Step | Hyp | Ref
| Expression |
1 | | irngnzply1lem.x |
. 2
β’ (π β π β π΅) |
2 | | irngnzply1.f |
. . . . . 6
β’ (π β πΉ β (SubDRingβπΈ)) |
3 | | issdrg 20396 |
. . . . . . 7
β’ (πΉ β (SubDRingβπΈ) β (πΈ β DivRing β§ πΉ β (SubRingβπΈ) β§ (πΈ βΎs πΉ) β DivRing)) |
4 | 3 | simp3bi 1147 |
. . . . . 6
β’ (πΉ β (SubDRingβπΈ) β (πΈ βΎs πΉ) β DivRing) |
5 | 2, 4 | syl 17 |
. . . . 5
β’ (π β (πΈ βΎs πΉ) β DivRing) |
6 | 5 | drngringd 20315 |
. . . 4
β’ (π β (πΈ βΎs πΉ) β Ring) |
7 | | irngnzply1lem.1 |
. . . . . 6
β’ (π β π β dom π) |
8 | | irngnzply1.e |
. . . . . . . . . 10
β’ (π β πΈ β Field) |
9 | 8 | fldcrngd 20320 |
. . . . . . . . 9
β’ (π β πΈ β CRing) |
10 | 2, 3 | sylib 217 |
. . . . . . . . . 10
β’ (π β (πΈ β DivRing β§ πΉ β (SubRingβπΈ) β§ (πΈ βΎs πΉ) β DivRing)) |
11 | 10 | simp2d 1143 |
. . . . . . . . 9
β’ (π β πΉ β (SubRingβπΈ)) |
12 | | irngnzply1.o |
. . . . . . . . . 10
β’ π = (πΈ evalSub1 πΉ) |
13 | | irngnzply1lem.b |
. . . . . . . . . 10
β’ π΅ = (BaseβπΈ) |
14 | | eqid 2732 |
. . . . . . . . . 10
β’ (πΈ βs π΅) = (πΈ βs π΅) |
15 | | eqid 2732 |
. . . . . . . . . 10
β’ (πΈ βΎs πΉ) = (πΈ βΎs πΉ) |
16 | | eqid 2732 |
. . . . . . . . . 10
β’
(Poly1β(πΈ βΎs πΉ)) = (Poly1β(πΈ βΎs πΉ)) |
17 | 12, 13, 14, 15, 16 | evls1rhm 21832 |
. . . . . . . . 9
β’ ((πΈ β CRing β§ πΉ β (SubRingβπΈ)) β π β ((Poly1β(πΈ βΎs πΉ)) RingHom (πΈ βs π΅))) |
18 | 9, 11, 17 | syl2anc 584 |
. . . . . . . 8
β’ (π β π β ((Poly1β(πΈ βΎs πΉ)) RingHom (πΈ βs π΅))) |
19 | | eqid 2732 |
. . . . . . . . 9
β’
(Baseβ(Poly1β(πΈ βΎs πΉ))) =
(Baseβ(Poly1β(πΈ βΎs πΉ))) |
20 | | eqid 2732 |
. . . . . . . . 9
β’
(Baseβ(πΈ
βs π΅)) = (Baseβ(πΈ βs π΅)) |
21 | 19, 20 | rhmf 20255 |
. . . . . . . 8
β’ (π β
((Poly1β(πΈ
βΎs πΉ))
RingHom (πΈ
βs π΅)) β π:(Baseβ(Poly1β(πΈ βΎs πΉ)))βΆ(Baseβ(πΈ βs π΅))) |
22 | 18, 21 | syl 17 |
. . . . . . 7
β’ (π β π:(Baseβ(Poly1β(πΈ βΎs πΉ)))βΆ(Baseβ(πΈ βs π΅))) |
23 | 22 | fdmd 6725 |
. . . . . 6
β’ (π β dom π =
(Baseβ(Poly1β(πΈ βΎs πΉ)))) |
24 | 7, 23 | eleqtrd 2835 |
. . . . 5
β’ (π β π β
(Baseβ(Poly1β(πΈ βΎs πΉ)))) |
25 | | irngnzply1lem.2 |
. . . . . 6
β’ (π β π β π) |
26 | | eqid 2732 |
. . . . . . 7
β’
(Poly1βπΈ) = (Poly1βπΈ) |
27 | | irngnzply1.z |
. . . . . . 7
β’ π =
(0gβ(Poly1βπΈ)) |
28 | 26, 15, 16, 19, 11, 27 | ressply10g 32644 |
. . . . . 6
β’ (π β π =
(0gβ(Poly1β(πΈ βΎs πΉ)))) |
29 | 25, 28 | neeqtrd 3010 |
. . . . 5
β’ (π β π β
(0gβ(Poly1β(πΈ βΎs πΉ)))) |
30 | | eqid 2732 |
. . . . . 6
β’
(0gβ(Poly1β(πΈ βΎs πΉ))) =
(0gβ(Poly1β(πΈ βΎs πΉ))) |
31 | | eqid 2732 |
. . . . . 6
β’
(Unic1pβ(πΈ βΎs πΉ)) = (Unic1pβ(πΈ βΎs πΉ)) |
32 | 16, 19, 30, 31 | drnguc1p 25679 |
. . . . 5
β’ (((πΈ βΎs πΉ) β DivRing β§ π β
(Baseβ(Poly1β(πΈ βΎs πΉ))) β§ π β
(0gβ(Poly1β(πΈ βΎs πΉ)))) β π β (Unic1pβ(πΈ βΎs πΉ))) |
33 | 5, 24, 29, 32 | syl3anc 1371 |
. . . 4
β’ (π β π β (Unic1pβ(πΈ βΎs πΉ))) |
34 | | eqid 2732 |
. . . . 5
β’
(Monic1pβ(πΈ βΎs πΉ)) = (Monic1pβ(πΈ βΎs πΉ)) |
35 | | eqid 2732 |
. . . . 5
β’
(.rβ(Poly1β(πΈ βΎs πΉ))) =
(.rβ(Poly1β(πΈ βΎs πΉ))) |
36 | | eqid 2732 |
. . . . 5
β’
(algScβ(Poly1β(πΈ βΎs πΉ))) =
(algScβ(Poly1β(πΈ βΎs πΉ))) |
37 | | eqid 2732 |
. . . . 5
β’ (
deg1 β(πΈ
βΎs πΉ)) = (
deg1 β(πΈ
βΎs πΉ)) |
38 | | eqid 2732 |
. . . . 5
β’
(invrβ(πΈ βΎs πΉ)) = (invrβ(πΈ βΎs πΉ)) |
39 | 31, 34, 16, 35, 36, 37, 38 | uc1pmon1p 25660 |
. . . 4
β’ (((πΈ βΎs πΉ) β Ring β§ π β
(Unic1pβ(πΈ
βΎs πΉ)))
β (((algScβ(Poly1β(πΈ βΎs πΉ)))β((invrβ(πΈ βΎs πΉ))β((coe1βπ)β(( deg1
β(πΈ
βΎs πΉ))βπ))))(.rβ(Poly1β(πΈ βΎs πΉ)))π) β (Monic1pβ(πΈ βΎs πΉ))) |
40 | 6, 33, 39 | syl2anc 584 |
. . 3
β’ (π β
(((algScβ(Poly1β(πΈ βΎs πΉ)))β((invrβ(πΈ βΎs πΉ))β((coe1βπ)β(( deg1
β(πΈ
βΎs πΉ))βπ))))(.rβ(Poly1β(πΈ βΎs πΉ)))π) β (Monic1pβ(πΈ βΎs πΉ))) |
41 | | simpr 485 |
. . . . . 6
β’ ((π β§ π =
(((algScβ(Poly1β(πΈ βΎs πΉ)))β((invrβ(πΈ βΎs πΉ))β((coe1βπ)β(( deg1
β(πΈ
βΎs πΉ))βπ))))(.rβ(Poly1β(πΈ βΎs πΉ)))π)) β π = (((algScβ(Poly1β(πΈ βΎs πΉ)))β((invrβ(πΈ βΎs πΉ))β((coe1βπ)β(( deg1 β(πΈ βΎs πΉ))βπ))))(.rβ(Poly1β(πΈ βΎs πΉ)))π)) |
42 | 41 | fveq2d 6892 |
. . . . 5
β’ ((π β§ π =
(((algScβ(Poly1β(πΈ βΎs πΉ)))β((invrβ(πΈ βΎs πΉ))β((coe1βπ)β(( deg1
β(πΈ
βΎs πΉ))βπ))))(.rβ(Poly1β(πΈ βΎs πΉ)))π)) β (πβπ) = (πβ(((algScβ(Poly1β(πΈ βΎs πΉ)))β((invrβ(πΈ βΎs πΉ))β((coe1βπ)β(( deg1 β(πΈ βΎs πΉ))βπ))))(.rβ(Poly1β(πΈ βΎs πΉ)))π))) |
43 | 42 | fveq1d 6890 |
. . . 4
β’ ((π β§ π =
(((algScβ(Poly1β(πΈ βΎs πΉ)))β((invrβ(πΈ βΎs πΉ))β((coe1βπ)β(( deg1
β(πΈ
βΎs πΉ))βπ))))(.rβ(Poly1β(πΈ βΎs πΉ)))π)) β ((πβπ)βπ) = ((πβ(((algScβ(Poly1β(πΈ βΎs πΉ)))β((invrβ(πΈ βΎs πΉ))β((coe1βπ)β(( deg1 β(πΈ βΎs πΉ))βπ))))(.rβ(Poly1β(πΈ βΎs πΉ)))π))βπ)) |
44 | 43 | eqeq1d 2734 |
. . 3
β’ ((π β§ π =
(((algScβ(Poly1β(πΈ βΎs πΉ)))β((invrβ(πΈ βΎs πΉ))β((coe1βπ)β(( deg1
β(πΈ
βΎs πΉ))βπ))))(.rβ(Poly1β(πΈ βΎs πΉ)))π)) β (((πβπ)βπ) = 0 β ((πβ(((algScβ(Poly1β(πΈ βΎs πΉ)))β((invrβ(πΈ βΎs πΉ))β((coe1βπ)β(( deg1 β(πΈ βΎs πΉ))βπ))))(.rβ(Poly1β(πΈ βΎs πΉ)))π))βπ) = 0 )) |
45 | | eqid 2732 |
. . . . 5
β’
(.rβπΈ) = (.rβπΈ) |
46 | | eqid 2732 |
. . . . . . 7
β’
(Scalarβ(Poly1β(πΈ βΎs πΉ))) =
(Scalarβ(Poly1β(πΈ βΎs πΉ))) |
47 | | fldsdrgfld 20406 |
. . . . . . . . . . 11
β’ ((πΈ β Field β§ πΉ β (SubDRingβπΈ)) β (πΈ βΎs πΉ) β Field) |
48 | 8, 2, 47 | syl2anc 584 |
. . . . . . . . . 10
β’ (π β (πΈ βΎs πΉ) β Field) |
49 | 48 | fldcrngd 20320 |
. . . . . . . . 9
β’ (π β (πΈ βΎs πΉ) β CRing) |
50 | 16 | ply1assa 21714 |
. . . . . . . . 9
β’ ((πΈ βΎs πΉ) β CRing β
(Poly1β(πΈ
βΎs πΉ))
β AssAlg) |
51 | 49, 50 | syl 17 |
. . . . . . . 8
β’ (π β
(Poly1β(πΈ
βΎs πΉ))
β AssAlg) |
52 | | assaring 21407 |
. . . . . . . 8
β’
((Poly1β(πΈ βΎs πΉ)) β AssAlg β
(Poly1β(πΈ
βΎs πΉ))
β Ring) |
53 | 51, 52 | syl 17 |
. . . . . . 7
β’ (π β
(Poly1β(πΈ
βΎs πΉ))
β Ring) |
54 | 16 | ply1lmod 21765 |
. . . . . . . 8
β’ ((πΈ βΎs πΉ) β Ring β
(Poly1β(πΈ
βΎs πΉ))
β LMod) |
55 | 6, 54 | syl 17 |
. . . . . . 7
β’ (π β
(Poly1β(πΈ
βΎs πΉ))
β LMod) |
56 | | eqid 2732 |
. . . . . . 7
β’
(Baseβ(Scalarβ(Poly1β(πΈ βΎs πΉ)))) =
(Baseβ(Scalarβ(Poly1β(πΈ βΎs πΉ)))) |
57 | 36, 46, 53, 55, 56, 19 | asclf 21427 |
. . . . . 6
β’ (π β
(algScβ(Poly1β(πΈ βΎs πΉ))):(Baseβ(Scalarβ(Poly1β(πΈ βΎs πΉ))))βΆ(Baseβ(Poly1β(πΈ βΎs πΉ)))) |
58 | | eqid 2732 |
. . . . . . . 8
β’
(Baseβ(πΈ
βΎs πΉ)) =
(Baseβ(πΈ
βΎs πΉ)) |
59 | | eqid 2732 |
. . . . . . . 8
β’
(0gβ(πΈ βΎs πΉ)) = (0gβ(πΈ βΎs πΉ)) |
60 | 37, 16, 30, 19 | deg1nn0cl 25597 |
. . . . . . . . . 10
β’ (((πΈ βΎs πΉ) β Ring β§ π β
(Baseβ(Poly1β(πΈ βΎs πΉ))) β§ π β
(0gβ(Poly1β(πΈ βΎs πΉ)))) β (( deg1 β(πΈ βΎs πΉ))βπ) β
β0) |
61 | 6, 24, 29, 60 | syl3anc 1371 |
. . . . . . . . 9
β’ (π β (( deg1
β(πΈ
βΎs πΉ))βπ) β
β0) |
62 | | eqid 2732 |
. . . . . . . . . 10
β’
(coe1βπ) = (coe1βπ) |
63 | 62, 19, 16, 58 | coe1fvalcl 21727 |
. . . . . . . . 9
β’ ((π β
(Baseβ(Poly1β(πΈ βΎs πΉ))) β§ (( deg1 β(πΈ βΎs πΉ))βπ) β β0) β
((coe1βπ)β(( deg1 β(πΈ βΎs πΉ))βπ)) β (Baseβ(πΈ βΎs πΉ))) |
64 | 24, 61, 63 | syl2anc 584 |
. . . . . . . 8
β’ (π β
((coe1βπ)β(( deg1 β(πΈ βΎs πΉ))βπ)) β (Baseβ(πΈ βΎs πΉ))) |
65 | 37, 16, 30, 19, 59, 62 | deg1ldg 25601 |
. . . . . . . . 9
β’ (((πΈ βΎs πΉ) β Ring β§ π β
(Baseβ(Poly1β(πΈ βΎs πΉ))) β§ π β
(0gβ(Poly1β(πΈ βΎs πΉ)))) β ((coe1βπ)β(( deg1
β(πΈ
βΎs πΉ))βπ)) β (0gβ(πΈ βΎs πΉ))) |
66 | 6, 24, 29, 65 | syl3anc 1371 |
. . . . . . . 8
β’ (π β
((coe1βπ)β(( deg1 β(πΈ βΎs πΉ))βπ)) β (0gβ(πΈ βΎs πΉ))) |
67 | 58, 59, 38, 5, 64, 66 | drnginvrcld 20331 |
. . . . . . 7
β’ (π β
((invrβ(πΈ
βΎs πΉ))β((coe1βπ)β(( deg1
β(πΈ
βΎs πΉ))βπ))) β (Baseβ(πΈ βΎs πΉ))) |
68 | 16 | ply1sca 21766 |
. . . . . . . . 9
β’ ((πΈ βΎs πΉ) β Field β (πΈ βΎs πΉ) =
(Scalarβ(Poly1β(πΈ βΎs πΉ)))) |
69 | 48, 68 | syl 17 |
. . . . . . . 8
β’ (π β (πΈ βΎs πΉ) =
(Scalarβ(Poly1β(πΈ βΎs πΉ)))) |
70 | 69 | fveq2d 6892 |
. . . . . . 7
β’ (π β (Baseβ(πΈ βΎs πΉ)) =
(Baseβ(Scalarβ(Poly1β(πΈ βΎs πΉ))))) |
71 | 67, 70 | eleqtrd 2835 |
. . . . . 6
β’ (π β
((invrβ(πΈ
βΎs πΉ))β((coe1βπ)β(( deg1
β(πΈ
βΎs πΉ))βπ))) β
(Baseβ(Scalarβ(Poly1β(πΈ βΎs πΉ))))) |
72 | 57, 71 | ffvelcdmd 7084 |
. . . . 5
β’ (π β
((algScβ(Poly1β(πΈ βΎs πΉ)))β((invrβ(πΈ βΎs πΉ))β((coe1βπ)β(( deg1
β(πΈ
βΎs πΉ))βπ)))) β
(Baseβ(Poly1β(πΈ βΎs πΉ)))) |
73 | 12, 13, 16, 15, 19, 35, 45, 9, 11, 72, 24, 1 | evls1muld 32637 |
. . . 4
β’ (π β ((πβ(((algScβ(Poly1β(πΈ βΎs πΉ)))β((invrβ(πΈ βΎs πΉ))β((coe1βπ)β(( deg1 β(πΈ βΎs πΉ))βπ))))(.rβ(Poly1β(πΈ βΎs πΉ)))π))βπ) = (((πβ((algScβ(Poly1β(πΈ βΎs πΉ)))β((invrβ(πΈ βΎs πΉ))β((coe1βπ)β(( deg1 β(πΈ βΎs πΉ))βπ)))))βπ)(.rβπΈ)((πβπ)βπ))) |
74 | | irngnzply1lem.3 |
. . . . 5
β’ (π β ((πβπ)βπ) = 0 ) |
75 | 74 | oveq2d 7421 |
. . . 4
β’ (π β (((πβ((algScβ(Poly1β(πΈ βΎs πΉ)))β((invrβ(πΈ βΎs πΉ))β((coe1βπ)β(( deg1 β(πΈ βΎs πΉ))βπ)))))βπ)(.rβπΈ)((πβπ)βπ)) = (((πβ((algScβ(Poly1β(πΈ βΎs πΉ)))β((invrβ(πΈ βΎs πΉ))β((coe1βπ)β(( deg1 β(πΈ βΎs πΉ))βπ)))))βπ)(.rβπΈ) 0 )) |
76 | 9 | crngringd 20062 |
. . . . 5
β’ (π β πΈ β Ring) |
77 | 13 | fvexi 6902 |
. . . . . . . 8
β’ π΅ β V |
78 | 77 | a1i 11 |
. . . . . . 7
β’ (π β π΅ β V) |
79 | 22, 72 | ffvelcdmd 7084 |
. . . . . . 7
β’ (π β (πβ((algScβ(Poly1β(πΈ βΎs πΉ)))β((invrβ(πΈ βΎs πΉ))β((coe1βπ)β(( deg1 β(πΈ βΎs πΉ))βπ))))) β (Baseβ(πΈ βs π΅))) |
80 | 14, 13, 20, 8, 78, 79 | pwselbas 17431 |
. . . . . 6
β’ (π β (πβ((algScβ(Poly1β(πΈ βΎs πΉ)))β((invrβ(πΈ βΎs πΉ))β((coe1βπ)β(( deg1 β(πΈ βΎs πΉ))βπ))))):π΅βΆπ΅) |
81 | 80, 1 | ffvelcdmd 7084 |
. . . . 5
β’ (π β ((πβ((algScβ(Poly1β(πΈ βΎs πΉ)))β((invrβ(πΈ βΎs πΉ))β((coe1βπ)β(( deg1 β(πΈ βΎs πΉ))βπ)))))βπ) β π΅) |
82 | | irngnzply1.1 |
. . . . . 6
β’ 0 =
(0gβπΈ) |
83 | 13, 45, 82 | ringrz 20101 |
. . . . 5
β’ ((πΈ β Ring β§ ((πβ((algScβ(Poly1β(πΈ βΎs πΉ)))β((invrβ(πΈ βΎs πΉ))β((coe1βπ)β(( deg1 β(πΈ βΎs πΉ))βπ)))))βπ) β π΅) β (((πβ((algScβ(Poly1β(πΈ βΎs πΉ)))β((invrβ(πΈ βΎs πΉ))β((coe1βπ)β(( deg1 β(πΈ βΎs πΉ))βπ)))))βπ)(.rβπΈ) 0 ) = 0 ) |
84 | 76, 81, 83 | syl2anc 584 |
. . . 4
β’ (π β (((πβ((algScβ(Poly1β(πΈ βΎs πΉ)))β((invrβ(πΈ βΎs πΉ))β((coe1βπ)β(( deg1 β(πΈ βΎs πΉ))βπ)))))βπ)(.rβπΈ) 0 ) = 0 ) |
85 | 73, 75, 84 | 3eqtrd 2776 |
. . 3
β’ (π β ((πβ(((algScβ(Poly1β(πΈ βΎs πΉ)))β((invrβ(πΈ βΎs πΉ))β((coe1βπ)β(( deg1 β(πΈ βΎs πΉ))βπ))))(.rβ(Poly1β(πΈ βΎs πΉ)))π))βπ) = 0 ) |
86 | 40, 44, 85 | rspcedvd 3614 |
. 2
β’ (π β βπ β (Monic1pβ(πΈ βΎs πΉ))((πβπ)βπ) = 0 ) |
87 | 12, 15, 13, 82, 9, 11 | elirng 32738 |
. 2
β’ (π β (π β (πΈ IntgRing πΉ) β (π β π΅ β§ βπ β (Monic1pβ(πΈ βΎs πΉ))((πβπ)βπ) = 0 ))) |
88 | 1, 86, 87 | mpbir2and 711 |
1
β’ (π β π β (πΈ IntgRing πΉ)) |