| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ply1annig1p | Structured version Visualization version GIF version | ||
| Description: The ideal 𝑄 of polynomials annihilating an element 𝐴 is generated by the ideal's canonical generator. (Contributed by Thierry Arnoux, 9-Feb-2025.) |
| Ref | Expression |
|---|---|
| ply1annig1p.o | ⊢ 𝑂 = (𝐸 evalSub1 𝐹) |
| ply1annig1p.p | ⊢ 𝑃 = (Poly1‘(𝐸 ↾s 𝐹)) |
| ply1annig1p.b | ⊢ 𝐵 = (Base‘𝐸) |
| ply1annig1p.e | ⊢ (𝜑 → 𝐸 ∈ Field) |
| ply1annig1p.f | ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) |
| ply1annig1p.a | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| ply1annig1p.0 | ⊢ 0 = (0g‘𝐸) |
| ply1annig1p.q | ⊢ 𝑄 = {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 } |
| ply1annig1p.k | ⊢ 𝐾 = (RSpan‘𝑃) |
| ply1annig1p.g | ⊢ 𝐺 = (idlGen1p‘(𝐸 ↾s 𝐹)) |
| Ref | Expression |
|---|---|
| ply1annig1p | ⊢ (𝜑 → 𝑄 = (𝐾‘{(𝐺‘𝑄)})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1annig1p.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) | |
| 2 | issdrg 20710 | . . . 4 ⊢ (𝐹 ∈ (SubDRing‘𝐸) ↔ (𝐸 ∈ DivRing ∧ 𝐹 ∈ (SubRing‘𝐸) ∧ (𝐸 ↾s 𝐹) ∈ DivRing)) | |
| 3 | 1, 2 | sylib 218 | . . 3 ⊢ (𝜑 → (𝐸 ∈ DivRing ∧ 𝐹 ∈ (SubRing‘𝐸) ∧ (𝐸 ↾s 𝐹) ∈ DivRing)) |
| 4 | 3 | simp3d 1144 | . 2 ⊢ (𝜑 → (𝐸 ↾s 𝐹) ∈ DivRing) |
| 5 | ply1annig1p.o | . . 3 ⊢ 𝑂 = (𝐸 evalSub1 𝐹) | |
| 6 | ply1annig1p.p | . . 3 ⊢ 𝑃 = (Poly1‘(𝐸 ↾s 𝐹)) | |
| 7 | ply1annig1p.b | . . 3 ⊢ 𝐵 = (Base‘𝐸) | |
| 8 | ply1annig1p.e | . . . 4 ⊢ (𝜑 → 𝐸 ∈ Field) | |
| 9 | 8 | fldcrngd 20664 | . . 3 ⊢ (𝜑 → 𝐸 ∈ CRing) |
| 10 | 3 | simp2d 1143 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (SubRing‘𝐸)) |
| 11 | ply1annig1p.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 12 | ply1annig1p.0 | . . 3 ⊢ 0 = (0g‘𝐸) | |
| 13 | ply1annig1p.q | . . 3 ⊢ 𝑄 = {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 } | |
| 14 | 5, 6, 7, 9, 10, 11, 12, 13 | ply1annidl 33687 | . 2 ⊢ (𝜑 → 𝑄 ∈ (LIdeal‘𝑃)) |
| 15 | ply1annig1p.g | . . 3 ⊢ 𝐺 = (idlGen1p‘(𝐸 ↾s 𝐹)) | |
| 16 | eqid 2729 | . . 3 ⊢ (LIdeal‘𝑃) = (LIdeal‘𝑃) | |
| 17 | ply1annig1p.k | . . 3 ⊢ 𝐾 = (RSpan‘𝑃) | |
| 18 | 6, 15, 16, 17 | ig1prsp 26121 | . 2 ⊢ (((𝐸 ↾s 𝐹) ∈ DivRing ∧ 𝑄 ∈ (LIdeal‘𝑃)) → 𝑄 = (𝐾‘{(𝐺‘𝑄)})) |
| 19 | 4, 14, 18 | syl2anc 584 | 1 ⊢ (𝜑 → 𝑄 = (𝐾‘{(𝐺‘𝑄)})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {crab 3402 {csn 4585 dom cdm 5631 ‘cfv 6500 (class class class)co 7370 Basecbs 17157 ↾s cress 17178 0gc0g 17380 SubRingcsubrg 20491 DivRingcdr 20651 Fieldcfield 20652 SubDRingcsdrg 20708 LIdealclidl 21150 RSpancrsp 21151 Poly1cpl1 22096 evalSub1 ces1 22235 idlGen1pcig1p 26070 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7692 ax-cnex 11103 ax-resscn 11104 ax-1cn 11105 ax-icn 11106 ax-addcl 11107 ax-addrcl 11108 ax-mulcl 11109 ax-mulrcl 11110 ax-mulcom 11111 ax-addass 11112 ax-mulass 11113 ax-distr 11114 ax-i2m1 11115 ax-1ne0 11116 ax-1rid 11117 ax-rnegex 11118 ax-rrecex 11119 ax-cnre 11120 ax-pre-lttri 11121 ax-pre-lttrn 11122 ax-pre-ltadd 11123 ax-pre-mulgt0 11124 ax-pre-sup 11125 ax-addf 11126 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6263 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6453 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-isom 6509 df-riota 7327 df-ov 7373 df-oprab 7374 df-mpo 7375 df-of 7634 df-ofr 7635 df-om 7824 df-1st 7948 df-2nd 7949 df-supp 8118 df-tpos 8183 df-frecs 8238 df-wrecs 8269 df-recs 8318 df-rdg 8356 df-1o 8412 df-2o 8413 df-er 8649 df-map 8779 df-pm 8780 df-ixp 8849 df-en 8897 df-dom 8898 df-sdom 8899 df-fin 8900 df-fsupp 9290 df-sup 9370 df-inf 9371 df-oi 9440 df-card 9871 df-pnf 11189 df-mnf 11190 df-xr 11191 df-ltxr 11192 df-le 11193 df-sub 11386 df-neg 11387 df-nn 12166 df-2 12228 df-3 12229 df-4 12230 df-5 12231 df-6 12232 df-7 12233 df-8 12234 df-9 12235 df-n0 12422 df-z 12509 df-dec 12629 df-uz 12773 df-fz 13448 df-fzo 13595 df-seq 13946 df-hash 14275 df-struct 17095 df-sets 17112 df-slot 17130 df-ndx 17142 df-base 17158 df-ress 17179 df-plusg 17211 df-mulr 17212 df-starv 17213 df-sca 17214 df-vsca 17215 df-ip 17216 df-tset 17217 df-ple 17218 df-ds 17220 df-unif 17221 df-hom 17222 df-cco 17223 df-0g 17382 df-gsum 17383 df-prds 17388 df-pws 17390 df-mre 17525 df-mrc 17526 df-acs 17528 df-mgm 18551 df-sgrp 18630 df-mnd 18646 df-mhm 18694 df-submnd 18695 df-grp 18852 df-minusg 18853 df-sbg 18854 df-mulg 18984 df-subg 19039 df-ghm 19129 df-cntz 19233 df-cmn 19698 df-abl 19699 df-mgp 20063 df-rng 20075 df-ur 20104 df-srg 20109 df-ring 20157 df-cring 20158 df-oppr 20259 df-dvdsr 20279 df-unit 20280 df-invr 20310 df-rhm 20394 df-subrng 20468 df-subrg 20492 df-rlreg 20616 df-drng 20653 df-field 20654 df-sdrg 20709 df-lmod 20802 df-lss 20872 df-lsp 20912 df-sra 21114 df-rgmod 21115 df-lidl 21152 df-rsp 21153 df-cnfld 21299 df-assa 21797 df-asp 21798 df-ascl 21799 df-psr 21853 df-mvr 21854 df-mpl 21855 df-opsr 21857 df-evls 22016 df-evl 22017 df-psr1 22099 df-vr1 22100 df-ply1 22101 df-coe1 22102 df-evls1 22237 df-evl1 22238 df-mdeg 25995 df-deg1 25996 df-mon1 26071 df-uc1p 26072 df-q1p 26073 df-r1p 26074 df-ig1p 26075 |
| This theorem is referenced by: irngnminplynz 33697 minplym1p 33698 minplynzm1p 33699 algextdeglem4 33705 algextdeglem5 33706 |
| Copyright terms: Public domain | W3C validator |