 18968  df-sbg 18969  df-mulg 19099  df-subg 19154  df-nsg 19155  df-eqg 19156  df-ghm 19244  df-gim 19290  df-cntz 19348  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-srg 20205  df-ring 20253  df-cring 20254  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-invr 20405  df-dvr 20418  df-rhm 20489  df-subrng 20563  df-subrg 20587  df-rlreg 20711  df-drng 20748  df-field 20749  df-sdrg 20805  df-lmod 20877  df-lss 20948  df-lsp 20988  df-lmhm 21039  df-lmim 21040  df-lmic 21041  df-lbs 21092  df-lvec 21120  df-sra 21190  df-rgmod 21191  df-lidl 21236  df-rsp 21237  df-cnfld 21383  df-lindf 21844  df-linds 21845  df-assa 21891  df-asp 21892  df-ascl 21893  df-psr 21947  df-mvr 21948  df-mpl 21949  df-opsr 21951  df-evls 22116  df-evl 22117  df-psr1 22197  df-vr1 22198  df-ply1 22199  df-coe1 22200  df-evls1 22335  df-evl1 22336  df-mdeg 26109  df-deg1 26110  df-mon1 26185  df-uc1p 26186  df-q1p 26187  df-r1p 26188  df-ig1p 26189  df-fldgen 33293  df-dim 33627  df-irng 33699  df-minply 33708
This theorem is referenced by:  algextdeg  33731
  Copyright terms: Public domain W3C validator