Step | Hyp | Ref
| Expression |
1 | | irngnzply1lem.x |
. 2
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
2 | | irngnzply1.f |
. . . . . 6
⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) |
3 | | issdrg 20355 |
. . . . . . 7
⊢ (𝐹 ∈ (SubDRing‘𝐸) ↔ (𝐸 ∈ DivRing ∧ 𝐹 ∈ (SubRing‘𝐸) ∧ (𝐸 ↾s 𝐹) ∈ DivRing)) |
4 | 3 | simp3bi 1147 |
. . . . . 6
⊢ (𝐹 ∈ (SubDRing‘𝐸) → (𝐸 ↾s 𝐹) ∈ DivRing) |
5 | 2, 4 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝐸 ↾s 𝐹) ∈ DivRing) |
6 | 5 | drngringd 20275 |
. . . 4
⊢ (𝜑 → (𝐸 ↾s 𝐹) ∈ Ring) |
7 | | irngnzply1lem.1 |
. . . . . 6
⊢ (𝜑 → 𝑃 ∈ dom 𝑂) |
8 | | irngnzply1.e |
. . . . . . . . . 10
⊢ (𝜑 → 𝐸 ∈ Field) |
9 | 8 | fldcrngd 20279 |
. . . . . . . . 9
⊢ (𝜑 → 𝐸 ∈ CRing) |
10 | 2, 3 | sylib 217 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐸 ∈ DivRing ∧ 𝐹 ∈ (SubRing‘𝐸) ∧ (𝐸 ↾s 𝐹) ∈ DivRing)) |
11 | 10 | simp2d 1143 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 ∈ (SubRing‘𝐸)) |
12 | | irngnzply1.o |
. . . . . . . . . 10
⊢ 𝑂 = (𝐸 evalSub1 𝐹) |
13 | | irngnzply1lem.b |
. . . . . . . . . 10
⊢ 𝐵 = (Base‘𝐸) |
14 | | eqid 2732 |
. . . . . . . . . 10
⊢ (𝐸 ↑s 𝐵) = (𝐸 ↑s 𝐵) |
15 | | eqid 2732 |
. . . . . . . . . 10
⊢ (𝐸 ↾s 𝐹) = (𝐸 ↾s 𝐹) |
16 | | eqid 2732 |
. . . . . . . . . 10
⊢
(Poly1‘(𝐸 ↾s 𝐹)) = (Poly1‘(𝐸 ↾s 𝐹)) |
17 | 12, 13, 14, 15, 16 | evls1rhm 21772 |
. . . . . . . . 9
⊢ ((𝐸 ∈ CRing ∧ 𝐹 ∈ (SubRing‘𝐸)) → 𝑂 ∈ ((Poly1‘(𝐸 ↾s 𝐹)) RingHom (𝐸 ↑s 𝐵))) |
18 | 9, 11, 17 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → 𝑂 ∈ ((Poly1‘(𝐸 ↾s 𝐹)) RingHom (𝐸 ↑s 𝐵))) |
19 | | eqid 2732 |
. . . . . . . . 9
⊢
(Base‘(Poly1‘(𝐸 ↾s 𝐹))) =
(Base‘(Poly1‘(𝐸 ↾s 𝐹))) |
20 | | eqid 2732 |
. . . . . . . . 9
⊢
(Base‘(𝐸
↑s 𝐵)) = (Base‘(𝐸 ↑s 𝐵)) |
21 | 19, 20 | rhmf 20215 |
. . . . . . . 8
⊢ (𝑂 ∈
((Poly1‘(𝐸
↾s 𝐹))
RingHom (𝐸
↑s 𝐵)) → 𝑂:(Base‘(Poly1‘(𝐸 ↾s 𝐹)))⟶(Base‘(𝐸 ↑s 𝐵))) |
22 | 18, 21 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑂:(Base‘(Poly1‘(𝐸 ↾s 𝐹)))⟶(Base‘(𝐸 ↑s 𝐵))) |
23 | 22 | fdmd 6716 |
. . . . . 6
⊢ (𝜑 → dom 𝑂 =
(Base‘(Poly1‘(𝐸 ↾s 𝐹)))) |
24 | 7, 23 | eleqtrd 2835 |
. . . . 5
⊢ (𝜑 → 𝑃 ∈
(Base‘(Poly1‘(𝐸 ↾s 𝐹)))) |
25 | | irngnzply1lem.2 |
. . . . . 6
⊢ (𝜑 → 𝑃 ≠ 𝑍) |
26 | | eqid 2732 |
. . . . . . 7
⊢
(Poly1‘𝐸) = (Poly1‘𝐸) |
27 | | irngnzply1.z |
. . . . . . 7
⊢ 𝑍 =
(0g‘(Poly1‘𝐸)) |
28 | 26, 15, 16, 19, 11, 27 | ressply10g 32560 |
. . . . . 6
⊢ (𝜑 → 𝑍 =
(0g‘(Poly1‘(𝐸 ↾s 𝐹)))) |
29 | 25, 28 | neeqtrd 3010 |
. . . . 5
⊢ (𝜑 → 𝑃 ≠
(0g‘(Poly1‘(𝐸 ↾s 𝐹)))) |
30 | | eqid 2732 |
. . . . . 6
⊢
(0g‘(Poly1‘(𝐸 ↾s 𝐹))) =
(0g‘(Poly1‘(𝐸 ↾s 𝐹))) |
31 | | eqid 2732 |
. . . . . 6
⊢
(Unic1p‘(𝐸 ↾s 𝐹)) = (Unic1p‘(𝐸 ↾s 𝐹)) |
32 | 16, 19, 30, 31 | drnguc1p 25619 |
. . . . 5
⊢ (((𝐸 ↾s 𝐹) ∈ DivRing ∧ 𝑃 ∈
(Base‘(Poly1‘(𝐸 ↾s 𝐹))) ∧ 𝑃 ≠
(0g‘(Poly1‘(𝐸 ↾s 𝐹)))) → 𝑃 ∈ (Unic1p‘(𝐸 ↾s 𝐹))) |
33 | 5, 24, 29, 32 | syl3anc 1371 |
. . . 4
⊢ (𝜑 → 𝑃 ∈ (Unic1p‘(𝐸 ↾s 𝐹))) |
34 | | eqid 2732 |
. . . . 5
⊢
(Monic1p‘(𝐸 ↾s 𝐹)) = (Monic1p‘(𝐸 ↾s 𝐹)) |
35 | | eqid 2732 |
. . . . 5
⊢
(.r‘(Poly1‘(𝐸 ↾s 𝐹))) =
(.r‘(Poly1‘(𝐸 ↾s 𝐹))) |
36 | | eqid 2732 |
. . . . 5
⊢
(algSc‘(Poly1‘(𝐸 ↾s 𝐹))) =
(algSc‘(Poly1‘(𝐸 ↾s 𝐹))) |
37 | | eqid 2732 |
. . . . 5
⊢ (
deg1 ‘(𝐸
↾s 𝐹)) = (
deg1 ‘(𝐸
↾s 𝐹)) |
38 | | eqid 2732 |
. . . . 5
⊢
(invr‘(𝐸 ↾s 𝐹)) = (invr‘(𝐸 ↾s 𝐹)) |
39 | 31, 34, 16, 35, 36, 37, 38 | uc1pmon1p 25600 |
. . . 4
⊢ (((𝐸 ↾s 𝐹) ∈ Ring ∧ 𝑃 ∈
(Unic1p‘(𝐸
↾s 𝐹)))
→ (((algSc‘(Poly1‘(𝐸 ↾s 𝐹)))‘((invr‘(𝐸 ↾s 𝐹))‘((coe1‘𝑃)‘(( deg1
‘(𝐸
↾s 𝐹))‘𝑃))))(.r‘(Poly1‘(𝐸 ↾s 𝐹)))𝑃) ∈ (Monic1p‘(𝐸 ↾s 𝐹))) |
40 | 6, 33, 39 | syl2anc 584 |
. . 3
⊢ (𝜑 →
(((algSc‘(Poly1‘(𝐸 ↾s 𝐹)))‘((invr‘(𝐸 ↾s 𝐹))‘((coe1‘𝑃)‘(( deg1
‘(𝐸
↾s 𝐹))‘𝑃))))(.r‘(Poly1‘(𝐸 ↾s 𝐹)))𝑃) ∈ (Monic1p‘(𝐸 ↾s 𝐹))) |
41 | | simpr 485 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑝 =
(((algSc‘(Poly1‘(𝐸 ↾s 𝐹)))‘((invr‘(𝐸 ↾s 𝐹))‘((coe1‘𝑃)‘(( deg1
‘(𝐸
↾s 𝐹))‘𝑃))))(.r‘(Poly1‘(𝐸 ↾s 𝐹)))𝑃)) → 𝑝 = (((algSc‘(Poly1‘(𝐸 ↾s 𝐹)))‘((invr‘(𝐸 ↾s 𝐹))‘((coe1‘𝑃)‘(( deg1 ‘(𝐸 ↾s 𝐹))‘𝑃))))(.r‘(Poly1‘(𝐸 ↾s 𝐹)))𝑃)) |
42 | 41 | fveq2d 6883 |
. . . . 5
⊢ ((𝜑 ∧ 𝑝 =
(((algSc‘(Poly1‘(𝐸 ↾s 𝐹)))‘((invr‘(𝐸 ↾s 𝐹))‘((coe1‘𝑃)‘(( deg1
‘(𝐸
↾s 𝐹))‘𝑃))))(.r‘(Poly1‘(𝐸 ↾s 𝐹)))𝑃)) → (𝑂‘𝑝) = (𝑂‘(((algSc‘(Poly1‘(𝐸 ↾s 𝐹)))‘((invr‘(𝐸 ↾s 𝐹))‘((coe1‘𝑃)‘(( deg1 ‘(𝐸 ↾s 𝐹))‘𝑃))))(.r‘(Poly1‘(𝐸 ↾s 𝐹)))𝑃))) |
43 | 42 | fveq1d 6881 |
. . . 4
⊢ ((𝜑 ∧ 𝑝 =
(((algSc‘(Poly1‘(𝐸 ↾s 𝐹)))‘((invr‘(𝐸 ↾s 𝐹))‘((coe1‘𝑃)‘(( deg1
‘(𝐸
↾s 𝐹))‘𝑃))))(.r‘(Poly1‘(𝐸 ↾s 𝐹)))𝑃)) → ((𝑂‘𝑝)‘𝑋) = ((𝑂‘(((algSc‘(Poly1‘(𝐸 ↾s 𝐹)))‘((invr‘(𝐸 ↾s 𝐹))‘((coe1‘𝑃)‘(( deg1 ‘(𝐸 ↾s 𝐹))‘𝑃))))(.r‘(Poly1‘(𝐸 ↾s 𝐹)))𝑃))‘𝑋)) |
44 | 43 | eqeq1d 2734 |
. . 3
⊢ ((𝜑 ∧ 𝑝 =
(((algSc‘(Poly1‘(𝐸 ↾s 𝐹)))‘((invr‘(𝐸 ↾s 𝐹))‘((coe1‘𝑃)‘(( deg1
‘(𝐸
↾s 𝐹))‘𝑃))))(.r‘(Poly1‘(𝐸 ↾s 𝐹)))𝑃)) → (((𝑂‘𝑝)‘𝑋) = 0 ↔ ((𝑂‘(((algSc‘(Poly1‘(𝐸 ↾s 𝐹)))‘((invr‘(𝐸 ↾s 𝐹))‘((coe1‘𝑃)‘(( deg1 ‘(𝐸 ↾s 𝐹))‘𝑃))))(.r‘(Poly1‘(𝐸 ↾s 𝐹)))𝑃))‘𝑋) = 0 )) |
45 | | eqid 2732 |
. . . . 5
⊢
(.r‘𝐸) = (.r‘𝐸) |
46 | | eqid 2732 |
. . . . . . 7
⊢
(Scalar‘(Poly1‘(𝐸 ↾s 𝐹))) =
(Scalar‘(Poly1‘(𝐸 ↾s 𝐹))) |
47 | | fldsdrgfld 20365 |
. . . . . . . . . . 11
⊢ ((𝐸 ∈ Field ∧ 𝐹 ∈ (SubDRing‘𝐸)) → (𝐸 ↾s 𝐹) ∈ Field) |
48 | 8, 2, 47 | syl2anc 584 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐸 ↾s 𝐹) ∈ Field) |
49 | 48 | fldcrngd 20279 |
. . . . . . . . 9
⊢ (𝜑 → (𝐸 ↾s 𝐹) ∈ CRing) |
50 | 16 | ply1assa 21654 |
. . . . . . . . 9
⊢ ((𝐸 ↾s 𝐹) ∈ CRing →
(Poly1‘(𝐸
↾s 𝐹))
∈ AssAlg) |
51 | 49, 50 | syl 17 |
. . . . . . . 8
⊢ (𝜑 →
(Poly1‘(𝐸
↾s 𝐹))
∈ AssAlg) |
52 | | assaring 21351 |
. . . . . . . 8
⊢
((Poly1‘(𝐸 ↾s 𝐹)) ∈ AssAlg →
(Poly1‘(𝐸
↾s 𝐹))
∈ Ring) |
53 | 51, 52 | syl 17 |
. . . . . . 7
⊢ (𝜑 →
(Poly1‘(𝐸
↾s 𝐹))
∈ Ring) |
54 | 16 | ply1lmod 21707 |
. . . . . . . 8
⊢ ((𝐸 ↾s 𝐹) ∈ Ring →
(Poly1‘(𝐸
↾s 𝐹))
∈ LMod) |
55 | 6, 54 | syl 17 |
. . . . . . 7
⊢ (𝜑 →
(Poly1‘(𝐸
↾s 𝐹))
∈ LMod) |
56 | | eqid 2732 |
. . . . . . 7
⊢
(Base‘(Scalar‘(Poly1‘(𝐸 ↾s 𝐹)))) =
(Base‘(Scalar‘(Poly1‘(𝐸 ↾s 𝐹)))) |
57 | 36, 46, 53, 55, 56, 19 | asclf 21369 |
. . . . . 6
⊢ (𝜑 →
(algSc‘(Poly1‘(𝐸 ↾s 𝐹))):(Base‘(Scalar‘(Poly1‘(𝐸 ↾s 𝐹))))⟶(Base‘(Poly1‘(𝐸 ↾s 𝐹)))) |
58 | | eqid 2732 |
. . . . . . . 8
⊢
(Base‘(𝐸
↾s 𝐹)) =
(Base‘(𝐸
↾s 𝐹)) |
59 | | eqid 2732 |
. . . . . . . 8
⊢
(0g‘(𝐸 ↾s 𝐹)) = (0g‘(𝐸 ↾s 𝐹)) |
60 | 37, 16, 30, 19 | deg1nn0cl 25537 |
. . . . . . . . . 10
⊢ (((𝐸 ↾s 𝐹) ∈ Ring ∧ 𝑃 ∈
(Base‘(Poly1‘(𝐸 ↾s 𝐹))) ∧ 𝑃 ≠
(0g‘(Poly1‘(𝐸 ↾s 𝐹)))) → (( deg1 ‘(𝐸 ↾s 𝐹))‘𝑃) ∈
ℕ0) |
61 | 6, 24, 29, 60 | syl3anc 1371 |
. . . . . . . . 9
⊢ (𝜑 → (( deg1
‘(𝐸
↾s 𝐹))‘𝑃) ∈
ℕ0) |
62 | | eqid 2732 |
. . . . . . . . . 10
⊢
(coe1‘𝑃) = (coe1‘𝑃) |
63 | 62, 19, 16, 58 | coe1fvalcl 21667 |
. . . . . . . . 9
⊢ ((𝑃 ∈
(Base‘(Poly1‘(𝐸 ↾s 𝐹))) ∧ (( deg1 ‘(𝐸 ↾s 𝐹))‘𝑃) ∈ ℕ0) →
((coe1‘𝑃)‘(( deg1 ‘(𝐸 ↾s 𝐹))‘𝑃)) ∈ (Base‘(𝐸 ↾s 𝐹))) |
64 | 24, 61, 63 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 →
((coe1‘𝑃)‘(( deg1 ‘(𝐸 ↾s 𝐹))‘𝑃)) ∈ (Base‘(𝐸 ↾s 𝐹))) |
65 | 37, 16, 30, 19, 59, 62 | deg1ldg 25541 |
. . . . . . . . 9
⊢ (((𝐸 ↾s 𝐹) ∈ Ring ∧ 𝑃 ∈
(Base‘(Poly1‘(𝐸 ↾s 𝐹))) ∧ 𝑃 ≠
(0g‘(Poly1‘(𝐸 ↾s 𝐹)))) → ((coe1‘𝑃)‘(( deg1
‘(𝐸
↾s 𝐹))‘𝑃)) ≠ (0g‘(𝐸 ↾s 𝐹))) |
66 | 6, 24, 29, 65 | syl3anc 1371 |
. . . . . . . 8
⊢ (𝜑 →
((coe1‘𝑃)‘(( deg1 ‘(𝐸 ↾s 𝐹))‘𝑃)) ≠ (0g‘(𝐸 ↾s 𝐹))) |
67 | 58, 59, 38, 5, 64, 66 | drnginvrcld 20290 |
. . . . . . 7
⊢ (𝜑 →
((invr‘(𝐸
↾s 𝐹))‘((coe1‘𝑃)‘(( deg1
‘(𝐸
↾s 𝐹))‘𝑃))) ∈ (Base‘(𝐸 ↾s 𝐹))) |
68 | 16 | ply1sca 21708 |
. . . . . . . . 9
⊢ ((𝐸 ↾s 𝐹) ∈ Field → (𝐸 ↾s 𝐹) =
(Scalar‘(Poly1‘(𝐸 ↾s 𝐹)))) |
69 | 48, 68 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (𝐸 ↾s 𝐹) =
(Scalar‘(Poly1‘(𝐸 ↾s 𝐹)))) |
70 | 69 | fveq2d 6883 |
. . . . . . 7
⊢ (𝜑 → (Base‘(𝐸 ↾s 𝐹)) =
(Base‘(Scalar‘(Poly1‘(𝐸 ↾s 𝐹))))) |
71 | 67, 70 | eleqtrd 2835 |
. . . . . 6
⊢ (𝜑 →
((invr‘(𝐸
↾s 𝐹))‘((coe1‘𝑃)‘(( deg1
‘(𝐸
↾s 𝐹))‘𝑃))) ∈
(Base‘(Scalar‘(Poly1‘(𝐸 ↾s 𝐹))))) |
72 | 57, 71 | ffvelcdmd 7073 |
. . . . 5
⊢ (𝜑 →
((algSc‘(Poly1‘(𝐸 ↾s 𝐹)))‘((invr‘(𝐸 ↾s 𝐹))‘((coe1‘𝑃)‘(( deg1
‘(𝐸
↾s 𝐹))‘𝑃)))) ∈
(Base‘(Poly1‘(𝐸 ↾s 𝐹)))) |
73 | 12, 13, 16, 15, 19, 35, 45, 9, 11, 72, 24, 1 | evls1muld 32556 |
. . . 4
⊢ (𝜑 → ((𝑂‘(((algSc‘(Poly1‘(𝐸 ↾s 𝐹)))‘((invr‘(𝐸 ↾s 𝐹))‘((coe1‘𝑃)‘(( deg1 ‘(𝐸 ↾s 𝐹))‘𝑃))))(.r‘(Poly1‘(𝐸 ↾s 𝐹)))𝑃))‘𝑋) = (((𝑂‘((algSc‘(Poly1‘(𝐸 ↾s 𝐹)))‘((invr‘(𝐸 ↾s 𝐹))‘((coe1‘𝑃)‘(( deg1 ‘(𝐸 ↾s 𝐹))‘𝑃)))))‘𝑋)(.r‘𝐸)((𝑂‘𝑃)‘𝑋))) |
74 | | irngnzply1lem.3 |
. . . . 5
⊢ (𝜑 → ((𝑂‘𝑃)‘𝑋) = 0 ) |
75 | 74 | oveq2d 7410 |
. . . 4
⊢ (𝜑 → (((𝑂‘((algSc‘(Poly1‘(𝐸 ↾s 𝐹)))‘((invr‘(𝐸 ↾s 𝐹))‘((coe1‘𝑃)‘(( deg1 ‘(𝐸 ↾s 𝐹))‘𝑃)))))‘𝑋)(.r‘𝐸)((𝑂‘𝑃)‘𝑋)) = (((𝑂‘((algSc‘(Poly1‘(𝐸 ↾s 𝐹)))‘((invr‘(𝐸 ↾s 𝐹))‘((coe1‘𝑃)‘(( deg1 ‘(𝐸 ↾s 𝐹))‘𝑃)))))‘𝑋)(.r‘𝐸) 0 )) |
76 | 9 | crngringd 20029 |
. . . . 5
⊢ (𝜑 → 𝐸 ∈ Ring) |
77 | 13 | fvexi 6893 |
. . . . . . . 8
⊢ 𝐵 ∈ V |
78 | 77 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ V) |
79 | 22, 72 | ffvelcdmd 7073 |
. . . . . . 7
⊢ (𝜑 → (𝑂‘((algSc‘(Poly1‘(𝐸 ↾s 𝐹)))‘((invr‘(𝐸 ↾s 𝐹))‘((coe1‘𝑃)‘(( deg1 ‘(𝐸 ↾s 𝐹))‘𝑃))))) ∈ (Base‘(𝐸 ↑s 𝐵))) |
80 | 14, 13, 20, 8, 78, 79 | pwselbas 17419 |
. . . . . 6
⊢ (𝜑 → (𝑂‘((algSc‘(Poly1‘(𝐸 ↾s 𝐹)))‘((invr‘(𝐸 ↾s 𝐹))‘((coe1‘𝑃)‘(( deg1 ‘(𝐸 ↾s 𝐹))‘𝑃))))):𝐵⟶𝐵) |
81 | 80, 1 | ffvelcdmd 7073 |
. . . . 5
⊢ (𝜑 → ((𝑂‘((algSc‘(Poly1‘(𝐸 ↾s 𝐹)))‘((invr‘(𝐸 ↾s 𝐹))‘((coe1‘𝑃)‘(( deg1 ‘(𝐸 ↾s 𝐹))‘𝑃)))))‘𝑋) ∈ 𝐵) |
82 | | irngnzply1.1 |
. . . . . 6
⊢ 0 =
(0g‘𝐸) |
83 | 13, 45, 82 | ringrz 20067 |
. . . . 5
⊢ ((𝐸 ∈ Ring ∧ ((𝑂‘((algSc‘(Poly1‘(𝐸 ↾s 𝐹)))‘((invr‘(𝐸 ↾s 𝐹))‘((coe1‘𝑃)‘(( deg1 ‘(𝐸 ↾s 𝐹))‘𝑃)))))‘𝑋) ∈ 𝐵) → (((𝑂‘((algSc‘(Poly1‘(𝐸 ↾s 𝐹)))‘((invr‘(𝐸 ↾s 𝐹))‘((coe1‘𝑃)‘(( deg1 ‘(𝐸 ↾s 𝐹))‘𝑃)))))‘𝑋)(.r‘𝐸) 0 ) = 0 ) |
84 | 76, 81, 83 | syl2anc 584 |
. . . 4
⊢ (𝜑 → (((𝑂‘((algSc‘(Poly1‘(𝐸 ↾s 𝐹)))‘((invr‘(𝐸 ↾s 𝐹))‘((coe1‘𝑃)‘(( deg1 ‘(𝐸 ↾s 𝐹))‘𝑃)))))‘𝑋)(.r‘𝐸) 0 ) = 0 ) |
85 | 73, 75, 84 | 3eqtrd 2776 |
. . 3
⊢ (𝜑 → ((𝑂‘(((algSc‘(Poly1‘(𝐸 ↾s 𝐹)))‘((invr‘(𝐸 ↾s 𝐹))‘((coe1‘𝑃)‘(( deg1 ‘(𝐸 ↾s 𝐹))‘𝑃))))(.r‘(Poly1‘(𝐸 ↾s 𝐹)))𝑃))‘𝑋) = 0 ) |
86 | 40, 44, 85 | rspcedvd 3612 |
. 2
⊢ (𝜑 → ∃𝑝 ∈ (Monic1p‘(𝐸 ↾s 𝐹))((𝑂‘𝑝)‘𝑋) = 0 ) |
87 | 12, 15, 13, 82, 9, 11 | elirng 32652 |
. 2
⊢ (𝜑 → (𝑋 ∈ (𝐸 IntgRing 𝐹) ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑝 ∈ (Monic1p‘(𝐸 ↾s 𝐹))((𝑂‘𝑝)‘𝑋) = 0 ))) |
88 | 1, 86, 87 | mpbir2and 711 |
1
⊢ (𝜑 → 𝑋 ∈ (𝐸 IntgRing 𝐹)) |