MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isdrng2 Structured version   Visualization version   GIF version

Theorem isdrng2 20760
Description: A division ring can equivalently be defined as a ring such that the nonzero elements form a group under multiplication (from which it follows that this is the same group as the group of units). (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
isdrng2.b 𝐵 = (Base‘𝑅)
isdrng2.z 0 = (0g𝑅)
isdrng2.g 𝐺 = ((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))
Assertion
Ref Expression
isdrng2 (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ 𝐺 ∈ Grp))

Proof of Theorem isdrng2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 isdrng2.b . . 3 𝐵 = (Base‘𝑅)
2 eqid 2735 . . 3 (Unit‘𝑅) = (Unit‘𝑅)
3 isdrng2.z . . 3 0 = (0g𝑅)
41, 2, 3isdrng 20750 . 2 (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ (Unit‘𝑅) = (𝐵 ∖ { 0 })))
5 oveq2 7439 . . . . . . 7 ((Unit‘𝑅) = (𝐵 ∖ { 0 }) → ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) = ((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 })))
65adantl 481 . . . . . 6 ((𝑅 ∈ Ring ∧ (Unit‘𝑅) = (𝐵 ∖ { 0 })) → ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) = ((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 })))
7 isdrng2.g . . . . . 6 𝐺 = ((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))
86, 7eqtr4di 2793 . . . . 5 ((𝑅 ∈ Ring ∧ (Unit‘𝑅) = (𝐵 ∖ { 0 })) → ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) = 𝐺)
9 eqid 2735 . . . . . . 7 ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) = ((mulGrp‘𝑅) ↾s (Unit‘𝑅))
102, 9unitgrp 20400 . . . . . 6 (𝑅 ∈ Ring → ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) ∈ Grp)
1110adantr 480 . . . . 5 ((𝑅 ∈ Ring ∧ (Unit‘𝑅) = (𝐵 ∖ { 0 })) → ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) ∈ Grp)
128, 11eqeltrrd 2840 . . . 4 ((𝑅 ∈ Ring ∧ (Unit‘𝑅) = (𝐵 ∖ { 0 })) → 𝐺 ∈ Grp)
131, 2unitcl 20392 . . . . . . . . 9 (𝑥 ∈ (Unit‘𝑅) → 𝑥𝐵)
1413adantl 481 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (Unit‘𝑅)) → 𝑥𝐵)
15 difss 4146 . . . . . . . . . . . . . . 15 (𝐵 ∖ { 0 }) ⊆ 𝐵
16 eqid 2735 . . . . . . . . . . . . . . . . 17 (mulGrp‘𝑅) = (mulGrp‘𝑅)
1716, 1mgpbas 20158 . . . . . . . . . . . . . . . 16 𝐵 = (Base‘(mulGrp‘𝑅))
187, 17ressbas2 17283 . . . . . . . . . . . . . . 15 ((𝐵 ∖ { 0 }) ⊆ 𝐵 → (𝐵 ∖ { 0 }) = (Base‘𝐺))
1915, 18ax-mp 5 . . . . . . . . . . . . . 14 (𝐵 ∖ { 0 }) = (Base‘𝐺)
20 eqid 2735 . . . . . . . . . . . . . 14 (0g𝐺) = (0g𝐺)
2119, 20grpidcl 18996 . . . . . . . . . . . . 13 (𝐺 ∈ Grp → (0g𝐺) ∈ (𝐵 ∖ { 0 }))
2221ad2antlr 727 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (Unit‘𝑅)) → (0g𝐺) ∈ (𝐵 ∖ { 0 }))
23 eldifsn 4791 . . . . . . . . . . . 12 ((0g𝐺) ∈ (𝐵 ∖ { 0 }) ↔ ((0g𝐺) ∈ 𝐵 ∧ (0g𝐺) ≠ 0 ))
2422, 23sylib 218 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (Unit‘𝑅)) → ((0g𝐺) ∈ 𝐵 ∧ (0g𝐺) ≠ 0 ))
2524simprd 495 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (Unit‘𝑅)) → (0g𝐺) ≠ 0 )
26 simpll 767 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (Unit‘𝑅)) → 𝑅 ∈ Ring)
2722eldifad 3975 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (Unit‘𝑅)) → (0g𝐺) ∈ 𝐵)
28 simpr 484 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (Unit‘𝑅)) → 𝑥 ∈ (Unit‘𝑅))
29 eqid 2735 . . . . . . . . . . . 12 (/r𝑅) = (/r𝑅)
30 eqid 2735 . . . . . . . . . . . 12 (.r𝑅) = (.r𝑅)
311, 2, 29, 30dvrcan1 20426 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ (0g𝐺) ∈ 𝐵𝑥 ∈ (Unit‘𝑅)) → (((0g𝐺)(/r𝑅)𝑥)(.r𝑅)𝑥) = (0g𝐺))
3226, 27, 28, 31syl3anc 1370 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (Unit‘𝑅)) → (((0g𝐺)(/r𝑅)𝑥)(.r𝑅)𝑥) = (0g𝐺))
331, 2, 29dvrcl 20421 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ (0g𝐺) ∈ 𝐵𝑥 ∈ (Unit‘𝑅)) → ((0g𝐺)(/r𝑅)𝑥) ∈ 𝐵)
3426, 27, 28, 33syl3anc 1370 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (Unit‘𝑅)) → ((0g𝐺)(/r𝑅)𝑥) ∈ 𝐵)
351, 30, 3ringrz 20308 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ ((0g𝐺)(/r𝑅)𝑥) ∈ 𝐵) → (((0g𝐺)(/r𝑅)𝑥)(.r𝑅) 0 ) = 0 )
3626, 34, 35syl2anc 584 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (Unit‘𝑅)) → (((0g𝐺)(/r𝑅)𝑥)(.r𝑅) 0 ) = 0 )
3725, 32, 363netr4d 3016 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (Unit‘𝑅)) → (((0g𝐺)(/r𝑅)𝑥)(.r𝑅)𝑥) ≠ (((0g𝐺)(/r𝑅)𝑥)(.r𝑅) 0 ))
38 oveq2 7439 . . . . . . . . . 10 (𝑥 = 0 → (((0g𝐺)(/r𝑅)𝑥)(.r𝑅)𝑥) = (((0g𝐺)(/r𝑅)𝑥)(.r𝑅) 0 ))
3938necon3i 2971 . . . . . . . . 9 ((((0g𝐺)(/r𝑅)𝑥)(.r𝑅)𝑥) ≠ (((0g𝐺)(/r𝑅)𝑥)(.r𝑅) 0 ) → 𝑥0 )
4037, 39syl 17 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (Unit‘𝑅)) → 𝑥0 )
41 eldifsn 4791 . . . . . . . 8 (𝑥 ∈ (𝐵 ∖ { 0 }) ↔ (𝑥𝐵𝑥0 ))
4214, 40, 41sylanbrc 583 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (Unit‘𝑅)) → 𝑥 ∈ (𝐵 ∖ { 0 }))
4342ex 412 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) → (𝑥 ∈ (Unit‘𝑅) → 𝑥 ∈ (𝐵 ∖ { 0 })))
4443ssrdv 4001 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) → (Unit‘𝑅) ⊆ (𝐵 ∖ { 0 }))
45 eldifi 4141 . . . . . . . . 9 (𝑥 ∈ (𝐵 ∖ { 0 }) → 𝑥𝐵)
4645adantl 481 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑥𝐵)
47 eqid 2735 . . . . . . . . . . 11 (invg𝐺) = (invg𝐺)
4819, 47grpinvcl 19018 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → ((invg𝐺)‘𝑥) ∈ (𝐵 ∖ { 0 }))
4948adantll 714 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → ((invg𝐺)‘𝑥) ∈ (𝐵 ∖ { 0 }))
5049eldifad 3975 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → ((invg𝐺)‘𝑥) ∈ 𝐵)
51 eqid 2735 . . . . . . . . 9 (∥r𝑅) = (∥r𝑅)
521, 51, 30dvdsrmul 20381 . . . . . . . 8 ((𝑥𝐵 ∧ ((invg𝐺)‘𝑥) ∈ 𝐵) → 𝑥(∥r𝑅)(((invg𝐺)‘𝑥)(.r𝑅)𝑥))
5346, 50, 52syl2anc 584 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑥(∥r𝑅)(((invg𝐺)‘𝑥)(.r𝑅)𝑥))
541fvexi 6921 . . . . . . . . . . 11 𝐵 ∈ V
55 difexg 5335 . . . . . . . . . . 11 (𝐵 ∈ V → (𝐵 ∖ { 0 }) ∈ V)
5616, 30mgpplusg 20156 . . . . . . . . . . . 12 (.r𝑅) = (+g‘(mulGrp‘𝑅))
577, 56ressplusg 17336 . . . . . . . . . . 11 ((𝐵 ∖ { 0 }) ∈ V → (.r𝑅) = (+g𝐺))
5854, 55, 57mp2b 10 . . . . . . . . . 10 (.r𝑅) = (+g𝐺)
5919, 58, 20, 47grplinv 19020 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → (((invg𝐺)‘𝑥)(.r𝑅)𝑥) = (0g𝐺))
6059adantll 714 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → (((invg𝐺)‘𝑥)(.r𝑅)𝑥) = (0g𝐺))
61 eqid 2735 . . . . . . . . . . . . 13 (1r𝑅) = (1r𝑅)
621, 61ringidcl 20280 . . . . . . . . . . . 12 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
631, 30, 61ringlidm 20283 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ (1r𝑅) ∈ 𝐵) → ((1r𝑅)(.r𝑅)(1r𝑅)) = (1r𝑅))
6462, 63mpdan 687 . . . . . . . . . . 11 (𝑅 ∈ Ring → ((1r𝑅)(.r𝑅)(1r𝑅)) = (1r𝑅))
6564adantr 480 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) → ((1r𝑅)(.r𝑅)(1r𝑅)) = (1r𝑅))
66 simpr 484 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) → 𝐺 ∈ Grp)
672, 611unit 20391 . . . . . . . . . . . . 13 (𝑅 ∈ Ring → (1r𝑅) ∈ (Unit‘𝑅))
6867adantr 480 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) → (1r𝑅) ∈ (Unit‘𝑅))
6944, 68sseldd 3996 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) → (1r𝑅) ∈ (𝐵 ∖ { 0 }))
7019, 58, 20grpid 19006 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (1r𝑅) ∈ (𝐵 ∖ { 0 })) → (((1r𝑅)(.r𝑅)(1r𝑅)) = (1r𝑅) ↔ (0g𝐺) = (1r𝑅)))
7166, 69, 70syl2anc 584 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) → (((1r𝑅)(.r𝑅)(1r𝑅)) = (1r𝑅) ↔ (0g𝐺) = (1r𝑅)))
7265, 71mpbid 232 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) → (0g𝐺) = (1r𝑅))
7372adantr 480 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → (0g𝐺) = (1r𝑅))
7460, 73eqtrd 2775 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → (((invg𝐺)‘𝑥)(.r𝑅)𝑥) = (1r𝑅))
7553, 74breqtrd 5174 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑥(∥r𝑅)(1r𝑅))
76 eqid 2735 . . . . . . . . . 10 (oppr𝑅) = (oppr𝑅)
7776, 1opprbas 20358 . . . . . . . . 9 𝐵 = (Base‘(oppr𝑅))
78 eqid 2735 . . . . . . . . 9 (∥r‘(oppr𝑅)) = (∥r‘(oppr𝑅))
79 eqid 2735 . . . . . . . . 9 (.r‘(oppr𝑅)) = (.r‘(oppr𝑅))
8077, 78, 79dvdsrmul 20381 . . . . . . . 8 ((𝑥𝐵 ∧ ((invg𝐺)‘𝑥) ∈ 𝐵) → 𝑥(∥r‘(oppr𝑅))(((invg𝐺)‘𝑥)(.r‘(oppr𝑅))𝑥))
8146, 50, 80syl2anc 584 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑥(∥r‘(oppr𝑅))(((invg𝐺)‘𝑥)(.r‘(oppr𝑅))𝑥))
821, 30, 76, 79opprmul 20354 . . . . . . . 8 (((invg𝐺)‘𝑥)(.r‘(oppr𝑅))𝑥) = (𝑥(.r𝑅)((invg𝐺)‘𝑥))
8319, 58, 20, 47grprinv 19021 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → (𝑥(.r𝑅)((invg𝐺)‘𝑥)) = (0g𝐺))
8483adantll 714 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → (𝑥(.r𝑅)((invg𝐺)‘𝑥)) = (0g𝐺))
8584, 73eqtrd 2775 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → (𝑥(.r𝑅)((invg𝐺)‘𝑥)) = (1r𝑅))
8682, 85eqtrid 2787 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → (((invg𝐺)‘𝑥)(.r‘(oppr𝑅))𝑥) = (1r𝑅))
8781, 86breqtrd 5174 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑥(∥r‘(oppr𝑅))(1r𝑅))
882, 61, 51, 76, 78isunit 20390 . . . . . 6 (𝑥 ∈ (Unit‘𝑅) ↔ (𝑥(∥r𝑅)(1r𝑅) ∧ 𝑥(∥r‘(oppr𝑅))(1r𝑅)))
8975, 87, 88sylanbrc 583 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑥 ∈ (Unit‘𝑅))
9044, 89eqelssd 4017 . . . 4 ((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) → (Unit‘𝑅) = (𝐵 ∖ { 0 }))
9112, 90impbida 801 . . 3 (𝑅 ∈ Ring → ((Unit‘𝑅) = (𝐵 ∖ { 0 }) ↔ 𝐺 ∈ Grp))
9291pm5.32i 574 . 2 ((𝑅 ∈ Ring ∧ (Unit‘𝑅) = (𝐵 ∖ { 0 })) ↔ (𝑅 ∈ Ring ∧ 𝐺 ∈ Grp))
934, 92bitri 275 1 (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ 𝐺 ∈ Grp))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wcel 2106  wne 2938  Vcvv 3478  cdif 3960  wss 3963  {csn 4631   class class class wbr 5148  cfv 6563  (class class class)co 7431  Basecbs 17245  s cress 17274  +gcplusg 17298  .rcmulr 17299  0gc0g 17486  Grpcgrp 18964  invgcminusg 18965  mulGrpcmgp 20152  1rcur 20199  Ringcrg 20251  opprcoppr 20350  rcdsr 20371  Unitcui 20372  /rcdvr 20417  DivRingcdr 20746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-minusg 18968  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-invr 20405  df-dvr 20418  df-drng 20748
This theorem is referenced by:  drngmgp  20762  isdrngd  20782  isdrngdOLD  20784  subdrgint  20821
  Copyright terms: Public domain W3C validator