| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ply1annig1p | Structured version Visualization version GIF version | ||
| Description: The ideal 𝑄 of polynomials annihilating an element 𝐴 is generated by the ideal's canonical generator. (Contributed by Thierry Arnoux, 9-Feb-2025.) |
| Ref | Expression |
|---|---|
| ply1annig1p.o | ⊢ 𝑂 = (𝐸 evalSub1 𝐹) |
| ply1annig1p.p | ⊢ 𝑃 = (Poly1‘(𝐸 ↾s 𝐹)) |
| ply1annig1p.b | ⊢ 𝐵 = (Base‘𝐸) |
| ply1annig1p.e | ⊢ (𝜑 → 𝐸 ∈ Field) |
| ply1annig1p.f | ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) |
| ply1annig1p.a | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| ply1annig1p.0 | ⊢ 0 = (0g‘𝐸) |
| ply1annig1p.q | ⊢ 𝑄 = {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 } |
| ply1annig1p.k | ⊢ 𝐾 = (RSpan‘𝑃) |
| ply1annig1p.g | ⊢ 𝐺 = (idlGen1p‘(𝐸 ↾s 𝐹)) |
| Ref | Expression |
|---|---|
| ply1annig1p | ⊢ (𝜑 → 𝑄 = (𝐾‘{(𝐺‘𝑄)})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1annig1p.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) | |
| 2 | issdrg 20733 | . . . 4 ⊢ (𝐹 ∈ (SubDRing‘𝐸) ↔ (𝐸 ∈ DivRing ∧ 𝐹 ∈ (SubRing‘𝐸) ∧ (𝐸 ↾s 𝐹) ∈ DivRing)) | |
| 3 | 1, 2 | sylib 218 | . . 3 ⊢ (𝜑 → (𝐸 ∈ DivRing ∧ 𝐹 ∈ (SubRing‘𝐸) ∧ (𝐸 ↾s 𝐹) ∈ DivRing)) |
| 4 | 3 | simp3d 1144 | . 2 ⊢ (𝜑 → (𝐸 ↾s 𝐹) ∈ DivRing) |
| 5 | ply1annig1p.o | . . 3 ⊢ 𝑂 = (𝐸 evalSub1 𝐹) | |
| 6 | ply1annig1p.p | . . 3 ⊢ 𝑃 = (Poly1‘(𝐸 ↾s 𝐹)) | |
| 7 | ply1annig1p.b | . . 3 ⊢ 𝐵 = (Base‘𝐸) | |
| 8 | ply1annig1p.e | . . . 4 ⊢ (𝜑 → 𝐸 ∈ Field) | |
| 9 | 8 | fldcrngd 20687 | . . 3 ⊢ (𝜑 → 𝐸 ∈ CRing) |
| 10 | 3 | simp2d 1143 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (SubRing‘𝐸)) |
| 11 | ply1annig1p.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 12 | ply1annig1p.0 | . . 3 ⊢ 0 = (0g‘𝐸) | |
| 13 | ply1annig1p.q | . . 3 ⊢ 𝑄 = {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 } | |
| 14 | 5, 6, 7, 9, 10, 11, 12, 13 | ply1annidl 33652 | . 2 ⊢ (𝜑 → 𝑄 ∈ (LIdeal‘𝑃)) |
| 15 | ply1annig1p.g | . . 3 ⊢ 𝐺 = (idlGen1p‘(𝐸 ↾s 𝐹)) | |
| 16 | eqid 2734 | . . 3 ⊢ (LIdeal‘𝑃) = (LIdeal‘𝑃) | |
| 17 | ply1annig1p.k | . . 3 ⊢ 𝐾 = (RSpan‘𝑃) | |
| 18 | 6, 15, 16, 17 | ig1prsp 26123 | . 2 ⊢ (((𝐸 ↾s 𝐹) ∈ DivRing ∧ 𝑄 ∈ (LIdeal‘𝑃)) → 𝑄 = (𝐾‘{(𝐺‘𝑄)})) |
| 19 | 4, 14, 18 | syl2anc 584 | 1 ⊢ (𝜑 → 𝑄 = (𝐾‘{(𝐺‘𝑄)})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 {crab 3413 {csn 4599 dom cdm 5651 ‘cfv 6527 (class class class)co 7399 Basecbs 17213 ↾s cress 17236 0gc0g 17438 SubRingcsubrg 20514 DivRingcdr 20674 Fieldcfield 20675 SubDRingcsdrg 20731 LIdealclidl 21152 RSpancrsp 21153 Poly1cpl1 22097 evalSub1 ces1 22236 idlGen1pcig1p 26072 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5246 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 ax-cnex 11177 ax-resscn 11178 ax-1cn 11179 ax-icn 11180 ax-addcl 11181 ax-addrcl 11182 ax-mulcl 11183 ax-mulrcl 11184 ax-mulcom 11185 ax-addass 11186 ax-mulass 11187 ax-distr 11188 ax-i2m1 11189 ax-1ne0 11190 ax-1rid 11191 ax-rnegex 11192 ax-rrecex 11193 ax-cnre 11194 ax-pre-lttri 11195 ax-pre-lttrn 11196 ax-pre-ltadd 11197 ax-pre-mulgt0 11198 ax-pre-sup 11199 ax-addf 11200 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-tp 4604 df-op 4606 df-uni 4881 df-int 4920 df-iun 4966 df-iin 4967 df-br 5117 df-opab 5179 df-mpt 5199 df-tr 5227 df-id 5545 df-eprel 5550 df-po 5558 df-so 5559 df-fr 5603 df-se 5604 df-we 5605 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-pred 6287 df-ord 6352 df-on 6353 df-lim 6354 df-suc 6355 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-isom 6536 df-riota 7356 df-ov 7402 df-oprab 7403 df-mpo 7404 df-of 7665 df-ofr 7666 df-om 7856 df-1st 7982 df-2nd 7983 df-supp 8154 df-tpos 8219 df-frecs 8274 df-wrecs 8305 df-recs 8379 df-rdg 8418 df-1o 8474 df-2o 8475 df-er 8713 df-map 8836 df-pm 8837 df-ixp 8906 df-en 8954 df-dom 8955 df-sdom 8956 df-fin 8957 df-fsupp 9368 df-sup 9448 df-inf 9449 df-oi 9516 df-card 9945 df-pnf 11263 df-mnf 11264 df-xr 11265 df-ltxr 11266 df-le 11267 df-sub 11460 df-neg 11461 df-nn 12233 df-2 12295 df-3 12296 df-4 12297 df-5 12298 df-6 12299 df-7 12300 df-8 12301 df-9 12302 df-n0 12494 df-z 12581 df-dec 12701 df-uz 12845 df-fz 13514 df-fzo 13661 df-seq 14009 df-hash 14337 df-struct 17151 df-sets 17168 df-slot 17186 df-ndx 17198 df-base 17214 df-ress 17237 df-plusg 17269 df-mulr 17270 df-starv 17271 df-sca 17272 df-vsca 17273 df-ip 17274 df-tset 17275 df-ple 17276 df-ds 17278 df-unif 17279 df-hom 17280 df-cco 17281 df-0g 17440 df-gsum 17441 df-prds 17446 df-pws 17448 df-mre 17583 df-mrc 17584 df-acs 17586 df-mgm 18603 df-sgrp 18682 df-mnd 18698 df-mhm 18746 df-submnd 18747 df-grp 18904 df-minusg 18905 df-sbg 18906 df-mulg 19036 df-subg 19091 df-ghm 19181 df-cntz 19285 df-cmn 19748 df-abl 19749 df-mgp 20086 df-rng 20098 df-ur 20127 df-srg 20132 df-ring 20180 df-cring 20181 df-oppr 20282 df-dvdsr 20302 df-unit 20303 df-invr 20333 df-rhm 20417 df-subrng 20491 df-subrg 20515 df-rlreg 20639 df-drng 20676 df-field 20677 df-sdrg 20732 df-lmod 20804 df-lss 20874 df-lsp 20914 df-sra 21116 df-rgmod 21117 df-lidl 21154 df-rsp 21155 df-cnfld 21301 df-assa 21798 df-asp 21799 df-ascl 21800 df-psr 21854 df-mvr 21855 df-mpl 21856 df-opsr 21858 df-evls 22017 df-evl 22018 df-psr1 22100 df-vr1 22101 df-ply1 22102 df-coe1 22103 df-evls1 22238 df-evl1 22239 df-mdeg 25997 df-deg1 25998 df-mon1 26073 df-uc1p 26074 df-q1p 26075 df-r1p 26076 df-ig1p 26077 |
| This theorem is referenced by: irngnminplynz 33662 minplym1p 33663 minplynzm1p 33664 algextdeglem4 33670 algextdeglem5 33671 |
| Copyright terms: Public domain | W3C validator |