Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  irngnzply1lem Structured version   Visualization version   GIF version

Theorem irngnzply1lem 33731
Description: In the case of a field 𝐸, a root 𝑋 of some nonzero polynomial 𝑃 with coefficients in a subfield 𝐹 is integral over 𝐹. (Contributed by Thierry Arnoux, 5-Feb-2025.)
Hypotheses
Ref Expression
irngnzply1.o 𝑂 = (𝐸 evalSub1 𝐹)
irngnzply1.z 𝑍 = (0g‘(Poly1𝐸))
irngnzply1.1 0 = (0g𝐸)
irngnzply1.e (𝜑𝐸 ∈ Field)
irngnzply1.f (𝜑𝐹 ∈ (SubDRing‘𝐸))
irngnzply1lem.b 𝐵 = (Base‘𝐸)
irngnzply1lem.1 (𝜑𝑃 ∈ dom 𝑂)
irngnzply1lem.2 (𝜑𝑃𝑍)
irngnzply1lem.3 (𝜑 → ((𝑂𝑃)‘𝑋) = 0 )
irngnzply1lem.x (𝜑𝑋𝐵)
Assertion
Ref Expression
irngnzply1lem (𝜑𝑋 ∈ (𝐸 IntgRing 𝐹))

Proof of Theorem irngnzply1lem
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 irngnzply1lem.x . 2 (𝜑𝑋𝐵)
2 irngnzply1.f . . . . . 6 (𝜑𝐹 ∈ (SubDRing‘𝐸))
3 issdrg 20748 . . . . . . 7 (𝐹 ∈ (SubDRing‘𝐸) ↔ (𝐸 ∈ DivRing ∧ 𝐹 ∈ (SubRing‘𝐸) ∧ (𝐸s 𝐹) ∈ DivRing))
43simp3bi 1147 . . . . . 6 (𝐹 ∈ (SubDRing‘𝐸) → (𝐸s 𝐹) ∈ DivRing)
52, 4syl 17 . . . . 5 (𝜑 → (𝐸s 𝐹) ∈ DivRing)
65drngringd 20697 . . . 4 (𝜑 → (𝐸s 𝐹) ∈ Ring)
7 irngnzply1lem.1 . . . . . 6 (𝜑𝑃 ∈ dom 𝑂)
8 irngnzply1.e . . . . . . . . . 10 (𝜑𝐸 ∈ Field)
98fldcrngd 20702 . . . . . . . . 9 (𝜑𝐸 ∈ CRing)
102, 3sylib 218 . . . . . . . . . 10 (𝜑 → (𝐸 ∈ DivRing ∧ 𝐹 ∈ (SubRing‘𝐸) ∧ (𝐸s 𝐹) ∈ DivRing))
1110simp2d 1143 . . . . . . . . 9 (𝜑𝐹 ∈ (SubRing‘𝐸))
12 irngnzply1.o . . . . . . . . . 10 𝑂 = (𝐸 evalSub1 𝐹)
13 irngnzply1lem.b . . . . . . . . . 10 𝐵 = (Base‘𝐸)
14 eqid 2735 . . . . . . . . . 10 (𝐸s 𝐵) = (𝐸s 𝐵)
15 eqid 2735 . . . . . . . . . 10 (𝐸s 𝐹) = (𝐸s 𝐹)
16 eqid 2735 . . . . . . . . . 10 (Poly1‘(𝐸s 𝐹)) = (Poly1‘(𝐸s 𝐹))
1712, 13, 14, 15, 16evls1rhm 22260 . . . . . . . . 9 ((𝐸 ∈ CRing ∧ 𝐹 ∈ (SubRing‘𝐸)) → 𝑂 ∈ ((Poly1‘(𝐸s 𝐹)) RingHom (𝐸s 𝐵)))
189, 11, 17syl2anc 584 . . . . . . . 8 (𝜑𝑂 ∈ ((Poly1‘(𝐸s 𝐹)) RingHom (𝐸s 𝐵)))
19 eqid 2735 . . . . . . . . 9 (Base‘(Poly1‘(𝐸s 𝐹))) = (Base‘(Poly1‘(𝐸s 𝐹)))
20 eqid 2735 . . . . . . . . 9 (Base‘(𝐸s 𝐵)) = (Base‘(𝐸s 𝐵))
2119, 20rhmf 20445 . . . . . . . 8 (𝑂 ∈ ((Poly1‘(𝐸s 𝐹)) RingHom (𝐸s 𝐵)) → 𝑂:(Base‘(Poly1‘(𝐸s 𝐹)))⟶(Base‘(𝐸s 𝐵)))
2218, 21syl 17 . . . . . . 7 (𝜑𝑂:(Base‘(Poly1‘(𝐸s 𝐹)))⟶(Base‘(𝐸s 𝐵)))
2322fdmd 6716 . . . . . 6 (𝜑 → dom 𝑂 = (Base‘(Poly1‘(𝐸s 𝐹))))
247, 23eleqtrd 2836 . . . . 5 (𝜑𝑃 ∈ (Base‘(Poly1‘(𝐸s 𝐹))))
25 irngnzply1lem.2 . . . . . 6 (𝜑𝑃𝑍)
26 eqid 2735 . . . . . . 7 (Poly1𝐸) = (Poly1𝐸)
27 irngnzply1.z . . . . . . 7 𝑍 = (0g‘(Poly1𝐸))
2826, 15, 16, 19, 11, 27ressply10g 33580 . . . . . 6 (𝜑𝑍 = (0g‘(Poly1‘(𝐸s 𝐹))))
2925, 28neeqtrd 3001 . . . . 5 (𝜑𝑃 ≠ (0g‘(Poly1‘(𝐸s 𝐹))))
30 eqid 2735 . . . . . 6 (0g‘(Poly1‘(𝐸s 𝐹))) = (0g‘(Poly1‘(𝐸s 𝐹)))
31 eqid 2735 . . . . . 6 (Unic1p‘(𝐸s 𝐹)) = (Unic1p‘(𝐸s 𝐹))
3216, 19, 30, 31drnguc1p 26131 . . . . 5 (((𝐸s 𝐹) ∈ DivRing ∧ 𝑃 ∈ (Base‘(Poly1‘(𝐸s 𝐹))) ∧ 𝑃 ≠ (0g‘(Poly1‘(𝐸s 𝐹)))) → 𝑃 ∈ (Unic1p‘(𝐸s 𝐹)))
335, 24, 29, 32syl3anc 1373 . . . 4 (𝜑𝑃 ∈ (Unic1p‘(𝐸s 𝐹)))
34 eqid 2735 . . . . 5 (Monic1p‘(𝐸s 𝐹)) = (Monic1p‘(𝐸s 𝐹))
35 eqid 2735 . . . . 5 (.r‘(Poly1‘(𝐸s 𝐹))) = (.r‘(Poly1‘(𝐸s 𝐹)))
36 eqid 2735 . . . . 5 (algSc‘(Poly1‘(𝐸s 𝐹))) = (algSc‘(Poly1‘(𝐸s 𝐹)))
37 eqid 2735 . . . . 5 (deg1‘(𝐸s 𝐹)) = (deg1‘(𝐸s 𝐹))
38 eqid 2735 . . . . 5 (invr‘(𝐸s 𝐹)) = (invr‘(𝐸s 𝐹))
3931, 34, 16, 35, 36, 37, 38uc1pmon1p 26109 . . . 4 (((𝐸s 𝐹) ∈ Ring ∧ 𝑃 ∈ (Unic1p‘(𝐸s 𝐹))) → (((algSc‘(Poly1‘(𝐸s 𝐹)))‘((invr‘(𝐸s 𝐹))‘((coe1𝑃)‘((deg1‘(𝐸s 𝐹))‘𝑃))))(.r‘(Poly1‘(𝐸s 𝐹)))𝑃) ∈ (Monic1p‘(𝐸s 𝐹)))
406, 33, 39syl2anc 584 . . 3 (𝜑 → (((algSc‘(Poly1‘(𝐸s 𝐹)))‘((invr‘(𝐸s 𝐹))‘((coe1𝑃)‘((deg1‘(𝐸s 𝐹))‘𝑃))))(.r‘(Poly1‘(𝐸s 𝐹)))𝑃) ∈ (Monic1p‘(𝐸s 𝐹)))
41 simpr 484 . . . . . 6 ((𝜑𝑝 = (((algSc‘(Poly1‘(𝐸s 𝐹)))‘((invr‘(𝐸s 𝐹))‘((coe1𝑃)‘((deg1‘(𝐸s 𝐹))‘𝑃))))(.r‘(Poly1‘(𝐸s 𝐹)))𝑃)) → 𝑝 = (((algSc‘(Poly1‘(𝐸s 𝐹)))‘((invr‘(𝐸s 𝐹))‘((coe1𝑃)‘((deg1‘(𝐸s 𝐹))‘𝑃))))(.r‘(Poly1‘(𝐸s 𝐹)))𝑃))
4241fveq2d 6880 . . . . 5 ((𝜑𝑝 = (((algSc‘(Poly1‘(𝐸s 𝐹)))‘((invr‘(𝐸s 𝐹))‘((coe1𝑃)‘((deg1‘(𝐸s 𝐹))‘𝑃))))(.r‘(Poly1‘(𝐸s 𝐹)))𝑃)) → (𝑂𝑝) = (𝑂‘(((algSc‘(Poly1‘(𝐸s 𝐹)))‘((invr‘(𝐸s 𝐹))‘((coe1𝑃)‘((deg1‘(𝐸s 𝐹))‘𝑃))))(.r‘(Poly1‘(𝐸s 𝐹)))𝑃)))
4342fveq1d 6878 . . . 4 ((𝜑𝑝 = (((algSc‘(Poly1‘(𝐸s 𝐹)))‘((invr‘(𝐸s 𝐹))‘((coe1𝑃)‘((deg1‘(𝐸s 𝐹))‘𝑃))))(.r‘(Poly1‘(𝐸s 𝐹)))𝑃)) → ((𝑂𝑝)‘𝑋) = ((𝑂‘(((algSc‘(Poly1‘(𝐸s 𝐹)))‘((invr‘(𝐸s 𝐹))‘((coe1𝑃)‘((deg1‘(𝐸s 𝐹))‘𝑃))))(.r‘(Poly1‘(𝐸s 𝐹)))𝑃))‘𝑋))
4443eqeq1d 2737 . . 3 ((𝜑𝑝 = (((algSc‘(Poly1‘(𝐸s 𝐹)))‘((invr‘(𝐸s 𝐹))‘((coe1𝑃)‘((deg1‘(𝐸s 𝐹))‘𝑃))))(.r‘(Poly1‘(𝐸s 𝐹)))𝑃)) → (((𝑂𝑝)‘𝑋) = 0 ↔ ((𝑂‘(((algSc‘(Poly1‘(𝐸s 𝐹)))‘((invr‘(𝐸s 𝐹))‘((coe1𝑃)‘((deg1‘(𝐸s 𝐹))‘𝑃))))(.r‘(Poly1‘(𝐸s 𝐹)))𝑃))‘𝑋) = 0 ))
45 eqid 2735 . . . . 5 (.r𝐸) = (.r𝐸)
46 eqid 2735 . . . . . . 7 (Scalar‘(Poly1‘(𝐸s 𝐹))) = (Scalar‘(Poly1‘(𝐸s 𝐹)))
47 fldsdrgfld 20758 . . . . . . . . . . 11 ((𝐸 ∈ Field ∧ 𝐹 ∈ (SubDRing‘𝐸)) → (𝐸s 𝐹) ∈ Field)
488, 2, 47syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝐸s 𝐹) ∈ Field)
4948fldcrngd 20702 . . . . . . . . 9 (𝜑 → (𝐸s 𝐹) ∈ CRing)
5016ply1assa 22135 . . . . . . . . 9 ((𝐸s 𝐹) ∈ CRing → (Poly1‘(𝐸s 𝐹)) ∈ AssAlg)
5149, 50syl 17 . . . . . . . 8 (𝜑 → (Poly1‘(𝐸s 𝐹)) ∈ AssAlg)
52 assaring 21821 . . . . . . . 8 ((Poly1‘(𝐸s 𝐹)) ∈ AssAlg → (Poly1‘(𝐸s 𝐹)) ∈ Ring)
5351, 52syl 17 . . . . . . 7 (𝜑 → (Poly1‘(𝐸s 𝐹)) ∈ Ring)
5416ply1lmod 22187 . . . . . . . 8 ((𝐸s 𝐹) ∈ Ring → (Poly1‘(𝐸s 𝐹)) ∈ LMod)
556, 54syl 17 . . . . . . 7 (𝜑 → (Poly1‘(𝐸s 𝐹)) ∈ LMod)
56 eqid 2735 . . . . . . 7 (Base‘(Scalar‘(Poly1‘(𝐸s 𝐹)))) = (Base‘(Scalar‘(Poly1‘(𝐸s 𝐹))))
5736, 46, 53, 55, 56, 19asclf 21842 . . . . . 6 (𝜑 → (algSc‘(Poly1‘(𝐸s 𝐹))):(Base‘(Scalar‘(Poly1‘(𝐸s 𝐹))))⟶(Base‘(Poly1‘(𝐸s 𝐹))))
58 eqid 2735 . . . . . . . 8 (Base‘(𝐸s 𝐹)) = (Base‘(𝐸s 𝐹))
59 eqid 2735 . . . . . . . 8 (0g‘(𝐸s 𝐹)) = (0g‘(𝐸s 𝐹))
6037, 16, 30, 19deg1nn0cl 26045 . . . . . . . . . 10 (((𝐸s 𝐹) ∈ Ring ∧ 𝑃 ∈ (Base‘(Poly1‘(𝐸s 𝐹))) ∧ 𝑃 ≠ (0g‘(Poly1‘(𝐸s 𝐹)))) → ((deg1‘(𝐸s 𝐹))‘𝑃) ∈ ℕ0)
616, 24, 29, 60syl3anc 1373 . . . . . . . . 9 (𝜑 → ((deg1‘(𝐸s 𝐹))‘𝑃) ∈ ℕ0)
62 eqid 2735 . . . . . . . . . 10 (coe1𝑃) = (coe1𝑃)
6362, 19, 16, 58coe1fvalcl 22148 . . . . . . . . 9 ((𝑃 ∈ (Base‘(Poly1‘(𝐸s 𝐹))) ∧ ((deg1‘(𝐸s 𝐹))‘𝑃) ∈ ℕ0) → ((coe1𝑃)‘((deg1‘(𝐸s 𝐹))‘𝑃)) ∈ (Base‘(𝐸s 𝐹)))
6424, 61, 63syl2anc 584 . . . . . . . 8 (𝜑 → ((coe1𝑃)‘((deg1‘(𝐸s 𝐹))‘𝑃)) ∈ (Base‘(𝐸s 𝐹)))
6537, 16, 30, 19, 59, 62deg1ldg 26049 . . . . . . . . 9 (((𝐸s 𝐹) ∈ Ring ∧ 𝑃 ∈ (Base‘(Poly1‘(𝐸s 𝐹))) ∧ 𝑃 ≠ (0g‘(Poly1‘(𝐸s 𝐹)))) → ((coe1𝑃)‘((deg1‘(𝐸s 𝐹))‘𝑃)) ≠ (0g‘(𝐸s 𝐹)))
666, 24, 29, 65syl3anc 1373 . . . . . . . 8 (𝜑 → ((coe1𝑃)‘((deg1‘(𝐸s 𝐹))‘𝑃)) ≠ (0g‘(𝐸s 𝐹)))
6758, 59, 38, 5, 64, 66drnginvrcld 20715 . . . . . . 7 (𝜑 → ((invr‘(𝐸s 𝐹))‘((coe1𝑃)‘((deg1‘(𝐸s 𝐹))‘𝑃))) ∈ (Base‘(𝐸s 𝐹)))
6816ply1sca 22188 . . . . . . . . 9 ((𝐸s 𝐹) ∈ Field → (𝐸s 𝐹) = (Scalar‘(Poly1‘(𝐸s 𝐹))))
6948, 68syl 17 . . . . . . . 8 (𝜑 → (𝐸s 𝐹) = (Scalar‘(Poly1‘(𝐸s 𝐹))))
7069fveq2d 6880 . . . . . . 7 (𝜑 → (Base‘(𝐸s 𝐹)) = (Base‘(Scalar‘(Poly1‘(𝐸s 𝐹)))))
7167, 70eleqtrd 2836 . . . . . 6 (𝜑 → ((invr‘(𝐸s 𝐹))‘((coe1𝑃)‘((deg1‘(𝐸s 𝐹))‘𝑃))) ∈ (Base‘(Scalar‘(Poly1‘(𝐸s 𝐹)))))
7257, 71ffvelcdmd 7075 . . . . 5 (𝜑 → ((algSc‘(Poly1‘(𝐸s 𝐹)))‘((invr‘(𝐸s 𝐹))‘((coe1𝑃)‘((deg1‘(𝐸s 𝐹))‘𝑃)))) ∈ (Base‘(Poly1‘(𝐸s 𝐹))))
7312, 13, 16, 15, 19, 35, 45, 9, 11, 72, 24, 1evls1muld 22310 . . . 4 (𝜑 → ((𝑂‘(((algSc‘(Poly1‘(𝐸s 𝐹)))‘((invr‘(𝐸s 𝐹))‘((coe1𝑃)‘((deg1‘(𝐸s 𝐹))‘𝑃))))(.r‘(Poly1‘(𝐸s 𝐹)))𝑃))‘𝑋) = (((𝑂‘((algSc‘(Poly1‘(𝐸s 𝐹)))‘((invr‘(𝐸s 𝐹))‘((coe1𝑃)‘((deg1‘(𝐸s 𝐹))‘𝑃)))))‘𝑋)(.r𝐸)((𝑂𝑃)‘𝑋)))
74 irngnzply1lem.3 . . . . 5 (𝜑 → ((𝑂𝑃)‘𝑋) = 0 )
7574oveq2d 7421 . . . 4 (𝜑 → (((𝑂‘((algSc‘(Poly1‘(𝐸s 𝐹)))‘((invr‘(𝐸s 𝐹))‘((coe1𝑃)‘((deg1‘(𝐸s 𝐹))‘𝑃)))))‘𝑋)(.r𝐸)((𝑂𝑃)‘𝑋)) = (((𝑂‘((algSc‘(Poly1‘(𝐸s 𝐹)))‘((invr‘(𝐸s 𝐹))‘((coe1𝑃)‘((deg1‘(𝐸s 𝐹))‘𝑃)))))‘𝑋)(.r𝐸) 0 ))
769crngringd 20206 . . . . 5 (𝜑𝐸 ∈ Ring)
7713fvexi 6890 . . . . . . . 8 𝐵 ∈ V
7877a1i 11 . . . . . . 7 (𝜑𝐵 ∈ V)
7922, 72ffvelcdmd 7075 . . . . . . 7 (𝜑 → (𝑂‘((algSc‘(Poly1‘(𝐸s 𝐹)))‘((invr‘(𝐸s 𝐹))‘((coe1𝑃)‘((deg1‘(𝐸s 𝐹))‘𝑃))))) ∈ (Base‘(𝐸s 𝐵)))
8014, 13, 20, 8, 78, 79pwselbas 17503 . . . . . 6 (𝜑 → (𝑂‘((algSc‘(Poly1‘(𝐸s 𝐹)))‘((invr‘(𝐸s 𝐹))‘((coe1𝑃)‘((deg1‘(𝐸s 𝐹))‘𝑃))))):𝐵𝐵)
8180, 1ffvelcdmd 7075 . . . . 5 (𝜑 → ((𝑂‘((algSc‘(Poly1‘(𝐸s 𝐹)))‘((invr‘(𝐸s 𝐹))‘((coe1𝑃)‘((deg1‘(𝐸s 𝐹))‘𝑃)))))‘𝑋) ∈ 𝐵)
82 irngnzply1.1 . . . . . 6 0 = (0g𝐸)
8313, 45, 82ringrz 20254 . . . . 5 ((𝐸 ∈ Ring ∧ ((𝑂‘((algSc‘(Poly1‘(𝐸s 𝐹)))‘((invr‘(𝐸s 𝐹))‘((coe1𝑃)‘((deg1‘(𝐸s 𝐹))‘𝑃)))))‘𝑋) ∈ 𝐵) → (((𝑂‘((algSc‘(Poly1‘(𝐸s 𝐹)))‘((invr‘(𝐸s 𝐹))‘((coe1𝑃)‘((deg1‘(𝐸s 𝐹))‘𝑃)))))‘𝑋)(.r𝐸) 0 ) = 0 )
8476, 81, 83syl2anc 584 . . . 4 (𝜑 → (((𝑂‘((algSc‘(Poly1‘(𝐸s 𝐹)))‘((invr‘(𝐸s 𝐹))‘((coe1𝑃)‘((deg1‘(𝐸s 𝐹))‘𝑃)))))‘𝑋)(.r𝐸) 0 ) = 0 )
8573, 75, 843eqtrd 2774 . . 3 (𝜑 → ((𝑂‘(((algSc‘(Poly1‘(𝐸s 𝐹)))‘((invr‘(𝐸s 𝐹))‘((coe1𝑃)‘((deg1‘(𝐸s 𝐹))‘𝑃))))(.r‘(Poly1‘(𝐸s 𝐹)))𝑃))‘𝑋) = 0 )
8640, 44, 85rspcedvd 3603 . 2 (𝜑 → ∃𝑝 ∈ (Monic1p‘(𝐸s 𝐹))((𝑂𝑝)‘𝑋) = 0 )
8712, 15, 13, 82, 9, 11elirng 33727 . 2 (𝜑 → (𝑋 ∈ (𝐸 IntgRing 𝐹) ↔ (𝑋𝐵 ∧ ∃𝑝 ∈ (Monic1p‘(𝐸s 𝐹))((𝑂𝑝)‘𝑋) = 0 )))
881, 86, 87mpbir2and 713 1 (𝜑𝑋 ∈ (𝐸 IntgRing 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  wrex 3060  Vcvv 3459  dom cdm 5654  wf 6527  cfv 6531  (class class class)co 7405  0cn0 12501  Basecbs 17228  s cress 17251  .rcmulr 17272  Scalarcsca 17274  0gc0g 17453  s cpws 17460  Ringcrg 20193  CRingccrg 20194  invrcinvr 20347   RingHom crh 20429  SubRingcsubrg 20529  DivRingcdr 20689  Fieldcfield 20690  SubDRingcsdrg 20746  LModclmod 20817  AssAlgcasa 21810  algSccascl 21812  Poly1cpl1 22112  coe1cco1 22113   evalSub1 ces1 22251  deg1cdg1 26011  Monic1pcmn1 26083  Unic1pcuc1p 26084   IntgRing cirng 33724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-addf 11208
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-ofr 7672  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-sup 9454  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-fz 13525  df-fzo 13672  df-seq 14020  df-hash 14349  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-hom 17295  df-cco 17296  df-0g 17455  df-gsum 17456  df-prds 17461  df-pws 17463  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-mhm 18761  df-submnd 18762  df-grp 18919  df-minusg 18920  df-sbg 18921  df-mulg 19051  df-subg 19106  df-ghm 19196  df-cntz 19300  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-srg 20147  df-ring 20195  df-cring 20196  df-oppr 20297  df-dvdsr 20317  df-unit 20318  df-invr 20348  df-rhm 20432  df-subrng 20506  df-subrg 20530  df-rlreg 20654  df-drng 20691  df-field 20692  df-sdrg 20747  df-lmod 20819  df-lss 20889  df-lsp 20929  df-cnfld 21316  df-assa 21813  df-asp 21814  df-ascl 21815  df-psr 21869  df-mvr 21870  df-mpl 21871  df-opsr 21873  df-evls 22032  df-evl 22033  df-psr1 22115  df-vr1 22116  df-ply1 22117  df-coe1 22118  df-evls1 22253  df-evl1 22254  df-mdeg 26012  df-deg1 26013  df-mon1 26088  df-uc1p 26089  df-irng 33725
This theorem is referenced by:  irngnzply1  33732
  Copyright terms: Public domain W3C validator