Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  irngnzply1lem Structured version   Visualization version   GIF version

Theorem irngnzply1lem 33692
Description: In the case of a field 𝐸, a root 𝑋 of some nonzero polynomial 𝑃 with coefficients in a subfield 𝐹 is integral over 𝐹. (Contributed by Thierry Arnoux, 5-Feb-2025.)
Hypotheses
Ref Expression
irngnzply1.o 𝑂 = (𝐸 evalSub1 𝐹)
irngnzply1.z 𝑍 = (0g‘(Poly1𝐸))
irngnzply1.1 0 = (0g𝐸)
irngnzply1.e (𝜑𝐸 ∈ Field)
irngnzply1.f (𝜑𝐹 ∈ (SubDRing‘𝐸))
irngnzply1lem.b 𝐵 = (Base‘𝐸)
irngnzply1lem.1 (𝜑𝑃 ∈ dom 𝑂)
irngnzply1lem.2 (𝜑𝑃𝑍)
irngnzply1lem.3 (𝜑 → ((𝑂𝑃)‘𝑋) = 0 )
irngnzply1lem.x (𝜑𝑋𝐵)
Assertion
Ref Expression
irngnzply1lem (𝜑𝑋 ∈ (𝐸 IntgRing 𝐹))

Proof of Theorem irngnzply1lem
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 irngnzply1lem.x . 2 (𝜑𝑋𝐵)
2 irngnzply1.f . . . . . 6 (𝜑𝐹 ∈ (SubDRing‘𝐸))
3 issdrg 20704 . . . . . . 7 (𝐹 ∈ (SubDRing‘𝐸) ↔ (𝐸 ∈ DivRing ∧ 𝐹 ∈ (SubRing‘𝐸) ∧ (𝐸s 𝐹) ∈ DivRing))
43simp3bi 1147 . . . . . 6 (𝐹 ∈ (SubDRing‘𝐸) → (𝐸s 𝐹) ∈ DivRing)
52, 4syl 17 . . . . 5 (𝜑 → (𝐸s 𝐹) ∈ DivRing)
65drngringd 20653 . . . 4 (𝜑 → (𝐸s 𝐹) ∈ Ring)
7 irngnzply1lem.1 . . . . . 6 (𝜑𝑃 ∈ dom 𝑂)
8 irngnzply1.e . . . . . . . . . 10 (𝜑𝐸 ∈ Field)
98fldcrngd 20658 . . . . . . . . 9 (𝜑𝐸 ∈ CRing)
102, 3sylib 218 . . . . . . . . . 10 (𝜑 → (𝐸 ∈ DivRing ∧ 𝐹 ∈ (SubRing‘𝐸) ∧ (𝐸s 𝐹) ∈ DivRing))
1110simp2d 1143 . . . . . . . . 9 (𝜑𝐹 ∈ (SubRing‘𝐸))
12 irngnzply1.o . . . . . . . . . 10 𝑂 = (𝐸 evalSub1 𝐹)
13 irngnzply1lem.b . . . . . . . . . 10 𝐵 = (Base‘𝐸)
14 eqid 2730 . . . . . . . . . 10 (𝐸s 𝐵) = (𝐸s 𝐵)
15 eqid 2730 . . . . . . . . . 10 (𝐸s 𝐹) = (𝐸s 𝐹)
16 eqid 2730 . . . . . . . . . 10 (Poly1‘(𝐸s 𝐹)) = (Poly1‘(𝐸s 𝐹))
1712, 13, 14, 15, 16evls1rhm 22216 . . . . . . . . 9 ((𝐸 ∈ CRing ∧ 𝐹 ∈ (SubRing‘𝐸)) → 𝑂 ∈ ((Poly1‘(𝐸s 𝐹)) RingHom (𝐸s 𝐵)))
189, 11, 17syl2anc 584 . . . . . . . 8 (𝜑𝑂 ∈ ((Poly1‘(𝐸s 𝐹)) RingHom (𝐸s 𝐵)))
19 eqid 2730 . . . . . . . . 9 (Base‘(Poly1‘(𝐸s 𝐹))) = (Base‘(Poly1‘(𝐸s 𝐹)))
20 eqid 2730 . . . . . . . . 9 (Base‘(𝐸s 𝐵)) = (Base‘(𝐸s 𝐵))
2119, 20rhmf 20401 . . . . . . . 8 (𝑂 ∈ ((Poly1‘(𝐸s 𝐹)) RingHom (𝐸s 𝐵)) → 𝑂:(Base‘(Poly1‘(𝐸s 𝐹)))⟶(Base‘(𝐸s 𝐵)))
2218, 21syl 17 . . . . . . 7 (𝜑𝑂:(Base‘(Poly1‘(𝐸s 𝐹)))⟶(Base‘(𝐸s 𝐵)))
2322fdmd 6701 . . . . . 6 (𝜑 → dom 𝑂 = (Base‘(Poly1‘(𝐸s 𝐹))))
247, 23eleqtrd 2831 . . . . 5 (𝜑𝑃 ∈ (Base‘(Poly1‘(𝐸s 𝐹))))
25 irngnzply1lem.2 . . . . . 6 (𝜑𝑃𝑍)
26 eqid 2730 . . . . . . 7 (Poly1𝐸) = (Poly1𝐸)
27 irngnzply1.z . . . . . . 7 𝑍 = (0g‘(Poly1𝐸))
2826, 15, 16, 19, 11, 27ressply10g 33543 . . . . . 6 (𝜑𝑍 = (0g‘(Poly1‘(𝐸s 𝐹))))
2925, 28neeqtrd 2995 . . . . 5 (𝜑𝑃 ≠ (0g‘(Poly1‘(𝐸s 𝐹))))
30 eqid 2730 . . . . . 6 (0g‘(Poly1‘(𝐸s 𝐹))) = (0g‘(Poly1‘(𝐸s 𝐹)))
31 eqid 2730 . . . . . 6 (Unic1p‘(𝐸s 𝐹)) = (Unic1p‘(𝐸s 𝐹))
3216, 19, 30, 31drnguc1p 26086 . . . . 5 (((𝐸s 𝐹) ∈ DivRing ∧ 𝑃 ∈ (Base‘(Poly1‘(𝐸s 𝐹))) ∧ 𝑃 ≠ (0g‘(Poly1‘(𝐸s 𝐹)))) → 𝑃 ∈ (Unic1p‘(𝐸s 𝐹)))
335, 24, 29, 32syl3anc 1373 . . . 4 (𝜑𝑃 ∈ (Unic1p‘(𝐸s 𝐹)))
34 eqid 2730 . . . . 5 (Monic1p‘(𝐸s 𝐹)) = (Monic1p‘(𝐸s 𝐹))
35 eqid 2730 . . . . 5 (.r‘(Poly1‘(𝐸s 𝐹))) = (.r‘(Poly1‘(𝐸s 𝐹)))
36 eqid 2730 . . . . 5 (algSc‘(Poly1‘(𝐸s 𝐹))) = (algSc‘(Poly1‘(𝐸s 𝐹)))
37 eqid 2730 . . . . 5 (deg1‘(𝐸s 𝐹)) = (deg1‘(𝐸s 𝐹))
38 eqid 2730 . . . . 5 (invr‘(𝐸s 𝐹)) = (invr‘(𝐸s 𝐹))
3931, 34, 16, 35, 36, 37, 38uc1pmon1p 26064 . . . 4 (((𝐸s 𝐹) ∈ Ring ∧ 𝑃 ∈ (Unic1p‘(𝐸s 𝐹))) → (((algSc‘(Poly1‘(𝐸s 𝐹)))‘((invr‘(𝐸s 𝐹))‘((coe1𝑃)‘((deg1‘(𝐸s 𝐹))‘𝑃))))(.r‘(Poly1‘(𝐸s 𝐹)))𝑃) ∈ (Monic1p‘(𝐸s 𝐹)))
406, 33, 39syl2anc 584 . . 3 (𝜑 → (((algSc‘(Poly1‘(𝐸s 𝐹)))‘((invr‘(𝐸s 𝐹))‘((coe1𝑃)‘((deg1‘(𝐸s 𝐹))‘𝑃))))(.r‘(Poly1‘(𝐸s 𝐹)))𝑃) ∈ (Monic1p‘(𝐸s 𝐹)))
41 simpr 484 . . . . . 6 ((𝜑𝑝 = (((algSc‘(Poly1‘(𝐸s 𝐹)))‘((invr‘(𝐸s 𝐹))‘((coe1𝑃)‘((deg1‘(𝐸s 𝐹))‘𝑃))))(.r‘(Poly1‘(𝐸s 𝐹)))𝑃)) → 𝑝 = (((algSc‘(Poly1‘(𝐸s 𝐹)))‘((invr‘(𝐸s 𝐹))‘((coe1𝑃)‘((deg1‘(𝐸s 𝐹))‘𝑃))))(.r‘(Poly1‘(𝐸s 𝐹)))𝑃))
4241fveq2d 6865 . . . . 5 ((𝜑𝑝 = (((algSc‘(Poly1‘(𝐸s 𝐹)))‘((invr‘(𝐸s 𝐹))‘((coe1𝑃)‘((deg1‘(𝐸s 𝐹))‘𝑃))))(.r‘(Poly1‘(𝐸s 𝐹)))𝑃)) → (𝑂𝑝) = (𝑂‘(((algSc‘(Poly1‘(𝐸s 𝐹)))‘((invr‘(𝐸s 𝐹))‘((coe1𝑃)‘((deg1‘(𝐸s 𝐹))‘𝑃))))(.r‘(Poly1‘(𝐸s 𝐹)))𝑃)))
4342fveq1d 6863 . . . 4 ((𝜑𝑝 = (((algSc‘(Poly1‘(𝐸s 𝐹)))‘((invr‘(𝐸s 𝐹))‘((coe1𝑃)‘((deg1‘(𝐸s 𝐹))‘𝑃))))(.r‘(Poly1‘(𝐸s 𝐹)))𝑃)) → ((𝑂𝑝)‘𝑋) = ((𝑂‘(((algSc‘(Poly1‘(𝐸s 𝐹)))‘((invr‘(𝐸s 𝐹))‘((coe1𝑃)‘((deg1‘(𝐸s 𝐹))‘𝑃))))(.r‘(Poly1‘(𝐸s 𝐹)))𝑃))‘𝑋))
4443eqeq1d 2732 . . 3 ((𝜑𝑝 = (((algSc‘(Poly1‘(𝐸s 𝐹)))‘((invr‘(𝐸s 𝐹))‘((coe1𝑃)‘((deg1‘(𝐸s 𝐹))‘𝑃))))(.r‘(Poly1‘(𝐸s 𝐹)))𝑃)) → (((𝑂𝑝)‘𝑋) = 0 ↔ ((𝑂‘(((algSc‘(Poly1‘(𝐸s 𝐹)))‘((invr‘(𝐸s 𝐹))‘((coe1𝑃)‘((deg1‘(𝐸s 𝐹))‘𝑃))))(.r‘(Poly1‘(𝐸s 𝐹)))𝑃))‘𝑋) = 0 ))
45 eqid 2730 . . . . 5 (.r𝐸) = (.r𝐸)
46 eqid 2730 . . . . . . 7 (Scalar‘(Poly1‘(𝐸s 𝐹))) = (Scalar‘(Poly1‘(𝐸s 𝐹)))
47 fldsdrgfld 20714 . . . . . . . . . . 11 ((𝐸 ∈ Field ∧ 𝐹 ∈ (SubDRing‘𝐸)) → (𝐸s 𝐹) ∈ Field)
488, 2, 47syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝐸s 𝐹) ∈ Field)
4948fldcrngd 20658 . . . . . . . . 9 (𝜑 → (𝐸s 𝐹) ∈ CRing)
5016ply1assa 22091 . . . . . . . . 9 ((𝐸s 𝐹) ∈ CRing → (Poly1‘(𝐸s 𝐹)) ∈ AssAlg)
5149, 50syl 17 . . . . . . . 8 (𝜑 → (Poly1‘(𝐸s 𝐹)) ∈ AssAlg)
52 assaring 21777 . . . . . . . 8 ((Poly1‘(𝐸s 𝐹)) ∈ AssAlg → (Poly1‘(𝐸s 𝐹)) ∈ Ring)
5351, 52syl 17 . . . . . . 7 (𝜑 → (Poly1‘(𝐸s 𝐹)) ∈ Ring)
5416ply1lmod 22143 . . . . . . . 8 ((𝐸s 𝐹) ∈ Ring → (Poly1‘(𝐸s 𝐹)) ∈ LMod)
556, 54syl 17 . . . . . . 7 (𝜑 → (Poly1‘(𝐸s 𝐹)) ∈ LMod)
56 eqid 2730 . . . . . . 7 (Base‘(Scalar‘(Poly1‘(𝐸s 𝐹)))) = (Base‘(Scalar‘(Poly1‘(𝐸s 𝐹))))
5736, 46, 53, 55, 56, 19asclf 21798 . . . . . 6 (𝜑 → (algSc‘(Poly1‘(𝐸s 𝐹))):(Base‘(Scalar‘(Poly1‘(𝐸s 𝐹))))⟶(Base‘(Poly1‘(𝐸s 𝐹))))
58 eqid 2730 . . . . . . . 8 (Base‘(𝐸s 𝐹)) = (Base‘(𝐸s 𝐹))
59 eqid 2730 . . . . . . . 8 (0g‘(𝐸s 𝐹)) = (0g‘(𝐸s 𝐹))
6037, 16, 30, 19deg1nn0cl 26000 . . . . . . . . . 10 (((𝐸s 𝐹) ∈ Ring ∧ 𝑃 ∈ (Base‘(Poly1‘(𝐸s 𝐹))) ∧ 𝑃 ≠ (0g‘(Poly1‘(𝐸s 𝐹)))) → ((deg1‘(𝐸s 𝐹))‘𝑃) ∈ ℕ0)
616, 24, 29, 60syl3anc 1373 . . . . . . . . 9 (𝜑 → ((deg1‘(𝐸s 𝐹))‘𝑃) ∈ ℕ0)
62 eqid 2730 . . . . . . . . . 10 (coe1𝑃) = (coe1𝑃)
6362, 19, 16, 58coe1fvalcl 22104 . . . . . . . . 9 ((𝑃 ∈ (Base‘(Poly1‘(𝐸s 𝐹))) ∧ ((deg1‘(𝐸s 𝐹))‘𝑃) ∈ ℕ0) → ((coe1𝑃)‘((deg1‘(𝐸s 𝐹))‘𝑃)) ∈ (Base‘(𝐸s 𝐹)))
6424, 61, 63syl2anc 584 . . . . . . . 8 (𝜑 → ((coe1𝑃)‘((deg1‘(𝐸s 𝐹))‘𝑃)) ∈ (Base‘(𝐸s 𝐹)))
6537, 16, 30, 19, 59, 62deg1ldg 26004 . . . . . . . . 9 (((𝐸s 𝐹) ∈ Ring ∧ 𝑃 ∈ (Base‘(Poly1‘(𝐸s 𝐹))) ∧ 𝑃 ≠ (0g‘(Poly1‘(𝐸s 𝐹)))) → ((coe1𝑃)‘((deg1‘(𝐸s 𝐹))‘𝑃)) ≠ (0g‘(𝐸s 𝐹)))
666, 24, 29, 65syl3anc 1373 . . . . . . . 8 (𝜑 → ((coe1𝑃)‘((deg1‘(𝐸s 𝐹))‘𝑃)) ≠ (0g‘(𝐸s 𝐹)))
6758, 59, 38, 5, 64, 66drnginvrcld 20671 . . . . . . 7 (𝜑 → ((invr‘(𝐸s 𝐹))‘((coe1𝑃)‘((deg1‘(𝐸s 𝐹))‘𝑃))) ∈ (Base‘(𝐸s 𝐹)))
6816ply1sca 22144 . . . . . . . . 9 ((𝐸s 𝐹) ∈ Field → (𝐸s 𝐹) = (Scalar‘(Poly1‘(𝐸s 𝐹))))
6948, 68syl 17 . . . . . . . 8 (𝜑 → (𝐸s 𝐹) = (Scalar‘(Poly1‘(𝐸s 𝐹))))
7069fveq2d 6865 . . . . . . 7 (𝜑 → (Base‘(𝐸s 𝐹)) = (Base‘(Scalar‘(Poly1‘(𝐸s 𝐹)))))
7167, 70eleqtrd 2831 . . . . . 6 (𝜑 → ((invr‘(𝐸s 𝐹))‘((coe1𝑃)‘((deg1‘(𝐸s 𝐹))‘𝑃))) ∈ (Base‘(Scalar‘(Poly1‘(𝐸s 𝐹)))))
7257, 71ffvelcdmd 7060 . . . . 5 (𝜑 → ((algSc‘(Poly1‘(𝐸s 𝐹)))‘((invr‘(𝐸s 𝐹))‘((coe1𝑃)‘((deg1‘(𝐸s 𝐹))‘𝑃)))) ∈ (Base‘(Poly1‘(𝐸s 𝐹))))
7312, 13, 16, 15, 19, 35, 45, 9, 11, 72, 24, 1evls1muld 22266 . . . 4 (𝜑 → ((𝑂‘(((algSc‘(Poly1‘(𝐸s 𝐹)))‘((invr‘(𝐸s 𝐹))‘((coe1𝑃)‘((deg1‘(𝐸s 𝐹))‘𝑃))))(.r‘(Poly1‘(𝐸s 𝐹)))𝑃))‘𝑋) = (((𝑂‘((algSc‘(Poly1‘(𝐸s 𝐹)))‘((invr‘(𝐸s 𝐹))‘((coe1𝑃)‘((deg1‘(𝐸s 𝐹))‘𝑃)))))‘𝑋)(.r𝐸)((𝑂𝑃)‘𝑋)))
74 irngnzply1lem.3 . . . . 5 (𝜑 → ((𝑂𝑃)‘𝑋) = 0 )
7574oveq2d 7406 . . . 4 (𝜑 → (((𝑂‘((algSc‘(Poly1‘(𝐸s 𝐹)))‘((invr‘(𝐸s 𝐹))‘((coe1𝑃)‘((deg1‘(𝐸s 𝐹))‘𝑃)))))‘𝑋)(.r𝐸)((𝑂𝑃)‘𝑋)) = (((𝑂‘((algSc‘(Poly1‘(𝐸s 𝐹)))‘((invr‘(𝐸s 𝐹))‘((coe1𝑃)‘((deg1‘(𝐸s 𝐹))‘𝑃)))))‘𝑋)(.r𝐸) 0 ))
769crngringd 20162 . . . . 5 (𝜑𝐸 ∈ Ring)
7713fvexi 6875 . . . . . . . 8 𝐵 ∈ V
7877a1i 11 . . . . . . 7 (𝜑𝐵 ∈ V)
7922, 72ffvelcdmd 7060 . . . . . . 7 (𝜑 → (𝑂‘((algSc‘(Poly1‘(𝐸s 𝐹)))‘((invr‘(𝐸s 𝐹))‘((coe1𝑃)‘((deg1‘(𝐸s 𝐹))‘𝑃))))) ∈ (Base‘(𝐸s 𝐵)))
8014, 13, 20, 8, 78, 79pwselbas 17459 . . . . . 6 (𝜑 → (𝑂‘((algSc‘(Poly1‘(𝐸s 𝐹)))‘((invr‘(𝐸s 𝐹))‘((coe1𝑃)‘((deg1‘(𝐸s 𝐹))‘𝑃))))):𝐵𝐵)
8180, 1ffvelcdmd 7060 . . . . 5 (𝜑 → ((𝑂‘((algSc‘(Poly1‘(𝐸s 𝐹)))‘((invr‘(𝐸s 𝐹))‘((coe1𝑃)‘((deg1‘(𝐸s 𝐹))‘𝑃)))))‘𝑋) ∈ 𝐵)
82 irngnzply1.1 . . . . . 6 0 = (0g𝐸)
8313, 45, 82ringrz 20210 . . . . 5 ((𝐸 ∈ Ring ∧ ((𝑂‘((algSc‘(Poly1‘(𝐸s 𝐹)))‘((invr‘(𝐸s 𝐹))‘((coe1𝑃)‘((deg1‘(𝐸s 𝐹))‘𝑃)))))‘𝑋) ∈ 𝐵) → (((𝑂‘((algSc‘(Poly1‘(𝐸s 𝐹)))‘((invr‘(𝐸s 𝐹))‘((coe1𝑃)‘((deg1‘(𝐸s 𝐹))‘𝑃)))))‘𝑋)(.r𝐸) 0 ) = 0 )
8476, 81, 83syl2anc 584 . . . 4 (𝜑 → (((𝑂‘((algSc‘(Poly1‘(𝐸s 𝐹)))‘((invr‘(𝐸s 𝐹))‘((coe1𝑃)‘((deg1‘(𝐸s 𝐹))‘𝑃)))))‘𝑋)(.r𝐸) 0 ) = 0 )
8573, 75, 843eqtrd 2769 . . 3 (𝜑 → ((𝑂‘(((algSc‘(Poly1‘(𝐸s 𝐹)))‘((invr‘(𝐸s 𝐹))‘((coe1𝑃)‘((deg1‘(𝐸s 𝐹))‘𝑃))))(.r‘(Poly1‘(𝐸s 𝐹)))𝑃))‘𝑋) = 0 )
8640, 44, 85rspcedvd 3593 . 2 (𝜑 → ∃𝑝 ∈ (Monic1p‘(𝐸s 𝐹))((𝑂𝑝)‘𝑋) = 0 )
8712, 15, 13, 82, 9, 11elirng 33688 . 2 (𝜑 → (𝑋 ∈ (𝐸 IntgRing 𝐹) ↔ (𝑋𝐵 ∧ ∃𝑝 ∈ (Monic1p‘(𝐸s 𝐹))((𝑂𝑝)‘𝑋) = 0 )))
881, 86, 87mpbir2and 713 1 (𝜑𝑋 ∈ (𝐸 IntgRing 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wrex 3054  Vcvv 3450  dom cdm 5641  wf 6510  cfv 6514  (class class class)co 7390  0cn0 12449  Basecbs 17186  s cress 17207  .rcmulr 17228  Scalarcsca 17230  0gc0g 17409  s cpws 17416  Ringcrg 20149  CRingccrg 20150  invrcinvr 20303   RingHom crh 20385  SubRingcsubrg 20485  DivRingcdr 20645  Fieldcfield 20646  SubDRingcsdrg 20702  LModclmod 20773  AssAlgcasa 21766  algSccascl 21768  Poly1cpl1 22068  coe1cco1 22069   evalSub1 ces1 22207  deg1cdg1 25966  Monic1pcmn1 26038  Unic1pcuc1p 26039   IntgRing cirng 33685
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-ofr 7657  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-0g 17411  df-gsum 17412  df-prds 17417  df-pws 17419  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-ghm 19152  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-srg 20103  df-ring 20151  df-cring 20152  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-rhm 20388  df-subrng 20462  df-subrg 20486  df-rlreg 20610  df-drng 20647  df-field 20648  df-sdrg 20703  df-lmod 20775  df-lss 20845  df-lsp 20885  df-cnfld 21272  df-assa 21769  df-asp 21770  df-ascl 21771  df-psr 21825  df-mvr 21826  df-mpl 21827  df-opsr 21829  df-evls 21988  df-evl 21989  df-psr1 22071  df-vr1 22072  df-ply1 22073  df-coe1 22074  df-evls1 22209  df-evl1 22210  df-mdeg 25967  df-deg1 25968  df-mon1 26043  df-uc1p 26044  df-irng 33686
This theorem is referenced by:  irngnzply1  33693
  Copyright terms: Public domain W3C validator