Proof of Theorem algextdeglem6
Step | Hyp | Ref
| Expression |
1 | | algextdeglem.q |
. . . 4
⊢ 𝑄 = (𝑃 /s (𝑃 ~QG 𝑍)) |
2 | | algextdeg.k |
. . . . . . . 8
⊢ 𝐾 = (𝐸 ↾s 𝐹) |
3 | | algextdeg.l |
. . . . . . . 8
⊢ 𝐿 = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) |
4 | | algextdeg.d |
. . . . . . . 8
⊢ 𝐷 = ( deg1
‘𝐸) |
5 | | algextdeg.m |
. . . . . . . 8
⊢ 𝑀 = (𝐸 minPoly 𝐹) |
6 | | algextdeg.f |
. . . . . . . 8
⊢ (𝜑 → 𝐸 ∈ Field) |
7 | | algextdeg.e |
. . . . . . . 8
⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) |
8 | | algextdeg.a |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ (𝐸 IntgRing 𝐹)) |
9 | | algextdeglem.o |
. . . . . . . 8
⊢ 𝑂 = (𝐸 evalSub1 𝐹) |
10 | | algextdeglem.y |
. . . . . . . 8
⊢ 𝑃 = (Poly1‘𝐾) |
11 | | algextdeglem.u |
. . . . . . . 8
⊢ 𝑈 = (Base‘𝑃) |
12 | | algextdeglem.g |
. . . . . . . 8
⊢ 𝐺 = (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝐴)) |
13 | | algextdeglem.n |
. . . . . . . 8
⊢ 𝑁 = (𝑥 ∈ 𝑈 ↦ [𝑥](𝑃 ~QG 𝑍)) |
14 | | algextdeglem.z |
. . . . . . . 8
⊢ 𝑍 = (◡𝐺 “ {(0g‘𝐿)}) |
15 | | algextdeglem.j |
. . . . . . . 8
⊢ 𝐽 = (𝑝 ∈ (Base‘𝑄) ↦ ∪
(𝐺 “ 𝑝)) |
16 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 1, 15 | algextdeglem5 33081 |
. . . . . . 7
⊢ (𝜑 → 𝑍 = ((RSpan‘𝑃)‘{(𝑀‘𝐴)})) |
17 | | sdrgsubrg 20554 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ (SubDRing‘𝐸) → 𝐹 ∈ (SubRing‘𝐸)) |
18 | 7, 17 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹 ∈ (SubRing‘𝐸)) |
19 | 2 | subrgring 20468 |
. . . . . . . . . 10
⊢ (𝐹 ∈ (SubRing‘𝐸) → 𝐾 ∈ Ring) |
20 | 18, 19 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐾 ∈ Ring) |
21 | 10 | ply1ring 22003 |
. . . . . . . . 9
⊢ (𝐾 ∈ Ring → 𝑃 ∈ Ring) |
22 | 20, 21 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑃 ∈ Ring) |
23 | 2 | fveq2i 6894 |
. . . . . . . . . . 11
⊢
(Poly1‘𝐾) = (Poly1‘(𝐸 ↾s 𝐹)) |
24 | 10, 23 | eqtri 2759 |
. . . . . . . . . 10
⊢ 𝑃 =
(Poly1‘(𝐸
↾s 𝐹)) |
25 | | eqid 2731 |
. . . . . . . . . 10
⊢
(Base‘𝐸) =
(Base‘𝐸) |
26 | | eqid 2731 |
. . . . . . . . . . . 12
⊢
(0g‘𝐸) = (0g‘𝐸) |
27 | 6 | fldcrngd 20517 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐸 ∈ CRing) |
28 | 9, 2, 25, 26, 27, 18 | irngssv 33056 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐸 IntgRing 𝐹) ⊆ (Base‘𝐸)) |
29 | 28, 8 | sseldd 3983 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ∈ (Base‘𝐸)) |
30 | | eqid 2731 |
. . . . . . . . . 10
⊢ {𝑝 ∈ dom 𝑂 ∣ ((𝑂‘𝑝)‘𝐴) = (0g‘𝐸)} = {𝑝 ∈ dom 𝑂 ∣ ((𝑂‘𝑝)‘𝐴) = (0g‘𝐸)} |
31 | | eqid 2731 |
. . . . . . . . . 10
⊢
(RSpan‘𝑃) =
(RSpan‘𝑃) |
32 | | eqid 2731 |
. . . . . . . . . 10
⊢
(idlGen1p‘(𝐸 ↾s 𝐹)) = (idlGen1p‘(𝐸 ↾s 𝐹)) |
33 | 9, 24, 25, 6, 7, 29, 26, 30, 31, 32, 5 | minplycl 33071 |
. . . . . . . . 9
⊢ (𝜑 → (𝑀‘𝐴) ∈ (Base‘𝑃)) |
34 | 33, 11 | eleqtrrdi 2843 |
. . . . . . . 8
⊢ (𝜑 → (𝑀‘𝐴) ∈ 𝑈) |
35 | | eqid 2731 |
. . . . . . . . 9
⊢
(∥r‘𝑃) = (∥r‘𝑃) |
36 | 11, 31, 35 | rspsn 21096 |
. . . . . . . 8
⊢ ((𝑃 ∈ Ring ∧ (𝑀‘𝐴) ∈ 𝑈) → ((RSpan‘𝑃)‘{(𝑀‘𝐴)}) = {𝑝 ∣ (𝑀‘𝐴)(∥r‘𝑃)𝑝}) |
37 | 22, 34, 36 | syl2anc 583 |
. . . . . . 7
⊢ (𝜑 → ((RSpan‘𝑃)‘{(𝑀‘𝐴)}) = {𝑝 ∣ (𝑀‘𝐴)(∥r‘𝑃)𝑝}) |
38 | | nfv 1916 |
. . . . . . . . 9
⊢
Ⅎ𝑝𝜑 |
39 | | nfab1 2904 |
. . . . . . . . 9
⊢
Ⅎ𝑝{𝑝 ∣ (𝑀‘𝐴)(∥r‘𝑃)𝑝} |
40 | | nfrab1 3450 |
. . . . . . . . 9
⊢
Ⅎ𝑝{𝑝 ∈ 𝑈 ∣ (𝐻‘𝑝) = (0g‘𝑃)} |
41 | 11, 35 | dvdsrcl2 20261 |
. . . . . . . . . . . . . 14
⊢ ((𝑃 ∈ Ring ∧ (𝑀‘𝐴)(∥r‘𝑃)𝑝) → 𝑝 ∈ 𝑈) |
42 | 41 | ex 412 |
. . . . . . . . . . . . 13
⊢ (𝑃 ∈ Ring → ((𝑀‘𝐴)(∥r‘𝑃)𝑝 → 𝑝 ∈ 𝑈)) |
43 | 42 | pm4.71rd 562 |
. . . . . . . . . . . 12
⊢ (𝑃 ∈ Ring → ((𝑀‘𝐴)(∥r‘𝑃)𝑝 ↔ (𝑝 ∈ 𝑈 ∧ (𝑀‘𝐴)(∥r‘𝑃)𝑝))) |
44 | 22, 43 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑀‘𝐴)(∥r‘𝑃)𝑝 ↔ (𝑝 ∈ 𝑈 ∧ (𝑀‘𝐴)(∥r‘𝑃)𝑝))) |
45 | 20 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑝 ∈ 𝑈) → 𝐾 ∈ Ring) |
46 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑝 ∈ 𝑈) → 𝑝 ∈ 𝑈) |
47 | | eqid 2731 |
. . . . . . . . . . . . . . . . 17
⊢
(0g‘(Poly1‘𝐸)) =
(0g‘(Poly1‘𝐸)) |
48 | 2 | fveq2i 6894 |
. . . . . . . . . . . . . . . . 17
⊢
(Monic1p‘𝐾) = (Monic1p‘(𝐸 ↾s 𝐹)) |
49 | 47, 6, 7, 5, 8, 48 | minplym1p 33076 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑀‘𝐴) ∈ (Monic1p‘𝐾)) |
50 | | eqid 2731 |
. . . . . . . . . . . . . . . . 17
⊢
(Unic1p‘𝐾) = (Unic1p‘𝐾) |
51 | | eqid 2731 |
. . . . . . . . . . . . . . . . 17
⊢
(Monic1p‘𝐾) = (Monic1p‘𝐾) |
52 | 50, 51 | mon1puc1p 25917 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐾 ∈ Ring ∧ (𝑀‘𝐴) ∈ (Monic1p‘𝐾)) → (𝑀‘𝐴) ∈ (Unic1p‘𝐾)) |
53 | 20, 49, 52 | syl2anc 583 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑀‘𝐴) ∈ (Unic1p‘𝐾)) |
54 | 53 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑝 ∈ 𝑈) → (𝑀‘𝐴) ∈ (Unic1p‘𝐾)) |
55 | | eqid 2731 |
. . . . . . . . . . . . . . 15
⊢
(0g‘𝑃) = (0g‘𝑃) |
56 | | algextdeglem.r |
. . . . . . . . . . . . . . 15
⊢ 𝑅 = (rem1p‘𝐾) |
57 | 10, 35, 11, 50, 55, 56 | dvdsr1p 25928 |
. . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ Ring ∧ 𝑝 ∈ 𝑈 ∧ (𝑀‘𝐴) ∈ (Unic1p‘𝐾)) → ((𝑀‘𝐴)(∥r‘𝑃)𝑝 ↔ (𝑝𝑅(𝑀‘𝐴)) = (0g‘𝑃))) |
58 | 45, 46, 54, 57 | syl3anc 1370 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑝 ∈ 𝑈) → ((𝑀‘𝐴)(∥r‘𝑃)𝑝 ↔ (𝑝𝑅(𝑀‘𝐴)) = (0g‘𝑃))) |
59 | | ovexd 7447 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑝 ∈ 𝑈) → (𝑝𝑅(𝑀‘𝐴)) ∈ V) |
60 | | algextdeglem.h |
. . . . . . . . . . . . . . . 16
⊢ 𝐻 = (𝑝 ∈ 𝑈 ↦ (𝑝𝑅(𝑀‘𝐴))) |
61 | 60 | fvmpt2 7009 |
. . . . . . . . . . . . . . 15
⊢ ((𝑝 ∈ 𝑈 ∧ (𝑝𝑅(𝑀‘𝐴)) ∈ V) → (𝐻‘𝑝) = (𝑝𝑅(𝑀‘𝐴))) |
62 | 46, 59, 61 | syl2anc 583 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑝 ∈ 𝑈) → (𝐻‘𝑝) = (𝑝𝑅(𝑀‘𝐴))) |
63 | 62 | eqeq1d 2733 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑝 ∈ 𝑈) → ((𝐻‘𝑝) = (0g‘𝑃) ↔ (𝑝𝑅(𝑀‘𝐴)) = (0g‘𝑃))) |
64 | 58, 63 | bitr4d 282 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑝 ∈ 𝑈) → ((𝑀‘𝐴)(∥r‘𝑃)𝑝 ↔ (𝐻‘𝑝) = (0g‘𝑃))) |
65 | 64 | pm5.32da 578 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑝 ∈ 𝑈 ∧ (𝑀‘𝐴)(∥r‘𝑃)𝑝) ↔ (𝑝 ∈ 𝑈 ∧ (𝐻‘𝑝) = (0g‘𝑃)))) |
66 | 44, 65 | bitrd 279 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑀‘𝐴)(∥r‘𝑃)𝑝 ↔ (𝑝 ∈ 𝑈 ∧ (𝐻‘𝑝) = (0g‘𝑃)))) |
67 | | abid 2712 |
. . . . . . . . . 10
⊢ (𝑝 ∈ {𝑝 ∣ (𝑀‘𝐴)(∥r‘𝑃)𝑝} ↔ (𝑀‘𝐴)(∥r‘𝑃)𝑝) |
68 | | rabid 3451 |
. . . . . . . . . 10
⊢ (𝑝 ∈ {𝑝 ∈ 𝑈 ∣ (𝐻‘𝑝) = (0g‘𝑃)} ↔ (𝑝 ∈ 𝑈 ∧ (𝐻‘𝑝) = (0g‘𝑃))) |
69 | 66, 67, 68 | 3bitr4g 314 |
. . . . . . . . 9
⊢ (𝜑 → (𝑝 ∈ {𝑝 ∣ (𝑀‘𝐴)(∥r‘𝑃)𝑝} ↔ 𝑝 ∈ {𝑝 ∈ 𝑈 ∣ (𝐻‘𝑝) = (0g‘𝑃)})) |
70 | 38, 39, 40, 69 | eqrd 4001 |
. . . . . . . 8
⊢ (𝜑 → {𝑝 ∣ (𝑀‘𝐴)(∥r‘𝑃)𝑝} = {𝑝 ∈ 𝑈 ∣ (𝐻‘𝑝) = (0g‘𝑃)}) |
71 | 38, 59, 60 | fnmptd 6691 |
. . . . . . . . 9
⊢ (𝜑 → 𝐻 Fn 𝑈) |
72 | | fniniseg2 7063 |
. . . . . . . . 9
⊢ (𝐻 Fn 𝑈 → (◡𝐻 “ {(0g‘𝑃)}) = {𝑝 ∈ 𝑈 ∣ (𝐻‘𝑝) = (0g‘𝑃)}) |
73 | 71, 72 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (◡𝐻 “ {(0g‘𝑃)}) = {𝑝 ∈ 𝑈 ∣ (𝐻‘𝑝) = (0g‘𝑃)}) |
74 | 70, 73 | eqtr4d 2774 |
. . . . . . 7
⊢ (𝜑 → {𝑝 ∣ (𝑀‘𝐴)(∥r‘𝑃)𝑝} = (◡𝐻 “ {(0g‘𝑃)})) |
75 | 16, 37, 74 | 3eqtrd 2775 |
. . . . . 6
⊢ (𝜑 → 𝑍 = (◡𝐻 “ {(0g‘𝑃)})) |
76 | 75 | oveq2d 7428 |
. . . . 5
⊢ (𝜑 → (𝑃 ~QG 𝑍) = (𝑃 ~QG (◡𝐻 “ {(0g‘𝑃)}))) |
77 | 76 | oveq2d 7428 |
. . . 4
⊢ (𝜑 → (𝑃 /s (𝑃 ~QG 𝑍)) = (𝑃 /s (𝑃 ~QG (◡𝐻 “ {(0g‘𝑃)})))) |
78 | 1, 77 | eqtrid 2783 |
. . 3
⊢ (𝜑 → 𝑄 = (𝑃 /s (𝑃 ~QG (◡𝐻 “ {(0g‘𝑃)})))) |
79 | | eqid 2731 |
. . . 4
⊢ (◡𝐻 “ {(0g‘𝑃)}) = (◡𝐻 “ {(0g‘𝑃)}) |
80 | | eqid 2731 |
. . . 4
⊢ (𝑃 /s (𝑃 ~QG (◡𝐻 “ {(0g‘𝑃)}))) = (𝑃 /s (𝑃 ~QG (◡𝐻 “ {(0g‘𝑃)}))) |
81 | 10, 11, 56, 50, 60, 20, 53, 55, 79, 80 | r1pquslmic 32971 |
. . 3
⊢ (𝜑 → (𝑃 /s (𝑃 ~QG (◡𝐻 “ {(0g‘𝑃)})))
≃𝑚 (𝐻 “s 𝑃)) |
82 | 78, 81 | eqbrtrd 5170 |
. 2
⊢ (𝜑 → 𝑄 ≃𝑚 (𝐻 “s
𝑃)) |
83 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 1, 15 | algextdeglem3 33079 |
. 2
⊢ (𝜑 → 𝑄 ∈ LVec) |
84 | 82, 83 | lmicdim 32992 |
1
⊢ (𝜑 → (dim‘𝑄) = (dim‘(𝐻 “s
𝑃))) |