Step | Hyp | Ref
| Expression |
1 | | algextdeglem.q |
. . . 4
β’ π = (π /s (π ~QG π)) |
2 | | algextdeg.k |
. . . . . . . 8
β’ πΎ = (πΈ βΎs πΉ) |
3 | | algextdeg.l |
. . . . . . . 8
β’ πΏ = (πΈ βΎs (πΈ fldGen (πΉ βͺ {π΄}))) |
4 | | algextdeg.d |
. . . . . . . 8
β’ π· = ( deg1
βπΈ) |
5 | | algextdeg.m |
. . . . . . . 8
β’ π = (πΈ minPoly πΉ) |
6 | | algextdeg.f |
. . . . . . . 8
β’ (π β πΈ β Field) |
7 | | algextdeg.e |
. . . . . . . 8
β’ (π β πΉ β (SubDRingβπΈ)) |
8 | | algextdeg.a |
. . . . . . . 8
β’ (π β π΄ β (πΈ IntgRing πΉ)) |
9 | | algextdeglem.o |
. . . . . . . 8
β’ π = (πΈ evalSub1 πΉ) |
10 | | algextdeglem.y |
. . . . . . . 8
β’ π = (Poly1βπΎ) |
11 | | algextdeglem.u |
. . . . . . . 8
β’ π = (Baseβπ) |
12 | | algextdeglem.g |
. . . . . . . 8
β’ πΊ = (π β π β¦ ((πβπ)βπ΄)) |
13 | | algextdeglem.n |
. . . . . . . 8
β’ π = (π₯ β π β¦ [π₯](π ~QG π)) |
14 | | algextdeglem.z |
. . . . . . . 8
β’ π = (β‘πΊ β {(0gβπΏ)}) |
15 | | algextdeglem.j |
. . . . . . . 8
β’ π½ = (π β (Baseβπ) β¦ βͺ
(πΊ β π)) |
16 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 1, 15 | algextdeglem5 33066 |
. . . . . . 7
β’ (π β π = ((RSpanβπ)β{(πβπ΄)})) |
17 | | sdrgsubrg 20550 |
. . . . . . . . . . 11
β’ (πΉ β (SubDRingβπΈ) β πΉ β (SubRingβπΈ)) |
18 | 7, 17 | syl 17 |
. . . . . . . . . 10
β’ (π β πΉ β (SubRingβπΈ)) |
19 | 2 | subrgring 20464 |
. . . . . . . . . 10
β’ (πΉ β (SubRingβπΈ) β πΎ β Ring) |
20 | 18, 19 | syl 17 |
. . . . . . . . 9
β’ (π β πΎ β Ring) |
21 | 10 | ply1ring 21990 |
. . . . . . . . 9
β’ (πΎ β Ring β π β Ring) |
22 | 20, 21 | syl 17 |
. . . . . . . 8
β’ (π β π β Ring) |
23 | 2 | fveq2i 6893 |
. . . . . . . . . . 11
β’
(Poly1βπΎ) = (Poly1β(πΈ βΎs πΉ)) |
24 | 10, 23 | eqtri 2758 |
. . . . . . . . . 10
β’ π =
(Poly1β(πΈ
βΎs πΉ)) |
25 | | eqid 2730 |
. . . . . . . . . 10
β’
(BaseβπΈ) =
(BaseβπΈ) |
26 | | eqid 2730 |
. . . . . . . . . . . 12
β’
(0gβπΈ) = (0gβπΈ) |
27 | 6 | fldcrngd 20513 |
. . . . . . . . . . . 12
β’ (π β πΈ β CRing) |
28 | 9, 2, 25, 26, 27, 18 | irngssv 33041 |
. . . . . . . . . . 11
β’ (π β (πΈ IntgRing πΉ) β (BaseβπΈ)) |
29 | 28, 8 | sseldd 3982 |
. . . . . . . . . 10
β’ (π β π΄ β (BaseβπΈ)) |
30 | | eqid 2730 |
. . . . . . . . . 10
β’ {π β dom π β£ ((πβπ)βπ΄) = (0gβπΈ)} = {π β dom π β£ ((πβπ)βπ΄) = (0gβπΈ)} |
31 | | eqid 2730 |
. . . . . . . . . 10
β’
(RSpanβπ) =
(RSpanβπ) |
32 | | eqid 2730 |
. . . . . . . . . 10
β’
(idlGen1pβ(πΈ βΎs πΉ)) = (idlGen1pβ(πΈ βΎs πΉ)) |
33 | 9, 24, 25, 6, 7, 29, 26, 30, 31, 32, 5 | minplycl 33056 |
. . . . . . . . 9
β’ (π β (πβπ΄) β (Baseβπ)) |
34 | 33, 11 | eleqtrrdi 2842 |
. . . . . . . 8
β’ (π β (πβπ΄) β π) |
35 | | eqid 2730 |
. . . . . . . . 9
β’
(β₯rβπ) = (β₯rβπ) |
36 | 11, 31, 35 | rspsn 21092 |
. . . . . . . 8
β’ ((π β Ring β§ (πβπ΄) β π) β ((RSpanβπ)β{(πβπ΄)}) = {π β£ (πβπ΄)(β₯rβπ)π}) |
37 | 22, 34, 36 | syl2anc 582 |
. . . . . . 7
β’ (π β ((RSpanβπ)β{(πβπ΄)}) = {π β£ (πβπ΄)(β₯rβπ)π}) |
38 | | nfv 1915 |
. . . . . . . . 9
β’
β²ππ |
39 | | nfab1 2903 |
. . . . . . . . 9
β’
β²π{π β£ (πβπ΄)(β₯rβπ)π} |
40 | | nfrab1 3449 |
. . . . . . . . 9
β’
β²π{π β π β£ (π»βπ) = (0gβπ)} |
41 | 11, 35 | dvdsrcl2 20257 |
. . . . . . . . . . . . . 14
β’ ((π β Ring β§ (πβπ΄)(β₯rβπ)π) β π β π) |
42 | 41 | ex 411 |
. . . . . . . . . . . . 13
β’ (π β Ring β ((πβπ΄)(β₯rβπ)π β π β π)) |
43 | 42 | pm4.71rd 561 |
. . . . . . . . . . . 12
β’ (π β Ring β ((πβπ΄)(β₯rβπ)π β (π β π β§ (πβπ΄)(β₯rβπ)π))) |
44 | 22, 43 | syl 17 |
. . . . . . . . . . 11
β’ (π β ((πβπ΄)(β₯rβπ)π β (π β π β§ (πβπ΄)(β₯rβπ)π))) |
45 | 20 | adantr 479 |
. . . . . . . . . . . . . 14
β’ ((π β§ π β π) β πΎ β Ring) |
46 | | simpr 483 |
. . . . . . . . . . . . . 14
β’ ((π β§ π β π) β π β π) |
47 | | eqid 2730 |
. . . . . . . . . . . . . . . . 17
β’
(0gβ(Poly1βπΈ)) =
(0gβ(Poly1βπΈ)) |
48 | 2 | fveq2i 6893 |
. . . . . . . . . . . . . . . . 17
β’
(Monic1pβπΎ) = (Monic1pβ(πΈ βΎs πΉ)) |
49 | 47, 6, 7, 5, 8, 48 | minplym1p 33061 |
. . . . . . . . . . . . . . . 16
β’ (π β (πβπ΄) β (Monic1pβπΎ)) |
50 | | eqid 2730 |
. . . . . . . . . . . . . . . . 17
β’
(Unic1pβπΎ) = (Unic1pβπΎ) |
51 | | eqid 2730 |
. . . . . . . . . . . . . . . . 17
β’
(Monic1pβπΎ) = (Monic1pβπΎ) |
52 | 50, 51 | mon1puc1p 25903 |
. . . . . . . . . . . . . . . 16
β’ ((πΎ β Ring β§ (πβπ΄) β (Monic1pβπΎ)) β (πβπ΄) β (Unic1pβπΎ)) |
53 | 20, 49, 52 | syl2anc 582 |
. . . . . . . . . . . . . . 15
β’ (π β (πβπ΄) β (Unic1pβπΎ)) |
54 | 53 | adantr 479 |
. . . . . . . . . . . . . 14
β’ ((π β§ π β π) β (πβπ΄) β (Unic1pβπΎ)) |
55 | | eqid 2730 |
. . . . . . . . . . . . . . 15
β’
(0gβπ) = (0gβπ) |
56 | | algextdeglem.r |
. . . . . . . . . . . . . . 15
β’ π
= (rem1pβπΎ) |
57 | 10, 35, 11, 50, 55, 56 | dvdsr1p 25914 |
. . . . . . . . . . . . . 14
β’ ((πΎ β Ring β§ π β π β§ (πβπ΄) β (Unic1pβπΎ)) β ((πβπ΄)(β₯rβπ)π β (ππ
(πβπ΄)) = (0gβπ))) |
58 | 45, 46, 54, 57 | syl3anc 1369 |
. . . . . . . . . . . . 13
β’ ((π β§ π β π) β ((πβπ΄)(β₯rβπ)π β (ππ
(πβπ΄)) = (0gβπ))) |
59 | | ovexd 7446 |
. . . . . . . . . . . . . . 15
β’ ((π β§ π β π) β (ππ
(πβπ΄)) β V) |
60 | | algextdeglem.h |
. . . . . . . . . . . . . . . 16
β’ π» = (π β π β¦ (ππ
(πβπ΄))) |
61 | 60 | fvmpt2 7008 |
. . . . . . . . . . . . . . 15
β’ ((π β π β§ (ππ
(πβπ΄)) β V) β (π»βπ) = (ππ
(πβπ΄))) |
62 | 46, 59, 61 | syl2anc 582 |
. . . . . . . . . . . . . 14
β’ ((π β§ π β π) β (π»βπ) = (ππ
(πβπ΄))) |
63 | 62 | eqeq1d 2732 |
. . . . . . . . . . . . 13
β’ ((π β§ π β π) β ((π»βπ) = (0gβπ) β (ππ
(πβπ΄)) = (0gβπ))) |
64 | 58, 63 | bitr4d 281 |
. . . . . . . . . . . 12
β’ ((π β§ π β π) β ((πβπ΄)(β₯rβπ)π β (π»βπ) = (0gβπ))) |
65 | 64 | pm5.32da 577 |
. . . . . . . . . . 11
β’ (π β ((π β π β§ (πβπ΄)(β₯rβπ)π) β (π β π β§ (π»βπ) = (0gβπ)))) |
66 | 44, 65 | bitrd 278 |
. . . . . . . . . 10
β’ (π β ((πβπ΄)(β₯rβπ)π β (π β π β§ (π»βπ) = (0gβπ)))) |
67 | | abid 2711 |
. . . . . . . . . 10
β’ (π β {π β£ (πβπ΄)(β₯rβπ)π} β (πβπ΄)(β₯rβπ)π) |
68 | | rabid 3450 |
. . . . . . . . . 10
β’ (π β {π β π β£ (π»βπ) = (0gβπ)} β (π β π β§ (π»βπ) = (0gβπ))) |
69 | 66, 67, 68 | 3bitr4g 313 |
. . . . . . . . 9
β’ (π β (π β {π β£ (πβπ΄)(β₯rβπ)π} β π β {π β π β£ (π»βπ) = (0gβπ)})) |
70 | 38, 39, 40, 69 | eqrd 4000 |
. . . . . . . 8
β’ (π β {π β£ (πβπ΄)(β₯rβπ)π} = {π β π β£ (π»βπ) = (0gβπ)}) |
71 | 38, 59, 60 | fnmptd 6690 |
. . . . . . . . 9
β’ (π β π» Fn π) |
72 | | fniniseg2 7062 |
. . . . . . . . 9
β’ (π» Fn π β (β‘π» β {(0gβπ)}) = {π β π β£ (π»βπ) = (0gβπ)}) |
73 | 71, 72 | syl 17 |
. . . . . . . 8
β’ (π β (β‘π» β {(0gβπ)}) = {π β π β£ (π»βπ) = (0gβπ)}) |
74 | 70, 73 | eqtr4d 2773 |
. . . . . . 7
β’ (π β {π β£ (πβπ΄)(β₯rβπ)π} = (β‘π» β {(0gβπ)})) |
75 | 16, 37, 74 | 3eqtrd 2774 |
. . . . . 6
β’ (π β π = (β‘π» β {(0gβπ)})) |
76 | 75 | oveq2d 7427 |
. . . . 5
β’ (π β (π ~QG π) = (π ~QG (β‘π» β {(0gβπ)}))) |
77 | 76 | oveq2d 7427 |
. . . 4
β’ (π β (π /s (π ~QG π)) = (π /s (π ~QG (β‘π» β {(0gβπ)})))) |
78 | 1, 77 | eqtrid 2782 |
. . 3
β’ (π β π = (π /s (π ~QG (β‘π» β {(0gβπ)})))) |
79 | | eqid 2730 |
. . . 4
β’ (β‘π» β {(0gβπ)}) = (β‘π» β {(0gβπ)}) |
80 | | eqid 2730 |
. . . 4
β’ (π /s (π ~QG (β‘π» β {(0gβπ)}))) = (π /s (π ~QG (β‘π» β {(0gβπ)}))) |
81 | 10, 11, 56, 50, 60, 20, 53, 55, 79, 80 | r1pquslmic 32956 |
. . 3
β’ (π β (π /s (π ~QG (β‘π» β {(0gβπ)})))
βπ (π» βs π)) |
82 | 78, 81 | eqbrtrd 5169 |
. 2
β’ (π β π βπ (π» βs
π)) |
83 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 1, 15 | algextdeglem3 33064 |
. 2
β’ (π β π β LVec) |
84 | 82, 83 | lmicdim 32977 |
1
β’ (π β (dimβπ) = (dimβ(π» βs
π))) |