MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isdrng2 Structured version   Visualization version   GIF version

Theorem isdrng2 20652
Description: A division ring can equivalently be defined as a ring such that the nonzero elements form a group under multiplication (from which it follows that this is the same group as the group of units). (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
isdrng2.b 𝐵 = (Base‘𝑅)
isdrng2.z 0 = (0g𝑅)
isdrng2.g 𝐺 = ((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))
Assertion
Ref Expression
isdrng2 (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ 𝐺 ∈ Grp))

Proof of Theorem isdrng2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 isdrng2.b . . 3 𝐵 = (Base‘𝑅)
2 eqid 2729 . . 3 (Unit‘𝑅) = (Unit‘𝑅)
3 isdrng2.z . . 3 0 = (0g𝑅)
41, 2, 3isdrng 20642 . 2 (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ (Unit‘𝑅) = (𝐵 ∖ { 0 })))
5 oveq2 7395 . . . . . . 7 ((Unit‘𝑅) = (𝐵 ∖ { 0 }) → ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) = ((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 })))
65adantl 481 . . . . . 6 ((𝑅 ∈ Ring ∧ (Unit‘𝑅) = (𝐵 ∖ { 0 })) → ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) = ((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 })))
7 isdrng2.g . . . . . 6 𝐺 = ((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))
86, 7eqtr4di 2782 . . . . 5 ((𝑅 ∈ Ring ∧ (Unit‘𝑅) = (𝐵 ∖ { 0 })) → ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) = 𝐺)
9 eqid 2729 . . . . . . 7 ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) = ((mulGrp‘𝑅) ↾s (Unit‘𝑅))
102, 9unitgrp 20292 . . . . . 6 (𝑅 ∈ Ring → ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) ∈ Grp)
1110adantr 480 . . . . 5 ((𝑅 ∈ Ring ∧ (Unit‘𝑅) = (𝐵 ∖ { 0 })) → ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) ∈ Grp)
128, 11eqeltrrd 2829 . . . 4 ((𝑅 ∈ Ring ∧ (Unit‘𝑅) = (𝐵 ∖ { 0 })) → 𝐺 ∈ Grp)
131, 2unitcl 20284 . . . . . . . . 9 (𝑥 ∈ (Unit‘𝑅) → 𝑥𝐵)
1413adantl 481 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (Unit‘𝑅)) → 𝑥𝐵)
15 difss 4099 . . . . . . . . . . . . . . 15 (𝐵 ∖ { 0 }) ⊆ 𝐵
16 eqid 2729 . . . . . . . . . . . . . . . . 17 (mulGrp‘𝑅) = (mulGrp‘𝑅)
1716, 1mgpbas 20054 . . . . . . . . . . . . . . . 16 𝐵 = (Base‘(mulGrp‘𝑅))
187, 17ressbas2 17208 . . . . . . . . . . . . . . 15 ((𝐵 ∖ { 0 }) ⊆ 𝐵 → (𝐵 ∖ { 0 }) = (Base‘𝐺))
1915, 18ax-mp 5 . . . . . . . . . . . . . 14 (𝐵 ∖ { 0 }) = (Base‘𝐺)
20 eqid 2729 . . . . . . . . . . . . . 14 (0g𝐺) = (0g𝐺)
2119, 20grpidcl 18897 . . . . . . . . . . . . 13 (𝐺 ∈ Grp → (0g𝐺) ∈ (𝐵 ∖ { 0 }))
2221ad2antlr 727 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (Unit‘𝑅)) → (0g𝐺) ∈ (𝐵 ∖ { 0 }))
23 eldifsn 4750 . . . . . . . . . . . 12 ((0g𝐺) ∈ (𝐵 ∖ { 0 }) ↔ ((0g𝐺) ∈ 𝐵 ∧ (0g𝐺) ≠ 0 ))
2422, 23sylib 218 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (Unit‘𝑅)) → ((0g𝐺) ∈ 𝐵 ∧ (0g𝐺) ≠ 0 ))
2524simprd 495 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (Unit‘𝑅)) → (0g𝐺) ≠ 0 )
26 simpll 766 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (Unit‘𝑅)) → 𝑅 ∈ Ring)
2722eldifad 3926 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (Unit‘𝑅)) → (0g𝐺) ∈ 𝐵)
28 simpr 484 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (Unit‘𝑅)) → 𝑥 ∈ (Unit‘𝑅))
29 eqid 2729 . . . . . . . . . . . 12 (/r𝑅) = (/r𝑅)
30 eqid 2729 . . . . . . . . . . . 12 (.r𝑅) = (.r𝑅)
311, 2, 29, 30dvrcan1 20318 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ (0g𝐺) ∈ 𝐵𝑥 ∈ (Unit‘𝑅)) → (((0g𝐺)(/r𝑅)𝑥)(.r𝑅)𝑥) = (0g𝐺))
3226, 27, 28, 31syl3anc 1373 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (Unit‘𝑅)) → (((0g𝐺)(/r𝑅)𝑥)(.r𝑅)𝑥) = (0g𝐺))
331, 2, 29dvrcl 20313 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ (0g𝐺) ∈ 𝐵𝑥 ∈ (Unit‘𝑅)) → ((0g𝐺)(/r𝑅)𝑥) ∈ 𝐵)
3426, 27, 28, 33syl3anc 1373 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (Unit‘𝑅)) → ((0g𝐺)(/r𝑅)𝑥) ∈ 𝐵)
351, 30, 3ringrz 20203 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ ((0g𝐺)(/r𝑅)𝑥) ∈ 𝐵) → (((0g𝐺)(/r𝑅)𝑥)(.r𝑅) 0 ) = 0 )
3626, 34, 35syl2anc 584 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (Unit‘𝑅)) → (((0g𝐺)(/r𝑅)𝑥)(.r𝑅) 0 ) = 0 )
3725, 32, 363netr4d 3002 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (Unit‘𝑅)) → (((0g𝐺)(/r𝑅)𝑥)(.r𝑅)𝑥) ≠ (((0g𝐺)(/r𝑅)𝑥)(.r𝑅) 0 ))
38 oveq2 7395 . . . . . . . . . 10 (𝑥 = 0 → (((0g𝐺)(/r𝑅)𝑥)(.r𝑅)𝑥) = (((0g𝐺)(/r𝑅)𝑥)(.r𝑅) 0 ))
3938necon3i 2957 . . . . . . . . 9 ((((0g𝐺)(/r𝑅)𝑥)(.r𝑅)𝑥) ≠ (((0g𝐺)(/r𝑅)𝑥)(.r𝑅) 0 ) → 𝑥0 )
4037, 39syl 17 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (Unit‘𝑅)) → 𝑥0 )
41 eldifsn 4750 . . . . . . . 8 (𝑥 ∈ (𝐵 ∖ { 0 }) ↔ (𝑥𝐵𝑥0 ))
4214, 40, 41sylanbrc 583 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (Unit‘𝑅)) → 𝑥 ∈ (𝐵 ∖ { 0 }))
4342ex 412 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) → (𝑥 ∈ (Unit‘𝑅) → 𝑥 ∈ (𝐵 ∖ { 0 })))
4443ssrdv 3952 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) → (Unit‘𝑅) ⊆ (𝐵 ∖ { 0 }))
45 eldifi 4094 . . . . . . . . 9 (𝑥 ∈ (𝐵 ∖ { 0 }) → 𝑥𝐵)
4645adantl 481 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑥𝐵)
47 eqid 2729 . . . . . . . . . . 11 (invg𝐺) = (invg𝐺)
4819, 47grpinvcl 18919 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → ((invg𝐺)‘𝑥) ∈ (𝐵 ∖ { 0 }))
4948adantll 714 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → ((invg𝐺)‘𝑥) ∈ (𝐵 ∖ { 0 }))
5049eldifad 3926 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → ((invg𝐺)‘𝑥) ∈ 𝐵)
51 eqid 2729 . . . . . . . . 9 (∥r𝑅) = (∥r𝑅)
521, 51, 30dvdsrmul 20273 . . . . . . . 8 ((𝑥𝐵 ∧ ((invg𝐺)‘𝑥) ∈ 𝐵) → 𝑥(∥r𝑅)(((invg𝐺)‘𝑥)(.r𝑅)𝑥))
5346, 50, 52syl2anc 584 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑥(∥r𝑅)(((invg𝐺)‘𝑥)(.r𝑅)𝑥))
541fvexi 6872 . . . . . . . . . . 11 𝐵 ∈ V
55 difexg 5284 . . . . . . . . . . 11 (𝐵 ∈ V → (𝐵 ∖ { 0 }) ∈ V)
5616, 30mgpplusg 20053 . . . . . . . . . . . 12 (.r𝑅) = (+g‘(mulGrp‘𝑅))
577, 56ressplusg 17254 . . . . . . . . . . 11 ((𝐵 ∖ { 0 }) ∈ V → (.r𝑅) = (+g𝐺))
5854, 55, 57mp2b 10 . . . . . . . . . 10 (.r𝑅) = (+g𝐺)
5919, 58, 20, 47grplinv 18921 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → (((invg𝐺)‘𝑥)(.r𝑅)𝑥) = (0g𝐺))
6059adantll 714 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → (((invg𝐺)‘𝑥)(.r𝑅)𝑥) = (0g𝐺))
61 eqid 2729 . . . . . . . . . . . . 13 (1r𝑅) = (1r𝑅)
621, 61ringidcl 20174 . . . . . . . . . . . 12 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
631, 30, 61ringlidm 20178 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ (1r𝑅) ∈ 𝐵) → ((1r𝑅)(.r𝑅)(1r𝑅)) = (1r𝑅))
6462, 63mpdan 687 . . . . . . . . . . 11 (𝑅 ∈ Ring → ((1r𝑅)(.r𝑅)(1r𝑅)) = (1r𝑅))
6564adantr 480 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) → ((1r𝑅)(.r𝑅)(1r𝑅)) = (1r𝑅))
66 simpr 484 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) → 𝐺 ∈ Grp)
672, 611unit 20283 . . . . . . . . . . . . 13 (𝑅 ∈ Ring → (1r𝑅) ∈ (Unit‘𝑅))
6867adantr 480 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) → (1r𝑅) ∈ (Unit‘𝑅))
6944, 68sseldd 3947 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) → (1r𝑅) ∈ (𝐵 ∖ { 0 }))
7019, 58, 20grpid 18907 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (1r𝑅) ∈ (𝐵 ∖ { 0 })) → (((1r𝑅)(.r𝑅)(1r𝑅)) = (1r𝑅) ↔ (0g𝐺) = (1r𝑅)))
7166, 69, 70syl2anc 584 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) → (((1r𝑅)(.r𝑅)(1r𝑅)) = (1r𝑅) ↔ (0g𝐺) = (1r𝑅)))
7265, 71mpbid 232 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) → (0g𝐺) = (1r𝑅))
7372adantr 480 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → (0g𝐺) = (1r𝑅))
7460, 73eqtrd 2764 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → (((invg𝐺)‘𝑥)(.r𝑅)𝑥) = (1r𝑅))
7553, 74breqtrd 5133 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑥(∥r𝑅)(1r𝑅))
76 eqid 2729 . . . . . . . . . 10 (oppr𝑅) = (oppr𝑅)
7776, 1opprbas 20252 . . . . . . . . 9 𝐵 = (Base‘(oppr𝑅))
78 eqid 2729 . . . . . . . . 9 (∥r‘(oppr𝑅)) = (∥r‘(oppr𝑅))
79 eqid 2729 . . . . . . . . 9 (.r‘(oppr𝑅)) = (.r‘(oppr𝑅))
8077, 78, 79dvdsrmul 20273 . . . . . . . 8 ((𝑥𝐵 ∧ ((invg𝐺)‘𝑥) ∈ 𝐵) → 𝑥(∥r‘(oppr𝑅))(((invg𝐺)‘𝑥)(.r‘(oppr𝑅))𝑥))
8146, 50, 80syl2anc 584 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑥(∥r‘(oppr𝑅))(((invg𝐺)‘𝑥)(.r‘(oppr𝑅))𝑥))
821, 30, 76, 79opprmul 20249 . . . . . . . 8 (((invg𝐺)‘𝑥)(.r‘(oppr𝑅))𝑥) = (𝑥(.r𝑅)((invg𝐺)‘𝑥))
8319, 58, 20, 47grprinv 18922 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → (𝑥(.r𝑅)((invg𝐺)‘𝑥)) = (0g𝐺))
8483adantll 714 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → (𝑥(.r𝑅)((invg𝐺)‘𝑥)) = (0g𝐺))
8584, 73eqtrd 2764 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → (𝑥(.r𝑅)((invg𝐺)‘𝑥)) = (1r𝑅))
8682, 85eqtrid 2776 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → (((invg𝐺)‘𝑥)(.r‘(oppr𝑅))𝑥) = (1r𝑅))
8781, 86breqtrd 5133 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑥(∥r‘(oppr𝑅))(1r𝑅))
882, 61, 51, 76, 78isunit 20282 . . . . . 6 (𝑥 ∈ (Unit‘𝑅) ↔ (𝑥(∥r𝑅)(1r𝑅) ∧ 𝑥(∥r‘(oppr𝑅))(1r𝑅)))
8975, 87, 88sylanbrc 583 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑥 ∈ (Unit‘𝑅))
9044, 89eqelssd 3968 . . . 4 ((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) → (Unit‘𝑅) = (𝐵 ∖ { 0 }))
9112, 90impbida 800 . . 3 (𝑅 ∈ Ring → ((Unit‘𝑅) = (𝐵 ∖ { 0 }) ↔ 𝐺 ∈ Grp))
9291pm5.32i 574 . 2 ((𝑅 ∈ Ring ∧ (Unit‘𝑅) = (𝐵 ∖ { 0 })) ↔ (𝑅 ∈ Ring ∧ 𝐺 ∈ Grp))
934, 92bitri 275 1 (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ 𝐺 ∈ Grp))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  Vcvv 3447  cdif 3911  wss 3914  {csn 4589   class class class wbr 5107  cfv 6511  (class class class)co 7387  Basecbs 17179  s cress 17200  +gcplusg 17220  .rcmulr 17221  0gc0g 17402  Grpcgrp 18865  invgcminusg 18866  mulGrpcmgp 20049  1rcur 20090  Ringcrg 20142  opprcoppr 20245  rcdsr 20263  Unitcui 20264  /rcdvr 20309  DivRingcdr 20638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-invr 20297  df-dvr 20310  df-drng 20640
This theorem is referenced by:  drngmgp  20654  isdrngd  20674  isdrngdOLD  20676  subdrgint  20712
  Copyright terms: Public domain W3C validator