MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isdrng2 Structured version   Visualization version   GIF version

Theorem isdrng2 19514
Description: A division ring can equivalently be defined as a ring such that the nonzero elements form a group under multiplication (from which it follows that this is the same group as the group of units). (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
isdrng2.b 𝐵 = (Base‘𝑅)
isdrng2.z 0 = (0g𝑅)
isdrng2.g 𝐺 = ((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))
Assertion
Ref Expression
isdrng2 (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ 𝐺 ∈ Grp))

Proof of Theorem isdrng2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 isdrng2.b . . 3 𝐵 = (Base‘𝑅)
2 eqid 2823 . . 3 (Unit‘𝑅) = (Unit‘𝑅)
3 isdrng2.z . . 3 0 = (0g𝑅)
41, 2, 3isdrng 19508 . 2 (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ (Unit‘𝑅) = (𝐵 ∖ { 0 })))
5 oveq2 7166 . . . . . . 7 ((Unit‘𝑅) = (𝐵 ∖ { 0 }) → ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) = ((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 })))
65adantl 484 . . . . . 6 ((𝑅 ∈ Ring ∧ (Unit‘𝑅) = (𝐵 ∖ { 0 })) → ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) = ((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 })))
7 isdrng2.g . . . . . 6 𝐺 = ((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))
86, 7syl6eqr 2876 . . . . 5 ((𝑅 ∈ Ring ∧ (Unit‘𝑅) = (𝐵 ∖ { 0 })) → ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) = 𝐺)
9 eqid 2823 . . . . . . 7 ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) = ((mulGrp‘𝑅) ↾s (Unit‘𝑅))
102, 9unitgrp 19419 . . . . . 6 (𝑅 ∈ Ring → ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) ∈ Grp)
1110adantr 483 . . . . 5 ((𝑅 ∈ Ring ∧ (Unit‘𝑅) = (𝐵 ∖ { 0 })) → ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) ∈ Grp)
128, 11eqeltrrd 2916 . . . 4 ((𝑅 ∈ Ring ∧ (Unit‘𝑅) = (𝐵 ∖ { 0 })) → 𝐺 ∈ Grp)
131, 2unitcl 19411 . . . . . . . . 9 (𝑥 ∈ (Unit‘𝑅) → 𝑥𝐵)
1413adantl 484 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (Unit‘𝑅)) → 𝑥𝐵)
15 difss 4110 . . . . . . . . . . . . . . 15 (𝐵 ∖ { 0 }) ⊆ 𝐵
16 eqid 2823 . . . . . . . . . . . . . . . . 17 (mulGrp‘𝑅) = (mulGrp‘𝑅)
1716, 1mgpbas 19247 . . . . . . . . . . . . . . . 16 𝐵 = (Base‘(mulGrp‘𝑅))
187, 17ressbas2 16557 . . . . . . . . . . . . . . 15 ((𝐵 ∖ { 0 }) ⊆ 𝐵 → (𝐵 ∖ { 0 }) = (Base‘𝐺))
1915, 18ax-mp 5 . . . . . . . . . . . . . 14 (𝐵 ∖ { 0 }) = (Base‘𝐺)
20 eqid 2823 . . . . . . . . . . . . . 14 (0g𝐺) = (0g𝐺)
2119, 20grpidcl 18133 . . . . . . . . . . . . 13 (𝐺 ∈ Grp → (0g𝐺) ∈ (𝐵 ∖ { 0 }))
2221ad2antlr 725 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (Unit‘𝑅)) → (0g𝐺) ∈ (𝐵 ∖ { 0 }))
23 eldifsn 4721 . . . . . . . . . . . 12 ((0g𝐺) ∈ (𝐵 ∖ { 0 }) ↔ ((0g𝐺) ∈ 𝐵 ∧ (0g𝐺) ≠ 0 ))
2422, 23sylib 220 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (Unit‘𝑅)) → ((0g𝐺) ∈ 𝐵 ∧ (0g𝐺) ≠ 0 ))
2524simprd 498 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (Unit‘𝑅)) → (0g𝐺) ≠ 0 )
26 simpll 765 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (Unit‘𝑅)) → 𝑅 ∈ Ring)
2722eldifad 3950 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (Unit‘𝑅)) → (0g𝐺) ∈ 𝐵)
28 simpr 487 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (Unit‘𝑅)) → 𝑥 ∈ (Unit‘𝑅))
29 eqid 2823 . . . . . . . . . . . 12 (/r𝑅) = (/r𝑅)
30 eqid 2823 . . . . . . . . . . . 12 (.r𝑅) = (.r𝑅)
311, 2, 29, 30dvrcan1 19443 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ (0g𝐺) ∈ 𝐵𝑥 ∈ (Unit‘𝑅)) → (((0g𝐺)(/r𝑅)𝑥)(.r𝑅)𝑥) = (0g𝐺))
3226, 27, 28, 31syl3anc 1367 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (Unit‘𝑅)) → (((0g𝐺)(/r𝑅)𝑥)(.r𝑅)𝑥) = (0g𝐺))
331, 2, 29dvrcl 19438 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ (0g𝐺) ∈ 𝐵𝑥 ∈ (Unit‘𝑅)) → ((0g𝐺)(/r𝑅)𝑥) ∈ 𝐵)
3426, 27, 28, 33syl3anc 1367 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (Unit‘𝑅)) → ((0g𝐺)(/r𝑅)𝑥) ∈ 𝐵)
351, 30, 3ringrz 19340 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ ((0g𝐺)(/r𝑅)𝑥) ∈ 𝐵) → (((0g𝐺)(/r𝑅)𝑥)(.r𝑅) 0 ) = 0 )
3626, 34, 35syl2anc 586 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (Unit‘𝑅)) → (((0g𝐺)(/r𝑅)𝑥)(.r𝑅) 0 ) = 0 )
3725, 32, 363netr4d 3095 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (Unit‘𝑅)) → (((0g𝐺)(/r𝑅)𝑥)(.r𝑅)𝑥) ≠ (((0g𝐺)(/r𝑅)𝑥)(.r𝑅) 0 ))
38 oveq2 7166 . . . . . . . . . 10 (𝑥 = 0 → (((0g𝐺)(/r𝑅)𝑥)(.r𝑅)𝑥) = (((0g𝐺)(/r𝑅)𝑥)(.r𝑅) 0 ))
3938necon3i 3050 . . . . . . . . 9 ((((0g𝐺)(/r𝑅)𝑥)(.r𝑅)𝑥) ≠ (((0g𝐺)(/r𝑅)𝑥)(.r𝑅) 0 ) → 𝑥0 )
4037, 39syl 17 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (Unit‘𝑅)) → 𝑥0 )
41 eldifsn 4721 . . . . . . . 8 (𝑥 ∈ (𝐵 ∖ { 0 }) ↔ (𝑥𝐵𝑥0 ))
4214, 40, 41sylanbrc 585 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (Unit‘𝑅)) → 𝑥 ∈ (𝐵 ∖ { 0 }))
4342ex 415 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) → (𝑥 ∈ (Unit‘𝑅) → 𝑥 ∈ (𝐵 ∖ { 0 })))
4443ssrdv 3975 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) → (Unit‘𝑅) ⊆ (𝐵 ∖ { 0 }))
45 eldifi 4105 . . . . . . . . 9 (𝑥 ∈ (𝐵 ∖ { 0 }) → 𝑥𝐵)
4645adantl 484 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑥𝐵)
47 eqid 2823 . . . . . . . . . . 11 (invg𝐺) = (invg𝐺)
4819, 47grpinvcl 18153 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → ((invg𝐺)‘𝑥) ∈ (𝐵 ∖ { 0 }))
4948adantll 712 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → ((invg𝐺)‘𝑥) ∈ (𝐵 ∖ { 0 }))
5049eldifad 3950 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → ((invg𝐺)‘𝑥) ∈ 𝐵)
51 eqid 2823 . . . . . . . . 9 (∥r𝑅) = (∥r𝑅)
521, 51, 30dvdsrmul 19400 . . . . . . . 8 ((𝑥𝐵 ∧ ((invg𝐺)‘𝑥) ∈ 𝐵) → 𝑥(∥r𝑅)(((invg𝐺)‘𝑥)(.r𝑅)𝑥))
5346, 50, 52syl2anc 586 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑥(∥r𝑅)(((invg𝐺)‘𝑥)(.r𝑅)𝑥))
541fvexi 6686 . . . . . . . . . . 11 𝐵 ∈ V
55 difexg 5233 . . . . . . . . . . 11 (𝐵 ∈ V → (𝐵 ∖ { 0 }) ∈ V)
5616, 30mgpplusg 19245 . . . . . . . . . . . 12 (.r𝑅) = (+g‘(mulGrp‘𝑅))
577, 56ressplusg 16614 . . . . . . . . . . 11 ((𝐵 ∖ { 0 }) ∈ V → (.r𝑅) = (+g𝐺))
5854, 55, 57mp2b 10 . . . . . . . . . 10 (.r𝑅) = (+g𝐺)
5919, 58, 20, 47grplinv 18154 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → (((invg𝐺)‘𝑥)(.r𝑅)𝑥) = (0g𝐺))
6059adantll 712 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → (((invg𝐺)‘𝑥)(.r𝑅)𝑥) = (0g𝐺))
61 eqid 2823 . . . . . . . . . . . . 13 (1r𝑅) = (1r𝑅)
621, 61ringidcl 19320 . . . . . . . . . . . 12 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
631, 30, 61ringlidm 19323 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ (1r𝑅) ∈ 𝐵) → ((1r𝑅)(.r𝑅)(1r𝑅)) = (1r𝑅))
6462, 63mpdan 685 . . . . . . . . . . 11 (𝑅 ∈ Ring → ((1r𝑅)(.r𝑅)(1r𝑅)) = (1r𝑅))
6564adantr 483 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) → ((1r𝑅)(.r𝑅)(1r𝑅)) = (1r𝑅))
66 simpr 487 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) → 𝐺 ∈ Grp)
672, 611unit 19410 . . . . . . . . . . . . 13 (𝑅 ∈ Ring → (1r𝑅) ∈ (Unit‘𝑅))
6867adantr 483 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) → (1r𝑅) ∈ (Unit‘𝑅))
6944, 68sseldd 3970 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) → (1r𝑅) ∈ (𝐵 ∖ { 0 }))
7019, 58, 20grpid 18141 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (1r𝑅) ∈ (𝐵 ∖ { 0 })) → (((1r𝑅)(.r𝑅)(1r𝑅)) = (1r𝑅) ↔ (0g𝐺) = (1r𝑅)))
7166, 69, 70syl2anc 586 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) → (((1r𝑅)(.r𝑅)(1r𝑅)) = (1r𝑅) ↔ (0g𝐺) = (1r𝑅)))
7265, 71mpbid 234 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) → (0g𝐺) = (1r𝑅))
7372adantr 483 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → (0g𝐺) = (1r𝑅))
7460, 73eqtrd 2858 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → (((invg𝐺)‘𝑥)(.r𝑅)𝑥) = (1r𝑅))
7553, 74breqtrd 5094 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑥(∥r𝑅)(1r𝑅))
76 eqid 2823 . . . . . . . . . 10 (oppr𝑅) = (oppr𝑅)
7776, 1opprbas 19381 . . . . . . . . 9 𝐵 = (Base‘(oppr𝑅))
78 eqid 2823 . . . . . . . . 9 (∥r‘(oppr𝑅)) = (∥r‘(oppr𝑅))
79 eqid 2823 . . . . . . . . 9 (.r‘(oppr𝑅)) = (.r‘(oppr𝑅))
8077, 78, 79dvdsrmul 19400 . . . . . . . 8 ((𝑥𝐵 ∧ ((invg𝐺)‘𝑥) ∈ 𝐵) → 𝑥(∥r‘(oppr𝑅))(((invg𝐺)‘𝑥)(.r‘(oppr𝑅))𝑥))
8146, 50, 80syl2anc 586 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑥(∥r‘(oppr𝑅))(((invg𝐺)‘𝑥)(.r‘(oppr𝑅))𝑥))
821, 30, 76, 79opprmul 19378 . . . . . . . 8 (((invg𝐺)‘𝑥)(.r‘(oppr𝑅))𝑥) = (𝑥(.r𝑅)((invg𝐺)‘𝑥))
8319, 58, 20, 47grprinv 18155 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → (𝑥(.r𝑅)((invg𝐺)‘𝑥)) = (0g𝐺))
8483adantll 712 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → (𝑥(.r𝑅)((invg𝐺)‘𝑥)) = (0g𝐺))
8584, 73eqtrd 2858 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → (𝑥(.r𝑅)((invg𝐺)‘𝑥)) = (1r𝑅))
8682, 85syl5eq 2870 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → (((invg𝐺)‘𝑥)(.r‘(oppr𝑅))𝑥) = (1r𝑅))
8781, 86breqtrd 5094 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑥(∥r‘(oppr𝑅))(1r𝑅))
882, 61, 51, 76, 78isunit 19409 . . . . . 6 (𝑥 ∈ (Unit‘𝑅) ↔ (𝑥(∥r𝑅)(1r𝑅) ∧ 𝑥(∥r‘(oppr𝑅))(1r𝑅)))
8975, 87, 88sylanbrc 585 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑥 ∈ (Unit‘𝑅))
9044, 89eqelssd 3990 . . . 4 ((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) → (Unit‘𝑅) = (𝐵 ∖ { 0 }))
9112, 90impbida 799 . . 3 (𝑅 ∈ Ring → ((Unit‘𝑅) = (𝐵 ∖ { 0 }) ↔ 𝐺 ∈ Grp))
9291pm5.32i 577 . 2 ((𝑅 ∈ Ring ∧ (Unit‘𝑅) = (𝐵 ∖ { 0 })) ↔ (𝑅 ∈ Ring ∧ 𝐺 ∈ Grp))
934, 92bitri 277 1 (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ 𝐺 ∈ Grp))
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3018  Vcvv 3496  cdif 3935  wss 3938  {csn 4569   class class class wbr 5068  cfv 6357  (class class class)co 7158  Basecbs 16485  s cress 16486  +gcplusg 16567  .rcmulr 16568  0gc0g 16715  Grpcgrp 18105  invgcminusg 18106  mulGrpcmgp 19241  1rcur 19253  Ringcrg 19299  opprcoppr 19374  rcdsr 19390  Unitcui 19391  /rcdvr 19434  DivRingcdr 19504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-tpos 7894  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-0g 16717  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-grp 18108  df-minusg 18109  df-mgp 19242  df-ur 19254  df-ring 19301  df-oppr 19375  df-dvdsr 19393  df-unit 19394  df-invr 19424  df-dvr 19435  df-drng 19506
This theorem is referenced by:  drngmgp  19516  isdrngd  19529  subdrgint  19584
  Copyright terms: Public domain W3C validator