MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isdrng2 Structured version   Visualization version   GIF version

Theorem isdrng2 19149
Description: A division ring can equivalently be defined as a ring such that the nonzero elements form a group under multiplication (from which it follows that this is the same group as the group of units). (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
isdrng2.b 𝐵 = (Base‘𝑅)
isdrng2.z 0 = (0g𝑅)
isdrng2.g 𝐺 = ((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))
Assertion
Ref Expression
isdrng2 (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ 𝐺 ∈ Grp))

Proof of Theorem isdrng2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 isdrng2.b . . 3 𝐵 = (Base‘𝑅)
2 eqid 2778 . . 3 (Unit‘𝑅) = (Unit‘𝑅)
3 isdrng2.z . . 3 0 = (0g𝑅)
41, 2, 3isdrng 19143 . 2 (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ (Unit‘𝑅) = (𝐵 ∖ { 0 })))
5 oveq2 6930 . . . . . . 7 ((Unit‘𝑅) = (𝐵 ∖ { 0 }) → ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) = ((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 })))
65adantl 475 . . . . . 6 ((𝑅 ∈ Ring ∧ (Unit‘𝑅) = (𝐵 ∖ { 0 })) → ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) = ((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 })))
7 isdrng2.g . . . . . 6 𝐺 = ((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))
86, 7syl6eqr 2832 . . . . 5 ((𝑅 ∈ Ring ∧ (Unit‘𝑅) = (𝐵 ∖ { 0 })) → ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) = 𝐺)
9 eqid 2778 . . . . . . 7 ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) = ((mulGrp‘𝑅) ↾s (Unit‘𝑅))
102, 9unitgrp 19054 . . . . . 6 (𝑅 ∈ Ring → ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) ∈ Grp)
1110adantr 474 . . . . 5 ((𝑅 ∈ Ring ∧ (Unit‘𝑅) = (𝐵 ∖ { 0 })) → ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) ∈ Grp)
128, 11eqeltrrd 2860 . . . 4 ((𝑅 ∈ Ring ∧ (Unit‘𝑅) = (𝐵 ∖ { 0 })) → 𝐺 ∈ Grp)
131, 2unitcl 19046 . . . . . . . . 9 (𝑥 ∈ (Unit‘𝑅) → 𝑥𝐵)
1413adantl 475 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (Unit‘𝑅)) → 𝑥𝐵)
15 difss 3960 . . . . . . . . . . . . . . 15 (𝐵 ∖ { 0 }) ⊆ 𝐵
16 eqid 2778 . . . . . . . . . . . . . . . . 17 (mulGrp‘𝑅) = (mulGrp‘𝑅)
1716, 1mgpbas 18882 . . . . . . . . . . . . . . . 16 𝐵 = (Base‘(mulGrp‘𝑅))
187, 17ressbas2 16327 . . . . . . . . . . . . . . 15 ((𝐵 ∖ { 0 }) ⊆ 𝐵 → (𝐵 ∖ { 0 }) = (Base‘𝐺))
1915, 18ax-mp 5 . . . . . . . . . . . . . 14 (𝐵 ∖ { 0 }) = (Base‘𝐺)
20 eqid 2778 . . . . . . . . . . . . . 14 (0g𝐺) = (0g𝐺)
2119, 20grpidcl 17837 . . . . . . . . . . . . 13 (𝐺 ∈ Grp → (0g𝐺) ∈ (𝐵 ∖ { 0 }))
2221ad2antlr 717 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (Unit‘𝑅)) → (0g𝐺) ∈ (𝐵 ∖ { 0 }))
23 eldifsn 4550 . . . . . . . . . . . 12 ((0g𝐺) ∈ (𝐵 ∖ { 0 }) ↔ ((0g𝐺) ∈ 𝐵 ∧ (0g𝐺) ≠ 0 ))
2422, 23sylib 210 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (Unit‘𝑅)) → ((0g𝐺) ∈ 𝐵 ∧ (0g𝐺) ≠ 0 ))
2524simprd 491 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (Unit‘𝑅)) → (0g𝐺) ≠ 0 )
26 simpll 757 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (Unit‘𝑅)) → 𝑅 ∈ Ring)
2722eldifad 3804 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (Unit‘𝑅)) → (0g𝐺) ∈ 𝐵)
28 simpr 479 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (Unit‘𝑅)) → 𝑥 ∈ (Unit‘𝑅))
29 eqid 2778 . . . . . . . . . . . 12 (/r𝑅) = (/r𝑅)
30 eqid 2778 . . . . . . . . . . . 12 (.r𝑅) = (.r𝑅)
311, 2, 29, 30dvrcan1 19078 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ (0g𝐺) ∈ 𝐵𝑥 ∈ (Unit‘𝑅)) → (((0g𝐺)(/r𝑅)𝑥)(.r𝑅)𝑥) = (0g𝐺))
3226, 27, 28, 31syl3anc 1439 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (Unit‘𝑅)) → (((0g𝐺)(/r𝑅)𝑥)(.r𝑅)𝑥) = (0g𝐺))
331, 2, 29dvrcl 19073 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ (0g𝐺) ∈ 𝐵𝑥 ∈ (Unit‘𝑅)) → ((0g𝐺)(/r𝑅)𝑥) ∈ 𝐵)
3426, 27, 28, 33syl3anc 1439 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (Unit‘𝑅)) → ((0g𝐺)(/r𝑅)𝑥) ∈ 𝐵)
351, 30, 3ringrz 18975 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ ((0g𝐺)(/r𝑅)𝑥) ∈ 𝐵) → (((0g𝐺)(/r𝑅)𝑥)(.r𝑅) 0 ) = 0 )
3626, 34, 35syl2anc 579 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (Unit‘𝑅)) → (((0g𝐺)(/r𝑅)𝑥)(.r𝑅) 0 ) = 0 )
3725, 32, 363netr4d 3046 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (Unit‘𝑅)) → (((0g𝐺)(/r𝑅)𝑥)(.r𝑅)𝑥) ≠ (((0g𝐺)(/r𝑅)𝑥)(.r𝑅) 0 ))
38 oveq2 6930 . . . . . . . . . 10 (𝑥 = 0 → (((0g𝐺)(/r𝑅)𝑥)(.r𝑅)𝑥) = (((0g𝐺)(/r𝑅)𝑥)(.r𝑅) 0 ))
3938necon3i 3001 . . . . . . . . 9 ((((0g𝐺)(/r𝑅)𝑥)(.r𝑅)𝑥) ≠ (((0g𝐺)(/r𝑅)𝑥)(.r𝑅) 0 ) → 𝑥0 )
4037, 39syl 17 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (Unit‘𝑅)) → 𝑥0 )
41 eldifsn 4550 . . . . . . . 8 (𝑥 ∈ (𝐵 ∖ { 0 }) ↔ (𝑥𝐵𝑥0 ))
4214, 40, 41sylanbrc 578 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (Unit‘𝑅)) → 𝑥 ∈ (𝐵 ∖ { 0 }))
4342ex 403 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) → (𝑥 ∈ (Unit‘𝑅) → 𝑥 ∈ (𝐵 ∖ { 0 })))
4443ssrdv 3827 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) → (Unit‘𝑅) ⊆ (𝐵 ∖ { 0 }))
45 eldifi 3955 . . . . . . . . 9 (𝑥 ∈ (𝐵 ∖ { 0 }) → 𝑥𝐵)
4645adantl 475 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑥𝐵)
47 eqid 2778 . . . . . . . . . . 11 (invg𝐺) = (invg𝐺)
4819, 47grpinvcl 17854 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → ((invg𝐺)‘𝑥) ∈ (𝐵 ∖ { 0 }))
4948adantll 704 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → ((invg𝐺)‘𝑥) ∈ (𝐵 ∖ { 0 }))
5049eldifad 3804 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → ((invg𝐺)‘𝑥) ∈ 𝐵)
51 eqid 2778 . . . . . . . . 9 (∥r𝑅) = (∥r𝑅)
521, 51, 30dvdsrmul 19035 . . . . . . . 8 ((𝑥𝐵 ∧ ((invg𝐺)‘𝑥) ∈ 𝐵) → 𝑥(∥r𝑅)(((invg𝐺)‘𝑥)(.r𝑅)𝑥))
5346, 50, 52syl2anc 579 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑥(∥r𝑅)(((invg𝐺)‘𝑥)(.r𝑅)𝑥))
541fvexi 6460 . . . . . . . . . . 11 𝐵 ∈ V
55 difexg 5045 . . . . . . . . . . 11 (𝐵 ∈ V → (𝐵 ∖ { 0 }) ∈ V)
5616, 30mgpplusg 18880 . . . . . . . . . . . 12 (.r𝑅) = (+g‘(mulGrp‘𝑅))
577, 56ressplusg 16385 . . . . . . . . . . 11 ((𝐵 ∖ { 0 }) ∈ V → (.r𝑅) = (+g𝐺))
5854, 55, 57mp2b 10 . . . . . . . . . 10 (.r𝑅) = (+g𝐺)
5919, 58, 20, 47grplinv 17855 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → (((invg𝐺)‘𝑥)(.r𝑅)𝑥) = (0g𝐺))
6059adantll 704 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → (((invg𝐺)‘𝑥)(.r𝑅)𝑥) = (0g𝐺))
61 eqid 2778 . . . . . . . . . . . . 13 (1r𝑅) = (1r𝑅)
621, 61ringidcl 18955 . . . . . . . . . . . 12 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
631, 30, 61ringlidm 18958 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ (1r𝑅) ∈ 𝐵) → ((1r𝑅)(.r𝑅)(1r𝑅)) = (1r𝑅))
6462, 63mpdan 677 . . . . . . . . . . 11 (𝑅 ∈ Ring → ((1r𝑅)(.r𝑅)(1r𝑅)) = (1r𝑅))
6564adantr 474 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) → ((1r𝑅)(.r𝑅)(1r𝑅)) = (1r𝑅))
66 simpr 479 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) → 𝐺 ∈ Grp)
672, 611unit 19045 . . . . . . . . . . . . 13 (𝑅 ∈ Ring → (1r𝑅) ∈ (Unit‘𝑅))
6867adantr 474 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) → (1r𝑅) ∈ (Unit‘𝑅))
6944, 68sseldd 3822 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) → (1r𝑅) ∈ (𝐵 ∖ { 0 }))
7019, 58, 20grpid 17844 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (1r𝑅) ∈ (𝐵 ∖ { 0 })) → (((1r𝑅)(.r𝑅)(1r𝑅)) = (1r𝑅) ↔ (0g𝐺) = (1r𝑅)))
7166, 69, 70syl2anc 579 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) → (((1r𝑅)(.r𝑅)(1r𝑅)) = (1r𝑅) ↔ (0g𝐺) = (1r𝑅)))
7265, 71mpbid 224 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) → (0g𝐺) = (1r𝑅))
7372adantr 474 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → (0g𝐺) = (1r𝑅))
7460, 73eqtrd 2814 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → (((invg𝐺)‘𝑥)(.r𝑅)𝑥) = (1r𝑅))
7553, 74breqtrd 4912 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑥(∥r𝑅)(1r𝑅))
76 eqid 2778 . . . . . . . . . 10 (oppr𝑅) = (oppr𝑅)
7776, 1opprbas 19016 . . . . . . . . 9 𝐵 = (Base‘(oppr𝑅))
78 eqid 2778 . . . . . . . . 9 (∥r‘(oppr𝑅)) = (∥r‘(oppr𝑅))
79 eqid 2778 . . . . . . . . 9 (.r‘(oppr𝑅)) = (.r‘(oppr𝑅))
8077, 78, 79dvdsrmul 19035 . . . . . . . 8 ((𝑥𝐵 ∧ ((invg𝐺)‘𝑥) ∈ 𝐵) → 𝑥(∥r‘(oppr𝑅))(((invg𝐺)‘𝑥)(.r‘(oppr𝑅))𝑥))
8146, 50, 80syl2anc 579 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑥(∥r‘(oppr𝑅))(((invg𝐺)‘𝑥)(.r‘(oppr𝑅))𝑥))
821, 30, 76, 79opprmul 19013 . . . . . . . 8 (((invg𝐺)‘𝑥)(.r‘(oppr𝑅))𝑥) = (𝑥(.r𝑅)((invg𝐺)‘𝑥))
8319, 58, 20, 47grprinv 17856 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → (𝑥(.r𝑅)((invg𝐺)‘𝑥)) = (0g𝐺))
8483adantll 704 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → (𝑥(.r𝑅)((invg𝐺)‘𝑥)) = (0g𝐺))
8584, 73eqtrd 2814 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → (𝑥(.r𝑅)((invg𝐺)‘𝑥)) = (1r𝑅))
8682, 85syl5eq 2826 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → (((invg𝐺)‘𝑥)(.r‘(oppr𝑅))𝑥) = (1r𝑅))
8781, 86breqtrd 4912 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑥(∥r‘(oppr𝑅))(1r𝑅))
882, 61, 51, 76, 78isunit 19044 . . . . . 6 (𝑥 ∈ (Unit‘𝑅) ↔ (𝑥(∥r𝑅)(1r𝑅) ∧ 𝑥(∥r‘(oppr𝑅))(1r𝑅)))
8975, 87, 88sylanbrc 578 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑥 ∈ (Unit‘𝑅))
9044, 89eqelssd 3841 . . . 4 ((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) → (Unit‘𝑅) = (𝐵 ∖ { 0 }))
9112, 90impbida 791 . . 3 (𝑅 ∈ Ring → ((Unit‘𝑅) = (𝐵 ∖ { 0 }) ↔ 𝐺 ∈ Grp))
9291pm5.32i 570 . 2 ((𝑅 ∈ Ring ∧ (Unit‘𝑅) = (𝐵 ∖ { 0 })) ↔ (𝑅 ∈ Ring ∧ 𝐺 ∈ Grp))
934, 92bitri 267 1 (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ 𝐺 ∈ Grp))
Colors of variables: wff setvar class
Syntax hints:  wb 198  wa 386   = wceq 1601  wcel 2107  wne 2969  Vcvv 3398  cdif 3789  wss 3792  {csn 4398   class class class wbr 4886  cfv 6135  (class class class)co 6922  Basecbs 16255  s cress 16256  +gcplusg 16338  .rcmulr 16339  0gc0g 16486  Grpcgrp 17809  invgcminusg 17810  mulGrpcmgp 18876  1rcur 18888  Ringcrg 18934  opprcoppr 19009  rcdsr 19025  Unitcui 19026  /rcdvr 19069  DivRingcdr 19139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-tpos 7634  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-er 8026  df-en 8242  df-dom 8243  df-sdom 8244  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-nn 11375  df-2 11438  df-3 11439  df-ndx 16258  df-slot 16259  df-base 16261  df-sets 16262  df-ress 16263  df-plusg 16351  df-mulr 16352  df-0g 16488  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-grp 17812  df-minusg 17813  df-mgp 18877  df-ur 18889  df-ring 18936  df-oppr 19010  df-dvdsr 19028  df-unit 19029  df-invr 19059  df-dvr 19070  df-drng 19141
This theorem is referenced by:  drngmgp  19151  isdrngd  19164
  Copyright terms: Public domain W3C validator