Step | Hyp | Ref
| Expression |
1 | | isdrng2.b |
. . 3
⊢ 𝐵 = (Base‘𝑅) |
2 | | eqid 2738 |
. . 3
⊢
(Unit‘𝑅) =
(Unit‘𝑅) |
3 | | isdrng2.z |
. . 3
⊢ 0 =
(0g‘𝑅) |
4 | 1, 2, 3 | isdrng 19995 |
. 2
⊢ (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧
(Unit‘𝑅) = (𝐵 ∖ { 0 }))) |
5 | | oveq2 7283 |
. . . . . . 7
⊢
((Unit‘𝑅) =
(𝐵 ∖ { 0 }) →
((mulGrp‘𝑅)
↾s (Unit‘𝑅)) = ((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))) |
6 | 5 | adantl 482 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧
(Unit‘𝑅) = (𝐵 ∖ { 0 })) →
((mulGrp‘𝑅)
↾s (Unit‘𝑅)) = ((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))) |
7 | | isdrng2.g |
. . . . . 6
⊢ 𝐺 = ((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 })) |
8 | 6, 7 | eqtr4di 2796 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧
(Unit‘𝑅) = (𝐵 ∖ { 0 })) →
((mulGrp‘𝑅)
↾s (Unit‘𝑅)) = 𝐺) |
9 | | eqid 2738 |
. . . . . . 7
⊢
((mulGrp‘𝑅)
↾s (Unit‘𝑅)) = ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) |
10 | 2, 9 | unitgrp 19909 |
. . . . . 6
⊢ (𝑅 ∈ Ring →
((mulGrp‘𝑅)
↾s (Unit‘𝑅)) ∈ Grp) |
11 | 10 | adantr 481 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧
(Unit‘𝑅) = (𝐵 ∖ { 0 })) →
((mulGrp‘𝑅)
↾s (Unit‘𝑅)) ∈ Grp) |
12 | 8, 11 | eqeltrrd 2840 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧
(Unit‘𝑅) = (𝐵 ∖ { 0 })) → 𝐺 ∈ Grp) |
13 | 1, 2 | unitcl 19901 |
. . . . . . . . 9
⊢ (𝑥 ∈ (Unit‘𝑅) → 𝑥 ∈ 𝐵) |
14 | 13 | adantl 482 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (Unit‘𝑅)) → 𝑥 ∈ 𝐵) |
15 | | difss 4066 |
. . . . . . . . . . . . . . 15
⊢ (𝐵 ∖ { 0 }) ⊆ 𝐵 |
16 | | eqid 2738 |
. . . . . . . . . . . . . . . . 17
⊢
(mulGrp‘𝑅) =
(mulGrp‘𝑅) |
17 | 16, 1 | mgpbas 19726 |
. . . . . . . . . . . . . . . 16
⊢ 𝐵 =
(Base‘(mulGrp‘𝑅)) |
18 | 7, 17 | ressbas2 16949 |
. . . . . . . . . . . . . . 15
⊢ ((𝐵 ∖ { 0 }) ⊆ 𝐵 → (𝐵 ∖ { 0 }) = (Base‘𝐺)) |
19 | 15, 18 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢ (𝐵 ∖ { 0 }) = (Base‘𝐺) |
20 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢
(0g‘𝐺) = (0g‘𝐺) |
21 | 19, 20 | grpidcl 18607 |
. . . . . . . . . . . . 13
⊢ (𝐺 ∈ Grp →
(0g‘𝐺)
∈ (𝐵 ∖ { 0
})) |
22 | 21 | ad2antlr 724 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (Unit‘𝑅)) →
(0g‘𝐺)
∈ (𝐵 ∖ { 0
})) |
23 | | eldifsn 4720 |
. . . . . . . . . . . 12
⊢
((0g‘𝐺) ∈ (𝐵 ∖ { 0 }) ↔
((0g‘𝐺)
∈ 𝐵 ∧
(0g‘𝐺)
≠ 0
)) |
24 | 22, 23 | sylib 217 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (Unit‘𝑅)) →
((0g‘𝐺)
∈ 𝐵 ∧
(0g‘𝐺)
≠ 0
)) |
25 | 24 | simprd 496 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (Unit‘𝑅)) →
(0g‘𝐺)
≠ 0
) |
26 | | simpll 764 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (Unit‘𝑅)) → 𝑅 ∈ Ring) |
27 | 22 | eldifad 3899 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (Unit‘𝑅)) →
(0g‘𝐺)
∈ 𝐵) |
28 | | simpr 485 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (Unit‘𝑅)) → 𝑥 ∈ (Unit‘𝑅)) |
29 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(/r‘𝑅) = (/r‘𝑅) |
30 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(.r‘𝑅) = (.r‘𝑅) |
31 | 1, 2, 29, 30 | dvrcan1 19933 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Ring ∧
(0g‘𝐺)
∈ 𝐵 ∧ 𝑥 ∈ (Unit‘𝑅)) →
(((0g‘𝐺)(/r‘𝑅)𝑥)(.r‘𝑅)𝑥) = (0g‘𝐺)) |
32 | 26, 27, 28, 31 | syl3anc 1370 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (Unit‘𝑅)) →
(((0g‘𝐺)(/r‘𝑅)𝑥)(.r‘𝑅)𝑥) = (0g‘𝐺)) |
33 | 1, 2, 29 | dvrcl 19928 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ Ring ∧
(0g‘𝐺)
∈ 𝐵 ∧ 𝑥 ∈ (Unit‘𝑅)) →
((0g‘𝐺)(/r‘𝑅)𝑥) ∈ 𝐵) |
34 | 26, 27, 28, 33 | syl3anc 1370 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (Unit‘𝑅)) →
((0g‘𝐺)(/r‘𝑅)𝑥) ∈ 𝐵) |
35 | 1, 30, 3 | ringrz 19827 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Ring ∧
((0g‘𝐺)(/r‘𝑅)𝑥) ∈ 𝐵) → (((0g‘𝐺)(/r‘𝑅)𝑥)(.r‘𝑅) 0 ) = 0 ) |
36 | 26, 34, 35 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (Unit‘𝑅)) →
(((0g‘𝐺)(/r‘𝑅)𝑥)(.r‘𝑅) 0 ) = 0 ) |
37 | 25, 32, 36 | 3netr4d 3021 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (Unit‘𝑅)) →
(((0g‘𝐺)(/r‘𝑅)𝑥)(.r‘𝑅)𝑥) ≠ (((0g‘𝐺)(/r‘𝑅)𝑥)(.r‘𝑅) 0 )) |
38 | | oveq2 7283 |
. . . . . . . . . 10
⊢ (𝑥 = 0 →
(((0g‘𝐺)(/r‘𝑅)𝑥)(.r‘𝑅)𝑥) = (((0g‘𝐺)(/r‘𝑅)𝑥)(.r‘𝑅) 0 )) |
39 | 38 | necon3i 2976 |
. . . . . . . . 9
⊢
((((0g‘𝐺)(/r‘𝑅)𝑥)(.r‘𝑅)𝑥) ≠ (((0g‘𝐺)(/r‘𝑅)𝑥)(.r‘𝑅) 0 ) → 𝑥 ≠ 0 ) |
40 | 37, 39 | syl 17 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (Unit‘𝑅)) → 𝑥 ≠ 0 ) |
41 | | eldifsn 4720 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝐵 ∖ { 0 }) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 )) |
42 | 14, 40, 41 | sylanbrc 583 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (Unit‘𝑅)) → 𝑥 ∈ (𝐵 ∖ { 0 })) |
43 | 42 | ex 413 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) → (𝑥 ∈ (Unit‘𝑅) → 𝑥 ∈ (𝐵 ∖ { 0 }))) |
44 | 43 | ssrdv 3927 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) →
(Unit‘𝑅) ⊆
(𝐵 ∖ { 0
})) |
45 | | eldifi 4061 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝐵 ∖ { 0 }) → 𝑥 ∈ 𝐵) |
46 | 45 | adantl 482 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑥 ∈ 𝐵) |
47 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(invg‘𝐺) = (invg‘𝐺) |
48 | 19, 47 | grpinvcl 18627 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) →
((invg‘𝐺)‘𝑥) ∈ (𝐵 ∖ { 0 })) |
49 | 48 | adantll 711 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) →
((invg‘𝐺)‘𝑥) ∈ (𝐵 ∖ { 0 })) |
50 | 49 | eldifad 3899 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) →
((invg‘𝐺)‘𝑥) ∈ 𝐵) |
51 | | eqid 2738 |
. . . . . . . . 9
⊢
(∥r‘𝑅) = (∥r‘𝑅) |
52 | 1, 51, 30 | dvdsrmul 19890 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐵 ∧ ((invg‘𝐺)‘𝑥) ∈ 𝐵) → 𝑥(∥r‘𝑅)(((invg‘𝐺)‘𝑥)(.r‘𝑅)𝑥)) |
53 | 46, 50, 52 | syl2anc 584 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑥(∥r‘𝑅)(((invg‘𝐺)‘𝑥)(.r‘𝑅)𝑥)) |
54 | 1 | fvexi 6788 |
. . . . . . . . . . 11
⊢ 𝐵 ∈ V |
55 | | difexg 5251 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ V → (𝐵 ∖ { 0 }) ∈
V) |
56 | 16, 30 | mgpplusg 19724 |
. . . . . . . . . . . 12
⊢
(.r‘𝑅) = (+g‘(mulGrp‘𝑅)) |
57 | 7, 56 | ressplusg 17000 |
. . . . . . . . . . 11
⊢ ((𝐵 ∖ { 0 }) ∈ V →
(.r‘𝑅) =
(+g‘𝐺)) |
58 | 54, 55, 57 | mp2b 10 |
. . . . . . . . . 10
⊢
(.r‘𝑅) = (+g‘𝐺) |
59 | 19, 58, 20, 47 | grplinv 18628 |
. . . . . . . . 9
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) →
(((invg‘𝐺)‘𝑥)(.r‘𝑅)𝑥) = (0g‘𝐺)) |
60 | 59 | adantll 711 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) →
(((invg‘𝐺)‘𝑥)(.r‘𝑅)𝑥) = (0g‘𝐺)) |
61 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
(1r‘𝑅) = (1r‘𝑅) |
62 | 1, 61 | ringidcl 19807 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ Ring →
(1r‘𝑅)
∈ 𝐵) |
63 | 1, 30, 61 | ringlidm 19810 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ Ring ∧
(1r‘𝑅)
∈ 𝐵) →
((1r‘𝑅)(.r‘𝑅)(1r‘𝑅)) = (1r‘𝑅)) |
64 | 62, 63 | mpdan 684 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ Ring →
((1r‘𝑅)(.r‘𝑅)(1r‘𝑅)) = (1r‘𝑅)) |
65 | 64 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) →
((1r‘𝑅)(.r‘𝑅)(1r‘𝑅)) = (1r‘𝑅)) |
66 | | simpr 485 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) → 𝐺 ∈ Grp) |
67 | 2, 61 | 1unit 19900 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ Ring →
(1r‘𝑅)
∈ (Unit‘𝑅)) |
68 | 67 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) →
(1r‘𝑅)
∈ (Unit‘𝑅)) |
69 | 44, 68 | sseldd 3922 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) →
(1r‘𝑅)
∈ (𝐵 ∖ { 0
})) |
70 | 19, 58, 20 | grpid 18615 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Grp ∧
(1r‘𝑅)
∈ (𝐵 ∖ { 0 })) →
(((1r‘𝑅)(.r‘𝑅)(1r‘𝑅)) = (1r‘𝑅) ↔ (0g‘𝐺) = (1r‘𝑅))) |
71 | 66, 69, 70 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) →
(((1r‘𝑅)(.r‘𝑅)(1r‘𝑅)) = (1r‘𝑅) ↔ (0g‘𝐺) = (1r‘𝑅))) |
72 | 65, 71 | mpbid 231 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) →
(0g‘𝐺) =
(1r‘𝑅)) |
73 | 72 | adantr 481 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) →
(0g‘𝐺) =
(1r‘𝑅)) |
74 | 60, 73 | eqtrd 2778 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) →
(((invg‘𝐺)‘𝑥)(.r‘𝑅)𝑥) = (1r‘𝑅)) |
75 | 53, 74 | breqtrd 5100 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑥(∥r‘𝑅)(1r‘𝑅)) |
76 | | eqid 2738 |
. . . . . . . . . 10
⊢
(oppr‘𝑅) = (oppr‘𝑅) |
77 | 76, 1 | opprbas 19869 |
. . . . . . . . 9
⊢ 𝐵 =
(Base‘(oppr‘𝑅)) |
78 | | eqid 2738 |
. . . . . . . . 9
⊢
(∥r‘(oppr‘𝑅)) =
(∥r‘(oppr‘𝑅)) |
79 | | eqid 2738 |
. . . . . . . . 9
⊢
(.r‘(oppr‘𝑅)) =
(.r‘(oppr‘𝑅)) |
80 | 77, 78, 79 | dvdsrmul 19890 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐵 ∧ ((invg‘𝐺)‘𝑥) ∈ 𝐵) → 𝑥(∥r‘(oppr‘𝑅))(((invg‘𝐺)‘𝑥)(.r‘(oppr‘𝑅))𝑥)) |
81 | 46, 50, 80 | syl2anc 584 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑥(∥r‘(oppr‘𝑅))(((invg‘𝐺)‘𝑥)(.r‘(oppr‘𝑅))𝑥)) |
82 | 1, 30, 76, 79 | opprmul 19865 |
. . . . . . . 8
⊢
(((invg‘𝐺)‘𝑥)(.r‘(oppr‘𝑅))𝑥) = (𝑥(.r‘𝑅)((invg‘𝐺)‘𝑥)) |
83 | 19, 58, 20, 47 | grprinv 18629 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → (𝑥(.r‘𝑅)((invg‘𝐺)‘𝑥)) = (0g‘𝐺)) |
84 | 83 | adantll 711 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → (𝑥(.r‘𝑅)((invg‘𝐺)‘𝑥)) = (0g‘𝐺)) |
85 | 84, 73 | eqtrd 2778 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → (𝑥(.r‘𝑅)((invg‘𝐺)‘𝑥)) = (1r‘𝑅)) |
86 | 82, 85 | eqtrid 2790 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) →
(((invg‘𝐺)‘𝑥)(.r‘(oppr‘𝑅))𝑥) = (1r‘𝑅)) |
87 | 81, 86 | breqtrd 5100 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑥(∥r‘(oppr‘𝑅))(1r‘𝑅)) |
88 | 2, 61, 51, 76, 78 | isunit 19899 |
. . . . . 6
⊢ (𝑥 ∈ (Unit‘𝑅) ↔ (𝑥(∥r‘𝑅)(1r‘𝑅) ∧ 𝑥(∥r‘(oppr‘𝑅))(1r‘𝑅))) |
89 | 75, 87, 88 | sylanbrc 583 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑥 ∈ (Unit‘𝑅)) |
90 | 44, 89 | eqelssd 3942 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐺 ∈ Grp) →
(Unit‘𝑅) = (𝐵 ∖ { 0 })) |
91 | 12, 90 | impbida 798 |
. . 3
⊢ (𝑅 ∈ Ring →
((Unit‘𝑅) = (𝐵 ∖ { 0 }) ↔ 𝐺 ∈ Grp)) |
92 | 91 | pm5.32i 575 |
. 2
⊢ ((𝑅 ∈ Ring ∧
(Unit‘𝑅) = (𝐵 ∖ { 0 })) ↔ (𝑅 ∈ Ring ∧ 𝐺 ∈ Grp)) |
93 | 4, 92 | bitri 274 |
1
⊢ (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ 𝐺 ∈ Grp)) |