Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  irngnzply1lem Structured version   Visualization version   GIF version

Theorem irngnzply1lem 32742
Description: In the case of a field 𝐸, a root 𝑋 of some nonzero polynomial 𝑃 with coefficients in a subfield 𝐹 is integral over 𝐹. (Contributed by Thierry Arnoux, 5-Feb-2025.)
Hypotheses
Ref Expression
irngnzply1.o 𝑂 = (𝐸 evalSub1 𝐹)
irngnzply1.z 𝑍 = (0gβ€˜(Poly1β€˜πΈ))
irngnzply1.1 0 = (0gβ€˜πΈ)
irngnzply1.e (πœ‘ β†’ 𝐸 ∈ Field)
irngnzply1.f (πœ‘ β†’ 𝐹 ∈ (SubDRingβ€˜πΈ))
irngnzply1lem.b 𝐡 = (Baseβ€˜πΈ)
irngnzply1lem.1 (πœ‘ β†’ 𝑃 ∈ dom 𝑂)
irngnzply1lem.2 (πœ‘ β†’ 𝑃 β‰  𝑍)
irngnzply1lem.3 (πœ‘ β†’ ((π‘‚β€˜π‘ƒ)β€˜π‘‹) = 0 )
irngnzply1lem.x (πœ‘ β†’ 𝑋 ∈ 𝐡)
Assertion
Ref Expression
irngnzply1lem (πœ‘ β†’ 𝑋 ∈ (𝐸 IntgRing 𝐹))

Proof of Theorem irngnzply1lem
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 irngnzply1lem.x . 2 (πœ‘ β†’ 𝑋 ∈ 𝐡)
2 irngnzply1.f . . . . . 6 (πœ‘ β†’ 𝐹 ∈ (SubDRingβ€˜πΈ))
3 issdrg 20396 . . . . . . 7 (𝐹 ∈ (SubDRingβ€˜πΈ) ↔ (𝐸 ∈ DivRing ∧ 𝐹 ∈ (SubRingβ€˜πΈ) ∧ (𝐸 β†Ύs 𝐹) ∈ DivRing))
43simp3bi 1147 . . . . . 6 (𝐹 ∈ (SubDRingβ€˜πΈ) β†’ (𝐸 β†Ύs 𝐹) ∈ DivRing)
52, 4syl 17 . . . . 5 (πœ‘ β†’ (𝐸 β†Ύs 𝐹) ∈ DivRing)
65drngringd 20315 . . . 4 (πœ‘ β†’ (𝐸 β†Ύs 𝐹) ∈ Ring)
7 irngnzply1lem.1 . . . . . 6 (πœ‘ β†’ 𝑃 ∈ dom 𝑂)
8 irngnzply1.e . . . . . . . . . 10 (πœ‘ β†’ 𝐸 ∈ Field)
98fldcrngd 20320 . . . . . . . . 9 (πœ‘ β†’ 𝐸 ∈ CRing)
102, 3sylib 217 . . . . . . . . . 10 (πœ‘ β†’ (𝐸 ∈ DivRing ∧ 𝐹 ∈ (SubRingβ€˜πΈ) ∧ (𝐸 β†Ύs 𝐹) ∈ DivRing))
1110simp2d 1143 . . . . . . . . 9 (πœ‘ β†’ 𝐹 ∈ (SubRingβ€˜πΈ))
12 irngnzply1.o . . . . . . . . . 10 𝑂 = (𝐸 evalSub1 𝐹)
13 irngnzply1lem.b . . . . . . . . . 10 𝐡 = (Baseβ€˜πΈ)
14 eqid 2732 . . . . . . . . . 10 (𝐸 ↑s 𝐡) = (𝐸 ↑s 𝐡)
15 eqid 2732 . . . . . . . . . 10 (𝐸 β†Ύs 𝐹) = (𝐸 β†Ύs 𝐹)
16 eqid 2732 . . . . . . . . . 10 (Poly1β€˜(𝐸 β†Ύs 𝐹)) = (Poly1β€˜(𝐸 β†Ύs 𝐹))
1712, 13, 14, 15, 16evls1rhm 21832 . . . . . . . . 9 ((𝐸 ∈ CRing ∧ 𝐹 ∈ (SubRingβ€˜πΈ)) β†’ 𝑂 ∈ ((Poly1β€˜(𝐸 β†Ύs 𝐹)) RingHom (𝐸 ↑s 𝐡)))
189, 11, 17syl2anc 584 . . . . . . . 8 (πœ‘ β†’ 𝑂 ∈ ((Poly1β€˜(𝐸 β†Ύs 𝐹)) RingHom (𝐸 ↑s 𝐡)))
19 eqid 2732 . . . . . . . . 9 (Baseβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹))) = (Baseβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))
20 eqid 2732 . . . . . . . . 9 (Baseβ€˜(𝐸 ↑s 𝐡)) = (Baseβ€˜(𝐸 ↑s 𝐡))
2119, 20rhmf 20255 . . . . . . . 8 (𝑂 ∈ ((Poly1β€˜(𝐸 β†Ύs 𝐹)) RingHom (𝐸 ↑s 𝐡)) β†’ 𝑂:(Baseβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))⟢(Baseβ€˜(𝐸 ↑s 𝐡)))
2218, 21syl 17 . . . . . . 7 (πœ‘ β†’ 𝑂:(Baseβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))⟢(Baseβ€˜(𝐸 ↑s 𝐡)))
2322fdmd 6725 . . . . . 6 (πœ‘ β†’ dom 𝑂 = (Baseβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹))))
247, 23eleqtrd 2835 . . . . 5 (πœ‘ β†’ 𝑃 ∈ (Baseβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹))))
25 irngnzply1lem.2 . . . . . 6 (πœ‘ β†’ 𝑃 β‰  𝑍)
26 eqid 2732 . . . . . . 7 (Poly1β€˜πΈ) = (Poly1β€˜πΈ)
27 irngnzply1.z . . . . . . 7 𝑍 = (0gβ€˜(Poly1β€˜πΈ))
2826, 15, 16, 19, 11, 27ressply10g 32644 . . . . . 6 (πœ‘ β†’ 𝑍 = (0gβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹))))
2925, 28neeqtrd 3010 . . . . 5 (πœ‘ β†’ 𝑃 β‰  (0gβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹))))
30 eqid 2732 . . . . . 6 (0gβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹))) = (0gβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))
31 eqid 2732 . . . . . 6 (Unic1pβ€˜(𝐸 β†Ύs 𝐹)) = (Unic1pβ€˜(𝐸 β†Ύs 𝐹))
3216, 19, 30, 31drnguc1p 25679 . . . . 5 (((𝐸 β†Ύs 𝐹) ∈ DivRing ∧ 𝑃 ∈ (Baseβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹))) ∧ 𝑃 β‰  (0gβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))) β†’ 𝑃 ∈ (Unic1pβ€˜(𝐸 β†Ύs 𝐹)))
335, 24, 29, 32syl3anc 1371 . . . 4 (πœ‘ β†’ 𝑃 ∈ (Unic1pβ€˜(𝐸 β†Ύs 𝐹)))
34 eqid 2732 . . . . 5 (Monic1pβ€˜(𝐸 β†Ύs 𝐹)) = (Monic1pβ€˜(𝐸 β†Ύs 𝐹))
35 eqid 2732 . . . . 5 (.rβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹))) = (.rβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))
36 eqid 2732 . . . . 5 (algScβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹))) = (algScβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))
37 eqid 2732 . . . . 5 ( deg1 β€˜(𝐸 β†Ύs 𝐹)) = ( deg1 β€˜(𝐸 β†Ύs 𝐹))
38 eqid 2732 . . . . 5 (invrβ€˜(𝐸 β†Ύs 𝐹)) = (invrβ€˜(𝐸 β†Ύs 𝐹))
3931, 34, 16, 35, 36, 37, 38uc1pmon1p 25660 . . . 4 (((𝐸 β†Ύs 𝐹) ∈ Ring ∧ 𝑃 ∈ (Unic1pβ€˜(𝐸 β†Ύs 𝐹))) β†’ (((algScβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))β€˜((invrβ€˜(𝐸 β†Ύs 𝐹))β€˜((coe1β€˜π‘ƒ)β€˜(( deg1 β€˜(𝐸 β†Ύs 𝐹))β€˜π‘ƒ))))(.rβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))𝑃) ∈ (Monic1pβ€˜(𝐸 β†Ύs 𝐹)))
406, 33, 39syl2anc 584 . . 3 (πœ‘ β†’ (((algScβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))β€˜((invrβ€˜(𝐸 β†Ύs 𝐹))β€˜((coe1β€˜π‘ƒ)β€˜(( deg1 β€˜(𝐸 β†Ύs 𝐹))β€˜π‘ƒ))))(.rβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))𝑃) ∈ (Monic1pβ€˜(𝐸 β†Ύs 𝐹)))
41 simpr 485 . . . . . 6 ((πœ‘ ∧ 𝑝 = (((algScβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))β€˜((invrβ€˜(𝐸 β†Ύs 𝐹))β€˜((coe1β€˜π‘ƒ)β€˜(( deg1 β€˜(𝐸 β†Ύs 𝐹))β€˜π‘ƒ))))(.rβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))𝑃)) β†’ 𝑝 = (((algScβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))β€˜((invrβ€˜(𝐸 β†Ύs 𝐹))β€˜((coe1β€˜π‘ƒ)β€˜(( deg1 β€˜(𝐸 β†Ύs 𝐹))β€˜π‘ƒ))))(.rβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))𝑃))
4241fveq2d 6892 . . . . 5 ((πœ‘ ∧ 𝑝 = (((algScβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))β€˜((invrβ€˜(𝐸 β†Ύs 𝐹))β€˜((coe1β€˜π‘ƒ)β€˜(( deg1 β€˜(𝐸 β†Ύs 𝐹))β€˜π‘ƒ))))(.rβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))𝑃)) β†’ (π‘‚β€˜π‘) = (π‘‚β€˜(((algScβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))β€˜((invrβ€˜(𝐸 β†Ύs 𝐹))β€˜((coe1β€˜π‘ƒ)β€˜(( deg1 β€˜(𝐸 β†Ύs 𝐹))β€˜π‘ƒ))))(.rβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))𝑃)))
4342fveq1d 6890 . . . 4 ((πœ‘ ∧ 𝑝 = (((algScβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))β€˜((invrβ€˜(𝐸 β†Ύs 𝐹))β€˜((coe1β€˜π‘ƒ)β€˜(( deg1 β€˜(𝐸 β†Ύs 𝐹))β€˜π‘ƒ))))(.rβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))𝑃)) β†’ ((π‘‚β€˜π‘)β€˜π‘‹) = ((π‘‚β€˜(((algScβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))β€˜((invrβ€˜(𝐸 β†Ύs 𝐹))β€˜((coe1β€˜π‘ƒ)β€˜(( deg1 β€˜(𝐸 β†Ύs 𝐹))β€˜π‘ƒ))))(.rβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))𝑃))β€˜π‘‹))
4443eqeq1d 2734 . . 3 ((πœ‘ ∧ 𝑝 = (((algScβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))β€˜((invrβ€˜(𝐸 β†Ύs 𝐹))β€˜((coe1β€˜π‘ƒ)β€˜(( deg1 β€˜(𝐸 β†Ύs 𝐹))β€˜π‘ƒ))))(.rβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))𝑃)) β†’ (((π‘‚β€˜π‘)β€˜π‘‹) = 0 ↔ ((π‘‚β€˜(((algScβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))β€˜((invrβ€˜(𝐸 β†Ύs 𝐹))β€˜((coe1β€˜π‘ƒ)β€˜(( deg1 β€˜(𝐸 β†Ύs 𝐹))β€˜π‘ƒ))))(.rβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))𝑃))β€˜π‘‹) = 0 ))
45 eqid 2732 . . . . 5 (.rβ€˜πΈ) = (.rβ€˜πΈ)
46 eqid 2732 . . . . . . 7 (Scalarβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹))) = (Scalarβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))
47 fldsdrgfld 20406 . . . . . . . . . . 11 ((𝐸 ∈ Field ∧ 𝐹 ∈ (SubDRingβ€˜πΈ)) β†’ (𝐸 β†Ύs 𝐹) ∈ Field)
488, 2, 47syl2anc 584 . . . . . . . . . 10 (πœ‘ β†’ (𝐸 β†Ύs 𝐹) ∈ Field)
4948fldcrngd 20320 . . . . . . . . 9 (πœ‘ β†’ (𝐸 β†Ύs 𝐹) ∈ CRing)
5016ply1assa 21714 . . . . . . . . 9 ((𝐸 β†Ύs 𝐹) ∈ CRing β†’ (Poly1β€˜(𝐸 β†Ύs 𝐹)) ∈ AssAlg)
5149, 50syl 17 . . . . . . . 8 (πœ‘ β†’ (Poly1β€˜(𝐸 β†Ύs 𝐹)) ∈ AssAlg)
52 assaring 21407 . . . . . . . 8 ((Poly1β€˜(𝐸 β†Ύs 𝐹)) ∈ AssAlg β†’ (Poly1β€˜(𝐸 β†Ύs 𝐹)) ∈ Ring)
5351, 52syl 17 . . . . . . 7 (πœ‘ β†’ (Poly1β€˜(𝐸 β†Ύs 𝐹)) ∈ Ring)
5416ply1lmod 21765 . . . . . . . 8 ((𝐸 β†Ύs 𝐹) ∈ Ring β†’ (Poly1β€˜(𝐸 β†Ύs 𝐹)) ∈ LMod)
556, 54syl 17 . . . . . . 7 (πœ‘ β†’ (Poly1β€˜(𝐸 β†Ύs 𝐹)) ∈ LMod)
56 eqid 2732 . . . . . . 7 (Baseβ€˜(Scalarβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))) = (Baseβ€˜(Scalarβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹))))
5736, 46, 53, 55, 56, 19asclf 21427 . . . . . 6 (πœ‘ β†’ (algScβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹))):(Baseβ€˜(Scalarβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹))))⟢(Baseβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹))))
58 eqid 2732 . . . . . . . 8 (Baseβ€˜(𝐸 β†Ύs 𝐹)) = (Baseβ€˜(𝐸 β†Ύs 𝐹))
59 eqid 2732 . . . . . . . 8 (0gβ€˜(𝐸 β†Ύs 𝐹)) = (0gβ€˜(𝐸 β†Ύs 𝐹))
6037, 16, 30, 19deg1nn0cl 25597 . . . . . . . . . 10 (((𝐸 β†Ύs 𝐹) ∈ Ring ∧ 𝑃 ∈ (Baseβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹))) ∧ 𝑃 β‰  (0gβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))) β†’ (( deg1 β€˜(𝐸 β†Ύs 𝐹))β€˜π‘ƒ) ∈ β„•0)
616, 24, 29, 60syl3anc 1371 . . . . . . . . 9 (πœ‘ β†’ (( deg1 β€˜(𝐸 β†Ύs 𝐹))β€˜π‘ƒ) ∈ β„•0)
62 eqid 2732 . . . . . . . . . 10 (coe1β€˜π‘ƒ) = (coe1β€˜π‘ƒ)
6362, 19, 16, 58coe1fvalcl 21727 . . . . . . . . 9 ((𝑃 ∈ (Baseβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹))) ∧ (( deg1 β€˜(𝐸 β†Ύs 𝐹))β€˜π‘ƒ) ∈ β„•0) β†’ ((coe1β€˜π‘ƒ)β€˜(( deg1 β€˜(𝐸 β†Ύs 𝐹))β€˜π‘ƒ)) ∈ (Baseβ€˜(𝐸 β†Ύs 𝐹)))
6424, 61, 63syl2anc 584 . . . . . . . 8 (πœ‘ β†’ ((coe1β€˜π‘ƒ)β€˜(( deg1 β€˜(𝐸 β†Ύs 𝐹))β€˜π‘ƒ)) ∈ (Baseβ€˜(𝐸 β†Ύs 𝐹)))
6537, 16, 30, 19, 59, 62deg1ldg 25601 . . . . . . . . 9 (((𝐸 β†Ύs 𝐹) ∈ Ring ∧ 𝑃 ∈ (Baseβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹))) ∧ 𝑃 β‰  (0gβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))) β†’ ((coe1β€˜π‘ƒ)β€˜(( deg1 β€˜(𝐸 β†Ύs 𝐹))β€˜π‘ƒ)) β‰  (0gβ€˜(𝐸 β†Ύs 𝐹)))
666, 24, 29, 65syl3anc 1371 . . . . . . . 8 (πœ‘ β†’ ((coe1β€˜π‘ƒ)β€˜(( deg1 β€˜(𝐸 β†Ύs 𝐹))β€˜π‘ƒ)) β‰  (0gβ€˜(𝐸 β†Ύs 𝐹)))
6758, 59, 38, 5, 64, 66drnginvrcld 20331 . . . . . . 7 (πœ‘ β†’ ((invrβ€˜(𝐸 β†Ύs 𝐹))β€˜((coe1β€˜π‘ƒ)β€˜(( deg1 β€˜(𝐸 β†Ύs 𝐹))β€˜π‘ƒ))) ∈ (Baseβ€˜(𝐸 β†Ύs 𝐹)))
6816ply1sca 21766 . . . . . . . . 9 ((𝐸 β†Ύs 𝐹) ∈ Field β†’ (𝐸 β†Ύs 𝐹) = (Scalarβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹))))
6948, 68syl 17 . . . . . . . 8 (πœ‘ β†’ (𝐸 β†Ύs 𝐹) = (Scalarβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹))))
7069fveq2d 6892 . . . . . . 7 (πœ‘ β†’ (Baseβ€˜(𝐸 β†Ύs 𝐹)) = (Baseβ€˜(Scalarβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))))
7167, 70eleqtrd 2835 . . . . . 6 (πœ‘ β†’ ((invrβ€˜(𝐸 β†Ύs 𝐹))β€˜((coe1β€˜π‘ƒ)β€˜(( deg1 β€˜(𝐸 β†Ύs 𝐹))β€˜π‘ƒ))) ∈ (Baseβ€˜(Scalarβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))))
7257, 71ffvelcdmd 7084 . . . . 5 (πœ‘ β†’ ((algScβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))β€˜((invrβ€˜(𝐸 β†Ύs 𝐹))β€˜((coe1β€˜π‘ƒ)β€˜(( deg1 β€˜(𝐸 β†Ύs 𝐹))β€˜π‘ƒ)))) ∈ (Baseβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹))))
7312, 13, 16, 15, 19, 35, 45, 9, 11, 72, 24, 1evls1muld 32637 . . . 4 (πœ‘ β†’ ((π‘‚β€˜(((algScβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))β€˜((invrβ€˜(𝐸 β†Ύs 𝐹))β€˜((coe1β€˜π‘ƒ)β€˜(( deg1 β€˜(𝐸 β†Ύs 𝐹))β€˜π‘ƒ))))(.rβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))𝑃))β€˜π‘‹) = (((π‘‚β€˜((algScβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))β€˜((invrβ€˜(𝐸 β†Ύs 𝐹))β€˜((coe1β€˜π‘ƒ)β€˜(( deg1 β€˜(𝐸 β†Ύs 𝐹))β€˜π‘ƒ)))))β€˜π‘‹)(.rβ€˜πΈ)((π‘‚β€˜π‘ƒ)β€˜π‘‹)))
74 irngnzply1lem.3 . . . . 5 (πœ‘ β†’ ((π‘‚β€˜π‘ƒ)β€˜π‘‹) = 0 )
7574oveq2d 7421 . . . 4 (πœ‘ β†’ (((π‘‚β€˜((algScβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))β€˜((invrβ€˜(𝐸 β†Ύs 𝐹))β€˜((coe1β€˜π‘ƒ)β€˜(( deg1 β€˜(𝐸 β†Ύs 𝐹))β€˜π‘ƒ)))))β€˜π‘‹)(.rβ€˜πΈ)((π‘‚β€˜π‘ƒ)β€˜π‘‹)) = (((π‘‚β€˜((algScβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))β€˜((invrβ€˜(𝐸 β†Ύs 𝐹))β€˜((coe1β€˜π‘ƒ)β€˜(( deg1 β€˜(𝐸 β†Ύs 𝐹))β€˜π‘ƒ)))))β€˜π‘‹)(.rβ€˜πΈ) 0 ))
769crngringd 20062 . . . . 5 (πœ‘ β†’ 𝐸 ∈ Ring)
7713fvexi 6902 . . . . . . . 8 𝐡 ∈ V
7877a1i 11 . . . . . . 7 (πœ‘ β†’ 𝐡 ∈ V)
7922, 72ffvelcdmd 7084 . . . . . . 7 (πœ‘ β†’ (π‘‚β€˜((algScβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))β€˜((invrβ€˜(𝐸 β†Ύs 𝐹))β€˜((coe1β€˜π‘ƒ)β€˜(( deg1 β€˜(𝐸 β†Ύs 𝐹))β€˜π‘ƒ))))) ∈ (Baseβ€˜(𝐸 ↑s 𝐡)))
8014, 13, 20, 8, 78, 79pwselbas 17431 . . . . . 6 (πœ‘ β†’ (π‘‚β€˜((algScβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))β€˜((invrβ€˜(𝐸 β†Ύs 𝐹))β€˜((coe1β€˜π‘ƒ)β€˜(( deg1 β€˜(𝐸 β†Ύs 𝐹))β€˜π‘ƒ))))):𝐡⟢𝐡)
8180, 1ffvelcdmd 7084 . . . . 5 (πœ‘ β†’ ((π‘‚β€˜((algScβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))β€˜((invrβ€˜(𝐸 β†Ύs 𝐹))β€˜((coe1β€˜π‘ƒ)β€˜(( deg1 β€˜(𝐸 β†Ύs 𝐹))β€˜π‘ƒ)))))β€˜π‘‹) ∈ 𝐡)
82 irngnzply1.1 . . . . . 6 0 = (0gβ€˜πΈ)
8313, 45, 82ringrz 20101 . . . . 5 ((𝐸 ∈ Ring ∧ ((π‘‚β€˜((algScβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))β€˜((invrβ€˜(𝐸 β†Ύs 𝐹))β€˜((coe1β€˜π‘ƒ)β€˜(( deg1 β€˜(𝐸 β†Ύs 𝐹))β€˜π‘ƒ)))))β€˜π‘‹) ∈ 𝐡) β†’ (((π‘‚β€˜((algScβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))β€˜((invrβ€˜(𝐸 β†Ύs 𝐹))β€˜((coe1β€˜π‘ƒ)β€˜(( deg1 β€˜(𝐸 β†Ύs 𝐹))β€˜π‘ƒ)))))β€˜π‘‹)(.rβ€˜πΈ) 0 ) = 0 )
8476, 81, 83syl2anc 584 . . . 4 (πœ‘ β†’ (((π‘‚β€˜((algScβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))β€˜((invrβ€˜(𝐸 β†Ύs 𝐹))β€˜((coe1β€˜π‘ƒ)β€˜(( deg1 β€˜(𝐸 β†Ύs 𝐹))β€˜π‘ƒ)))))β€˜π‘‹)(.rβ€˜πΈ) 0 ) = 0 )
8573, 75, 843eqtrd 2776 . . 3 (πœ‘ β†’ ((π‘‚β€˜(((algScβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))β€˜((invrβ€˜(𝐸 β†Ύs 𝐹))β€˜((coe1β€˜π‘ƒ)β€˜(( deg1 β€˜(𝐸 β†Ύs 𝐹))β€˜π‘ƒ))))(.rβ€˜(Poly1β€˜(𝐸 β†Ύs 𝐹)))𝑃))β€˜π‘‹) = 0 )
8640, 44, 85rspcedvd 3614 . 2 (πœ‘ β†’ βˆƒπ‘ ∈ (Monic1pβ€˜(𝐸 β†Ύs 𝐹))((π‘‚β€˜π‘)β€˜π‘‹) = 0 )
8712, 15, 13, 82, 9, 11elirng 32738 . 2 (πœ‘ β†’ (𝑋 ∈ (𝐸 IntgRing 𝐹) ↔ (𝑋 ∈ 𝐡 ∧ βˆƒπ‘ ∈ (Monic1pβ€˜(𝐸 β†Ύs 𝐹))((π‘‚β€˜π‘)β€˜π‘‹) = 0 )))
881, 86, 87mpbir2and 711 1 (πœ‘ β†’ 𝑋 ∈ (𝐸 IntgRing 𝐹))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  βˆƒwrex 3070  Vcvv 3474  dom cdm 5675  βŸΆwf 6536  β€˜cfv 6540  (class class class)co 7405  β„•0cn0 12468  Basecbs 17140   β†Ύs cress 17169  .rcmulr 17194  Scalarcsca 17196  0gc0g 17381   ↑s cpws 17388  Ringcrg 20049  CRingccrg 20050  invrcinvr 20193   RingHom crh 20240  DivRingcdr 20307  Fieldcfield 20308  SubRingcsubrg 20351  SubDRingcsdrg 20394  LModclmod 20463  AssAlgcasa 21396  algSccascl 21398  Poly1cpl1 21692  coe1cco1 21693   evalSub1 ces1 21823   deg1 cdg1 25560  Monic1pcmn1 25634  Unic1pcuc1p 25635   IntgRing cirng 32735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-addf 11185  ax-mulf 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7666  df-ofr 7667  df-om 7852  df-1st 7971  df-2nd 7972  df-supp 8143  df-tpos 8207  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-map 8818  df-pm 8819  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fsupp 9358  df-sup 9433  df-oi 9501  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-fz 13481  df-fzo 13624  df-seq 13963  df-hash 14287  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-starv 17208  df-sca 17209  df-vsca 17210  df-ip 17211  df-tset 17212  df-ple 17213  df-ds 17215  df-unif 17216  df-hom 17217  df-cco 17218  df-0g 17383  df-gsum 17384  df-prds 17389  df-pws 17391  df-mre 17526  df-mrc 17527  df-acs 17529  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-mhm 18667  df-submnd 18668  df-grp 18818  df-minusg 18819  df-sbg 18820  df-mulg 18945  df-subg 18997  df-ghm 19084  df-cntz 19175  df-cmn 19644  df-abl 19645  df-mgp 19982  df-ur 19999  df-srg 20003  df-ring 20051  df-cring 20052  df-oppr 20142  df-dvdsr 20163  df-unit 20164  df-invr 20194  df-rnghom 20243  df-drng 20309  df-field 20310  df-subrg 20353  df-sdrg 20395  df-lmod 20465  df-lss 20535  df-lsp 20575  df-rlreg 20891  df-cnfld 20937  df-assa 21399  df-asp 21400  df-ascl 21401  df-psr 21453  df-mvr 21454  df-mpl 21455  df-opsr 21457  df-evls 21626  df-evl 21627  df-psr1 21695  df-vr1 21696  df-ply1 21697  df-coe1 21698  df-evls1 21825  df-evl1 21826  df-mdeg 25561  df-deg1 25562  df-mon1 25639  df-uc1p 25640  df-irng 32736
This theorem is referenced by:  irngnzply1  32743
  Copyright terms: Public domain W3C validator