Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  irngnzply1lem Structured version   Visualization version   GIF version

Theorem irngnzply1lem 33300
Description: In the case of a field 𝐸, a root 𝑋 of some nonzero polynomial 𝑃 with coefficients in a subfield 𝐹 is integral over 𝐹. (Contributed by Thierry Arnoux, 5-Feb-2025.)
Hypotheses
Ref Expression
irngnzply1.o 𝑂 = (𝐸 evalSub1 𝐹)
irngnzply1.z 𝑍 = (0gβ€˜(Poly1β€˜πΈ))
irngnzply1.1 0 = (0gβ€˜πΈ)
irngnzply1.e (πœ‘ β†’ 𝐸 ∈ Field)
irngnzply1.f (πœ‘ β†’ 𝐹 ∈ (SubDRingβ€˜πΈ))
irngnzply1lem.b 𝐡 = (Baseβ€˜πΈ)
irngnzply1lem.1 (πœ‘ β†’ 𝑃 ∈ dom 𝑂)
irngnzply1lem.2 (πœ‘ β†’ 𝑃 β‰  𝑍)
irngnzply1lem.3 (πœ‘ β†’ ((π‘‚β€˜π‘ƒ)β€˜π‘‹) = 0 )
irngnzply1lem.x (πœ‘ β†’ 𝑋 ∈ 𝐡)
Assertion
Ref Expression
irngnzply1lem (πœ‘ β†’ 𝑋 ∈ (𝐸 IntgRing 𝐹))

Proof of Theorem irngnzply1lem
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 irngnzply1lem.x . 2 (πœ‘ β†’ 𝑋 ∈ 𝐡)
2 irngnzply1.f . . . . . 6 (πœ‘ β†’ 𝐹 ∈ (SubDRingβ€˜πΈ))
3 issdrg 20665 . . . . . . 7 (𝐹 ∈ (SubDRingβ€˜πΈ) ↔ (𝐸 ∈ DivRing ∧ 𝐹 ∈ (SubRingβ€˜πΈ) ∧ (𝐸 β†Ύs 𝐹) ∈ DivRing))
43simp3bi 1145 . . . . . 6 (𝐹 ∈ (SubDRingβ€˜πΈ) β†’ (𝐸 β†Ύs 𝐹) ∈ DivRing)
52, 4syl 17 . . . . 5 (πœ‘ β†’ (𝐸 β†Ύs 𝐹) ∈ DivRing)
65drngringd 20621 . . . 4 (πœ‘ β†’ (𝐸 β†Ύs 𝐹) ∈ Ring)
7 irngnzply1lem.1 . . . . . 6 (πœ‘ β†’ 𝑃 ∈ dom 𝑂)
8 irngnzply1.e . . . . . . . . . 10 (πœ‘ β†’ 𝐸 ∈ Field)
98fldcrngd 20626 . . . . . . . . 9 (πœ‘ β†’ 𝐸 ∈ CRing)
102, 3sylib 217 . . . . . . . . . 10 (πœ‘ β†’ (𝐸 ∈ DivRing ∧ 𝐹 ∈ (SubRingβ€˜πΈ) ∧ (𝐸 β†Ύs 𝐹) ∈ DivRing))
1110simp2d 1141 . . . . . . . . 9 (πœ‘ β†’ 𝐹 ∈ (SubRingβ€˜πΈ))
12 irngnzply1.o . . . . . . . . . 10 𝑂 = (𝐸 evalSub1 𝐹)
13 irngnzply1lem.b . . . . . . . . . 10 𝐡 = (Baseβ€˜πΈ)
14 eqid 2727 . . . . . . . . . 10 (𝐸 ↑s 𝐡) = (𝐸 ↑s 𝐡)
15 eqid 2727 . . . . . . . . . 10 (𝐸 β†Ύs 𝐹) = (𝐸 β†Ύs 𝐹)
16 eqid 2727 . . . . . . . . . 10 (Poly1β€˜(𝐸 β†Ύs 𝐹)) = (Poly1β€˜(𝐸 β†Ύs 𝐹))
1712, 13, 14, 15, 16evls1rhm 22228 . . . . . . . . 9 ((𝐸 ∈ CRing ∧ 𝐹 ∈ (SubRingβ€˜πΈ)) β†’ 𝑂 ∈ ((Poly1β€˜(𝐸 β†Ύs 𝐹)) RingHom (𝐸 ↑s 𝐡)))
189, 11, 17syl2anc 583 . . . . . . . 8 (πœ‘ β†’ 𝑂 ∈ ((Poly1β€˜(𝐸 β†Ύs 𝐹)) RingHom (𝐸 ↑s 𝐡)))
19 eqid 2727 . . . . . . . . 9 (Baseβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹))) = (Baseβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))
20 eqid 2727 . . . . . . . . 9 (Baseβ€˜(𝐸 ↑s 𝐡)) = (Baseβ€˜(𝐸 ↑s 𝐡))
2119, 20rhmf 20413 . . . . . . . 8 (𝑂 ∈ ((Poly1β€˜(𝐸 β†Ύs 𝐹)) RingHom (𝐸 ↑s 𝐡)) β†’ 𝑂:(Baseβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))⟢(Baseβ€˜(𝐸 ↑s 𝐡)))
2218, 21syl 17 . . . . . . 7 (πœ‘ β†’ 𝑂:(Baseβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))⟢(Baseβ€˜(𝐸 ↑s 𝐡)))
2322fdmd 6727 . . . . . 6 (πœ‘ β†’ dom 𝑂 = (Baseβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹))))
247, 23eleqtrd 2830 . . . . 5 (πœ‘ β†’ 𝑃 ∈ (Baseβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹))))
25 irngnzply1lem.2 . . . . . 6 (πœ‘ β†’ 𝑃 β‰  𝑍)
26 eqid 2727 . . . . . . 7 (Poly1β€˜πΈ) = (Poly1β€˜πΈ)
27 irngnzply1.z . . . . . . 7 𝑍 = (0gβ€˜(Poly1β€˜πΈ))
2826, 15, 16, 19, 11, 27ressply10g 33178 . . . . . 6 (πœ‘ β†’ 𝑍 = (0gβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹))))
2925, 28neeqtrd 3005 . . . . 5 (πœ‘ β†’ 𝑃 β‰  (0gβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹))))
30 eqid 2727 . . . . . 6 (0gβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹))) = (0gβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))
31 eqid 2727 . . . . . 6 (Unic1pβ€˜(𝐸 β†Ύs 𝐹)) = (Unic1pβ€˜(𝐸 β†Ύs 𝐹))
3216, 19, 30, 31drnguc1p 26095 . . . . 5 (((𝐸 β†Ύs 𝐹) ∈ DivRing ∧ 𝑃 ∈ (Baseβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹))) ∧ 𝑃 β‰  (0gβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))) β†’ 𝑃 ∈ (Unic1pβ€˜(𝐸 β†Ύs 𝐹)))
335, 24, 29, 32syl3anc 1369 . . . 4 (πœ‘ β†’ 𝑃 ∈ (Unic1pβ€˜(𝐸 β†Ύs 𝐹)))
34 eqid 2727 . . . . 5 (Monic1pβ€˜(𝐸 β†Ύs 𝐹)) = (Monic1pβ€˜(𝐸 β†Ύs 𝐹))
35 eqid 2727 . . . . 5 (.rβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹))) = (.rβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))
36 eqid 2727 . . . . 5 (algScβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹))) = (algScβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))
37 eqid 2727 . . . . 5 ( deg1 β€˜(𝐸 β†Ύs 𝐹)) = ( deg1 β€˜(𝐸 β†Ύs 𝐹))
38 eqid 2727 . . . . 5 (invrβ€˜(𝐸 β†Ύs 𝐹)) = (invrβ€˜(𝐸 β†Ύs 𝐹))
3931, 34, 16, 35, 36, 37, 38uc1pmon1p 26074 . . . 4 (((𝐸 β†Ύs 𝐹) ∈ Ring ∧ 𝑃 ∈ (Unic1pβ€˜(𝐸 β†Ύs 𝐹))) β†’ (((algScβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))β€˜((invrβ€˜(𝐸 β†Ύs 𝐹))β€˜((coe1β€˜π‘ƒ)β€˜(( deg1 β€˜(𝐸 β†Ύs 𝐹))β€˜π‘ƒ))))(.rβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))𝑃) ∈ (Monic1pβ€˜(𝐸 β†Ύs 𝐹)))
406, 33, 39syl2anc 583 . . 3 (πœ‘ β†’ (((algScβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))β€˜((invrβ€˜(𝐸 β†Ύs 𝐹))β€˜((coe1β€˜π‘ƒ)β€˜(( deg1 β€˜(𝐸 β†Ύs 𝐹))β€˜π‘ƒ))))(.rβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))𝑃) ∈ (Monic1pβ€˜(𝐸 β†Ύs 𝐹)))
41 simpr 484 . . . . . 6 ((πœ‘ ∧ 𝑝 = (((algScβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))β€˜((invrβ€˜(𝐸 β†Ύs 𝐹))β€˜((coe1β€˜π‘ƒ)β€˜(( deg1 β€˜(𝐸 β†Ύs 𝐹))β€˜π‘ƒ))))(.rβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))𝑃)) β†’ 𝑝 = (((algScβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))β€˜((invrβ€˜(𝐸 β†Ύs 𝐹))β€˜((coe1β€˜π‘ƒ)β€˜(( deg1 β€˜(𝐸 β†Ύs 𝐹))β€˜π‘ƒ))))(.rβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))𝑃))
4241fveq2d 6895 . . . . 5 ((πœ‘ ∧ 𝑝 = (((algScβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))β€˜((invrβ€˜(𝐸 β†Ύs 𝐹))β€˜((coe1β€˜π‘ƒ)β€˜(( deg1 β€˜(𝐸 β†Ύs 𝐹))β€˜π‘ƒ))))(.rβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))𝑃)) β†’ (π‘‚β€˜π‘) = (π‘‚β€˜(((algScβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))β€˜((invrβ€˜(𝐸 β†Ύs 𝐹))β€˜((coe1β€˜π‘ƒ)β€˜(( deg1 β€˜(𝐸 β†Ύs 𝐹))β€˜π‘ƒ))))(.rβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))𝑃)))
4342fveq1d 6893 . . . 4 ((πœ‘ ∧ 𝑝 = (((algScβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))β€˜((invrβ€˜(𝐸 β†Ύs 𝐹))β€˜((coe1β€˜π‘ƒ)β€˜(( deg1 β€˜(𝐸 β†Ύs 𝐹))β€˜π‘ƒ))))(.rβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))𝑃)) β†’ ((π‘‚β€˜π‘)β€˜π‘‹) = ((π‘‚β€˜(((algScβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))β€˜((invrβ€˜(𝐸 β†Ύs 𝐹))β€˜((coe1β€˜π‘ƒ)β€˜(( deg1 β€˜(𝐸 β†Ύs 𝐹))β€˜π‘ƒ))))(.rβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))𝑃))β€˜π‘‹))
4443eqeq1d 2729 . . 3 ((πœ‘ ∧ 𝑝 = (((algScβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))β€˜((invrβ€˜(𝐸 β†Ύs 𝐹))β€˜((coe1β€˜π‘ƒ)β€˜(( deg1 β€˜(𝐸 β†Ύs 𝐹))β€˜π‘ƒ))))(.rβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))𝑃)) β†’ (((π‘‚β€˜π‘)β€˜π‘‹) = 0 ↔ ((π‘‚β€˜(((algScβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))β€˜((invrβ€˜(𝐸 β†Ύs 𝐹))β€˜((coe1β€˜π‘ƒ)β€˜(( deg1 β€˜(𝐸 β†Ύs 𝐹))β€˜π‘ƒ))))(.rβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))𝑃))β€˜π‘‹) = 0 ))
45 eqid 2727 . . . . 5 (.rβ€˜πΈ) = (.rβ€˜πΈ)
46 eqid 2727 . . . . . . 7 (Scalarβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹))) = (Scalarβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))
47 fldsdrgfld 20675 . . . . . . . . . . 11 ((𝐸 ∈ Field ∧ 𝐹 ∈ (SubDRingβ€˜πΈ)) β†’ (𝐸 β†Ύs 𝐹) ∈ Field)
488, 2, 47syl2anc 583 . . . . . . . . . 10 (πœ‘ β†’ (𝐸 β†Ύs 𝐹) ∈ Field)
4948fldcrngd 20626 . . . . . . . . 9 (πœ‘ β†’ (𝐸 β†Ύs 𝐹) ∈ CRing)
5016ply1assa 22105 . . . . . . . . 9 ((𝐸 β†Ύs 𝐹) ∈ CRing β†’ (Poly1β€˜(𝐸 β†Ύs 𝐹)) ∈ AssAlg)
5149, 50syl 17 . . . . . . . 8 (πœ‘ β†’ (Poly1β€˜(𝐸 β†Ύs 𝐹)) ∈ AssAlg)
52 assaring 21782 . . . . . . . 8 ((Poly1β€˜(𝐸 β†Ύs 𝐹)) ∈ AssAlg β†’ (Poly1β€˜(𝐸 β†Ύs 𝐹)) ∈ Ring)
5351, 52syl 17 . . . . . . 7 (πœ‘ β†’ (Poly1β€˜(𝐸 β†Ύs 𝐹)) ∈ Ring)
5416ply1lmod 22157 . . . . . . . 8 ((𝐸 β†Ύs 𝐹) ∈ Ring β†’ (Poly1β€˜(𝐸 β†Ύs 𝐹)) ∈ LMod)
556, 54syl 17 . . . . . . 7 (πœ‘ β†’ (Poly1β€˜(𝐸 β†Ύs 𝐹)) ∈ LMod)
56 eqid 2727 . . . . . . 7 (Baseβ€˜(Scalarβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))) = (Baseβ€˜(Scalarβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹))))
5736, 46, 53, 55, 56, 19asclf 21802 . . . . . 6 (πœ‘ β†’ (algScβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹))):(Baseβ€˜(Scalarβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹))))⟢(Baseβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹))))
58 eqid 2727 . . . . . . . 8 (Baseβ€˜(𝐸 β†Ύs 𝐹)) = (Baseβ€˜(𝐸 β†Ύs 𝐹))
59 eqid 2727 . . . . . . . 8 (0gβ€˜(𝐸 β†Ύs 𝐹)) = (0gβ€˜(𝐸 β†Ύs 𝐹))
6037, 16, 30, 19deg1nn0cl 26011 . . . . . . . . . 10 (((𝐸 β†Ύs 𝐹) ∈ Ring ∧ 𝑃 ∈ (Baseβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹))) ∧ 𝑃 β‰  (0gβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))) β†’ (( deg1 β€˜(𝐸 β†Ύs 𝐹))β€˜π‘ƒ) ∈ β„•0)
616, 24, 29, 60syl3anc 1369 . . . . . . . . 9 (πœ‘ β†’ (( deg1 β€˜(𝐸 β†Ύs 𝐹))β€˜π‘ƒ) ∈ β„•0)
62 eqid 2727 . . . . . . . . . 10 (coe1β€˜π‘ƒ) = (coe1β€˜π‘ƒ)
6362, 19, 16, 58coe1fvalcl 22118 . . . . . . . . 9 ((𝑃 ∈ (Baseβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹))) ∧ (( deg1 β€˜(𝐸 β†Ύs 𝐹))β€˜π‘ƒ) ∈ β„•0) β†’ ((coe1β€˜π‘ƒ)β€˜(( deg1 β€˜(𝐸 β†Ύs 𝐹))β€˜π‘ƒ)) ∈ (Baseβ€˜(𝐸 β†Ύs 𝐹)))
6424, 61, 63syl2anc 583 . . . . . . . 8 (πœ‘ β†’ ((coe1β€˜π‘ƒ)β€˜(( deg1 β€˜(𝐸 β†Ύs 𝐹))β€˜π‘ƒ)) ∈ (Baseβ€˜(𝐸 β†Ύs 𝐹)))
6537, 16, 30, 19, 59, 62deg1ldg 26015 . . . . . . . . 9 (((𝐸 β†Ύs 𝐹) ∈ Ring ∧ 𝑃 ∈ (Baseβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹))) ∧ 𝑃 β‰  (0gβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))) β†’ ((coe1β€˜π‘ƒ)β€˜(( deg1 β€˜(𝐸 β†Ύs 𝐹))β€˜π‘ƒ)) β‰  (0gβ€˜(𝐸 β†Ύs 𝐹)))
666, 24, 29, 65syl3anc 1369 . . . . . . . 8 (πœ‘ β†’ ((coe1β€˜π‘ƒ)β€˜(( deg1 β€˜(𝐸 β†Ύs 𝐹))β€˜π‘ƒ)) β‰  (0gβ€˜(𝐸 β†Ύs 𝐹)))
6758, 59, 38, 5, 64, 66drnginvrcld 20637 . . . . . . 7 (πœ‘ β†’ ((invrβ€˜(𝐸 β†Ύs 𝐹))β€˜((coe1β€˜π‘ƒ)β€˜(( deg1 β€˜(𝐸 β†Ύs 𝐹))β€˜π‘ƒ))) ∈ (Baseβ€˜(𝐸 β†Ύs 𝐹)))
6816ply1sca 22158 . . . . . . . . 9 ((𝐸 β†Ύs 𝐹) ∈ Field β†’ (𝐸 β†Ύs 𝐹) = (Scalarβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹))))
6948, 68syl 17 . . . . . . . 8 (πœ‘ β†’ (𝐸 β†Ύs 𝐹) = (Scalarβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹))))
7069fveq2d 6895 . . . . . . 7 (πœ‘ β†’ (Baseβ€˜(𝐸 β†Ύs 𝐹)) = (Baseβ€˜(Scalarβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))))
7167, 70eleqtrd 2830 . . . . . 6 (πœ‘ β†’ ((invrβ€˜(𝐸 β†Ύs 𝐹))β€˜((coe1β€˜π‘ƒ)β€˜(( deg1 β€˜(𝐸 β†Ύs 𝐹))β€˜π‘ƒ))) ∈ (Baseβ€˜(Scalarβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))))
7257, 71ffvelcdmd 7089 . . . . 5 (πœ‘ β†’ ((algScβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))β€˜((invrβ€˜(𝐸 β†Ύs 𝐹))β€˜((coe1β€˜π‘ƒ)β€˜(( deg1 β€˜(𝐸 β†Ύs 𝐹))β€˜π‘ƒ)))) ∈ (Baseβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹))))
7312, 13, 16, 15, 19, 35, 45, 9, 11, 72, 24, 1evls1muld 33186 . . . 4 (πœ‘ β†’ ((π‘‚β€˜(((algScβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))β€˜((invrβ€˜(𝐸 β†Ύs 𝐹))β€˜((coe1β€˜π‘ƒ)β€˜(( deg1 β€˜(𝐸 β†Ύs 𝐹))β€˜π‘ƒ))))(.rβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))𝑃))β€˜π‘‹) = (((π‘‚β€˜((algScβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))β€˜((invrβ€˜(𝐸 β†Ύs 𝐹))β€˜((coe1β€˜π‘ƒ)β€˜(( deg1 β€˜(𝐸 β†Ύs 𝐹))β€˜π‘ƒ)))))β€˜π‘‹)(.rβ€˜πΈ)((π‘‚β€˜π‘ƒ)β€˜π‘‹)))
74 irngnzply1lem.3 . . . . 5 (πœ‘ β†’ ((π‘‚β€˜π‘ƒ)β€˜π‘‹) = 0 )
7574oveq2d 7430 . . . 4 (πœ‘ β†’ (((π‘‚β€˜((algScβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))β€˜((invrβ€˜(𝐸 β†Ύs 𝐹))β€˜((coe1β€˜π‘ƒ)β€˜(( deg1 β€˜(𝐸 β†Ύs 𝐹))β€˜π‘ƒ)))))β€˜π‘‹)(.rβ€˜πΈ)((π‘‚β€˜π‘ƒ)β€˜π‘‹)) = (((π‘‚β€˜((algScβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))β€˜((invrβ€˜(𝐸 β†Ύs 𝐹))β€˜((coe1β€˜π‘ƒ)β€˜(( deg1 β€˜(𝐸 β†Ύs 𝐹))β€˜π‘ƒ)))))β€˜π‘‹)(.rβ€˜πΈ) 0 ))
769crngringd 20177 . . . . 5 (πœ‘ β†’ 𝐸 ∈ Ring)
7713fvexi 6905 . . . . . . . 8 𝐡 ∈ V
7877a1i 11 . . . . . . 7 (πœ‘ β†’ 𝐡 ∈ V)
7922, 72ffvelcdmd 7089 . . . . . . 7 (πœ‘ β†’ (π‘‚β€˜((algScβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))β€˜((invrβ€˜(𝐸 β†Ύs 𝐹))β€˜((coe1β€˜π‘ƒ)β€˜(( deg1 β€˜(𝐸 β†Ύs 𝐹))β€˜π‘ƒ))))) ∈ (Baseβ€˜(𝐸 ↑s 𝐡)))
8014, 13, 20, 8, 78, 79pwselbas 17462 . . . . . 6 (πœ‘ β†’ (π‘‚β€˜((algScβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))β€˜((invrβ€˜(𝐸 β†Ύs 𝐹))β€˜((coe1β€˜π‘ƒ)β€˜(( deg1 β€˜(𝐸 β†Ύs 𝐹))β€˜π‘ƒ))))):𝐡⟢𝐡)
8180, 1ffvelcdmd 7089 . . . . 5 (πœ‘ β†’ ((π‘‚β€˜((algScβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))β€˜((invrβ€˜(𝐸 β†Ύs 𝐹))β€˜((coe1β€˜π‘ƒ)β€˜(( deg1 β€˜(𝐸 β†Ύs 𝐹))β€˜π‘ƒ)))))β€˜π‘‹) ∈ 𝐡)
82 irngnzply1.1 . . . . . 6 0 = (0gβ€˜πΈ)
8313, 45, 82ringrz 20219 . . . . 5 ((𝐸 ∈ Ring ∧ ((π‘‚β€˜((algScβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))β€˜((invrβ€˜(𝐸 β†Ύs 𝐹))β€˜((coe1β€˜π‘ƒ)β€˜(( deg1 β€˜(𝐸 β†Ύs 𝐹))β€˜π‘ƒ)))))β€˜π‘‹) ∈ 𝐡) β†’ (((π‘‚β€˜((algScβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))β€˜((invrβ€˜(𝐸 β†Ύs 𝐹))β€˜((coe1β€˜π‘ƒ)β€˜(( deg1 β€˜(𝐸 β†Ύs 𝐹))β€˜π‘ƒ)))))β€˜π‘‹)(.rβ€˜πΈ) 0 ) = 0 )
8476, 81, 83syl2anc 583 . . . 4 (πœ‘ β†’ (((π‘‚β€˜((algScβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))β€˜((invrβ€˜(𝐸 β†Ύs 𝐹))β€˜((coe1β€˜π‘ƒ)β€˜(( deg1 β€˜(𝐸 β†Ύs 𝐹))β€˜π‘ƒ)))))β€˜π‘‹)(.rβ€˜πΈ) 0 ) = 0 )
8573, 75, 843eqtrd 2771 . . 3 (πœ‘ β†’ ((π‘‚β€˜(((algScβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))β€˜((invrβ€˜(𝐸 β†Ύs 𝐹))β€˜((coe1β€˜π‘ƒ)β€˜(( deg1 β€˜(𝐸 β†Ύs 𝐹))β€˜π‘ƒ))))(.rβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))𝑃))β€˜π‘‹) = 0 )
8640, 44, 85rspcedvd 3609 . 2 (πœ‘ β†’ βˆƒπ‘ ∈ (Monic1pβ€˜(𝐸 β†Ύs 𝐹))((π‘‚β€˜π‘)β€˜π‘‹) = 0 )
8712, 15, 13, 82, 9, 11elirng 33296 . 2 (πœ‘ β†’ (𝑋 ∈ (𝐸 IntgRing 𝐹) ↔ (𝑋 ∈ 𝐡 ∧ βˆƒπ‘ ∈ (Monic1pβ€˜(𝐸 β†Ύs 𝐹))((π‘‚β€˜π‘)β€˜π‘‹) = 0 )))
881, 86, 87mpbir2and 712 1 (πœ‘ β†’ 𝑋 ∈ (𝐸 IntgRing 𝐹))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   ∧ w3a 1085   = wceq 1534   ∈ wcel 2099   β‰  wne 2935  βˆƒwrex 3065  Vcvv 3469  dom cdm 5672  βŸΆwf 6538  β€˜cfv 6542  (class class class)co 7414  β„•0cn0 12494  Basecbs 17171   β†Ύs cress 17200  .rcmulr 17225  Scalarcsca 17227  0gc0g 17412   ↑s cpws 17419  Ringcrg 20164  CRingccrg 20165  invrcinvr 20315   RingHom crh 20397  SubRingcsubrg 20495  DivRingcdr 20613  Fieldcfield 20614  SubDRingcsdrg 20663  LModclmod 20732  AssAlgcasa 21771  algSccascl 21773  Poly1cpl1 22083  coe1cco1 22084   evalSub1 ces1 22219   deg1 cdg1 25974  Monic1pcmn1 26048  Unic1pcuc1p 26049   IntgRing cirng 33293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207  ax-addf 11209
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7679  df-ofr 7680  df-om 7865  df-1st 7987  df-2nd 7988  df-supp 8160  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-map 8838  df-pm 8839  df-ixp 8908  df-en 8956  df-dom 8957  df-sdom 8958  df-fin 8959  df-fsupp 9378  df-sup 9457  df-oi 9525  df-card 9954  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-nn 12235  df-2 12297  df-3 12298  df-4 12299  df-5 12300  df-6 12301  df-7 12302  df-8 12303  df-9 12304  df-n0 12495  df-z 12581  df-dec 12700  df-uz 12845  df-fz 13509  df-fzo 13652  df-seq 13991  df-hash 14314  df-struct 17107  df-sets 17124  df-slot 17142  df-ndx 17154  df-base 17172  df-ress 17201  df-plusg 17237  df-mulr 17238  df-starv 17239  df-sca 17240  df-vsca 17241  df-ip 17242  df-tset 17243  df-ple 17244  df-ds 17246  df-unif 17247  df-hom 17248  df-cco 17249  df-0g 17414  df-gsum 17415  df-prds 17420  df-pws 17422  df-mre 17557  df-mrc 17558  df-acs 17560  df-mgm 18591  df-sgrp 18670  df-mnd 18686  df-mhm 18731  df-submnd 18732  df-grp 18884  df-minusg 18885  df-sbg 18886  df-mulg 19015  df-subg 19069  df-ghm 19159  df-cntz 19259  df-cmn 19728  df-abl 19729  df-mgp 20066  df-rng 20084  df-ur 20113  df-srg 20118  df-ring 20166  df-cring 20167  df-oppr 20262  df-dvdsr 20285  df-unit 20286  df-invr 20316  df-rhm 20400  df-subrng 20472  df-subrg 20497  df-drng 20615  df-field 20616  df-sdrg 20664  df-lmod 20734  df-lss 20805  df-lsp 20845  df-rlreg 21219  df-cnfld 21267  df-assa 21774  df-asp 21775  df-ascl 21776  df-psr 21829  df-mvr 21830  df-mpl 21831  df-opsr 21833  df-evls 22005  df-evl 22006  df-psr1 22086  df-vr1 22087  df-ply1 22088  df-coe1 22089  df-evls1 22221  df-evl1 22222  df-mdeg 25975  df-deg1 25976  df-mon1 26053  df-uc1p 26054  df-irng 33294
This theorem is referenced by:  irngnzply1  33301
  Copyright terms: Public domain W3C validator