|   | Mathbox for Thierry Arnoux | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ply1annprmidl | Structured version Visualization version GIF version | ||
| Description: The set 𝑄 of polynomials annihilating an element 𝐴 is a prime ideal. (Contributed by Thierry Arnoux, 9-Feb-2025.) | 
| Ref | Expression | 
|---|---|
| ply1annig1p.o | ⊢ 𝑂 = (𝐸 evalSub1 𝐹) | 
| ply1annig1p.p | ⊢ 𝑃 = (Poly1‘(𝐸 ↾s 𝐹)) | 
| ply1annig1p.b | ⊢ 𝐵 = (Base‘𝐸) | 
| ply1annig1p.e | ⊢ (𝜑 → 𝐸 ∈ Field) | 
| ply1annig1p.f | ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) | 
| ply1annig1p.a | ⊢ (𝜑 → 𝐴 ∈ 𝐵) | 
| ply1annig1p.0 | ⊢ 0 = (0g‘𝐸) | 
| ply1annig1p.q | ⊢ 𝑄 = {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 } | 
| Ref | Expression | 
|---|---|
| ply1annprmidl | ⊢ (𝜑 → 𝑄 ∈ (PrmIdeal‘𝑃)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ply1annig1p.o | . . 3 ⊢ 𝑂 = (𝐸 evalSub1 𝐹) | |
| 2 | ply1annig1p.p | . . 3 ⊢ 𝑃 = (Poly1‘(𝐸 ↾s 𝐹)) | |
| 3 | ply1annig1p.b | . . 3 ⊢ 𝐵 = (Base‘𝐸) | |
| 4 | ply1annig1p.e | . . . 4 ⊢ (𝜑 → 𝐸 ∈ Field) | |
| 5 | 4 | fldcrngd 20743 | . . 3 ⊢ (𝜑 → 𝐸 ∈ CRing) | 
| 6 | ply1annig1p.f | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) | |
| 7 | issdrg 20790 | . . . . 5 ⊢ (𝐹 ∈ (SubDRing‘𝐸) ↔ (𝐸 ∈ DivRing ∧ 𝐹 ∈ (SubRing‘𝐸) ∧ (𝐸 ↾s 𝐹) ∈ DivRing)) | |
| 8 | 6, 7 | sylib 218 | . . . 4 ⊢ (𝜑 → (𝐸 ∈ DivRing ∧ 𝐹 ∈ (SubRing‘𝐸) ∧ (𝐸 ↾s 𝐹) ∈ DivRing)) | 
| 9 | 8 | simp2d 1143 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (SubRing‘𝐸)) | 
| 10 | ply1annig1p.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 11 | ply1annig1p.0 | . . 3 ⊢ 0 = (0g‘𝐸) | |
| 12 | ply1annig1p.q | . . 3 ⊢ 𝑄 = {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 } | |
| 13 | eqid 2736 | . . 3 ⊢ (𝑝 ∈ (Base‘𝑃) ↦ ((𝑂‘𝑝)‘𝐴)) = (𝑝 ∈ (Base‘𝑃) ↦ ((𝑂‘𝑝)‘𝐴)) | |
| 14 | 1, 2, 3, 5, 9, 10, 11, 12, 13 | ply1annidllem 33745 | . 2 ⊢ (𝜑 → 𝑄 = (◡(𝑝 ∈ (Base‘𝑃) ↦ ((𝑂‘𝑝)‘𝐴)) “ { 0 })) | 
| 15 | eqid 2736 | . . . 4 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
| 16 | 1, 2, 3, 15, 5, 9, 10, 13 | evls1maprhm 22381 | . . 3 ⊢ (𝜑 → (𝑝 ∈ (Base‘𝑃) ↦ ((𝑂‘𝑝)‘𝐴)) ∈ (𝑃 RingHom 𝐸)) | 
| 17 | fldidom 20772 | . . . . 5 ⊢ (𝐸 ∈ Field → 𝐸 ∈ IDomn) | |
| 18 | 11 | prmidl0 33479 | . . . . . 6 ⊢ ((𝐸 ∈ CRing ∧ { 0 } ∈ (PrmIdeal‘𝐸)) ↔ 𝐸 ∈ IDomn) | 
| 19 | 18 | biimpri 228 | . . . . 5 ⊢ (𝐸 ∈ IDomn → (𝐸 ∈ CRing ∧ { 0 } ∈ (PrmIdeal‘𝐸))) | 
| 20 | 4, 17, 19 | 3syl 18 | . . . 4 ⊢ (𝜑 → (𝐸 ∈ CRing ∧ { 0 } ∈ (PrmIdeal‘𝐸))) | 
| 21 | 20 | simprd 495 | . . 3 ⊢ (𝜑 → { 0 } ∈ (PrmIdeal‘𝐸)) | 
| 22 | eqid 2736 | . . . 4 ⊢ (PrmIdeal‘𝑃) = (PrmIdeal‘𝑃) | |
| 23 | 22 | rhmpreimaprmidl 33480 | . . 3 ⊢ (((𝐸 ∈ CRing ∧ (𝑝 ∈ (Base‘𝑃) ↦ ((𝑂‘𝑝)‘𝐴)) ∈ (𝑃 RingHom 𝐸)) ∧ { 0 } ∈ (PrmIdeal‘𝐸)) → (◡(𝑝 ∈ (Base‘𝑃) ↦ ((𝑂‘𝑝)‘𝐴)) “ { 0 }) ∈ (PrmIdeal‘𝑃)) | 
| 24 | 5, 16, 21, 23 | syl21anc 837 | . 2 ⊢ (𝜑 → (◡(𝑝 ∈ (Base‘𝑃) ↦ ((𝑂‘𝑝)‘𝐴)) “ { 0 }) ∈ (PrmIdeal‘𝑃)) | 
| 25 | 14, 24 | eqeltrd 2840 | 1 ⊢ (𝜑 → 𝑄 ∈ (PrmIdeal‘𝑃)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 {crab 3435 {csn 4625 ↦ cmpt 5224 ◡ccnv 5683 dom cdm 5684 “ cima 5687 ‘cfv 6560 (class class class)co 7432 Basecbs 17248 ↾s cress 17275 0gc0g 17485 CRingccrg 20232 RingHom crh 20470 SubRingcsubrg 20570 IDomncidom 20694 DivRingcdr 20730 Fieldcfield 20731 SubDRingcsdrg 20788 Poly1cpl1 22179 evalSub1 ces1 22318 PrmIdealcprmidl 33464 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-iin 4993 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-se 5637 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-isom 6569 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-of 7698 df-ofr 7699 df-om 7889 df-1st 8015 df-2nd 8016 df-supp 8187 df-tpos 8252 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-2o 8508 df-oadd 8511 df-er 8746 df-map 8869 df-pm 8870 df-ixp 8939 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-fsupp 9403 df-sup 9483 df-oi 9551 df-dju 9942 df-card 9980 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-2 12330 df-3 12331 df-4 12332 df-5 12333 df-6 12334 df-7 12335 df-8 12336 df-9 12337 df-n0 12529 df-xnn0 12602 df-z 12616 df-dec 12736 df-uz 12880 df-fz 13549 df-fzo 13696 df-seq 14044 df-hash 14371 df-struct 17185 df-sets 17202 df-slot 17220 df-ndx 17232 df-base 17249 df-ress 17276 df-plusg 17311 df-mulr 17312 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-hom 17322 df-cco 17323 df-0g 17487 df-gsum 17488 df-prds 17493 df-pws 17495 df-mre 17630 df-mrc 17631 df-acs 17633 df-mgm 18654 df-sgrp 18733 df-mnd 18749 df-mhm 18797 df-submnd 18798 df-grp 18955 df-minusg 18956 df-sbg 18957 df-mulg 19087 df-subg 19142 df-ghm 19232 df-cntz 19336 df-cmn 19801 df-abl 19802 df-mgp 20139 df-rng 20151 df-ur 20180 df-srg 20185 df-ring 20233 df-cring 20234 df-oppr 20335 df-dvdsr 20358 df-unit 20359 df-invr 20389 df-rhm 20473 df-nzr 20514 df-subrng 20547 df-subrg 20571 df-rlreg 20695 df-domn 20696 df-idom 20697 df-drng 20732 df-field 20733 df-sdrg 20789 df-lmod 20861 df-lss 20931 df-lsp 20971 df-sra 21173 df-rgmod 21174 df-lidl 21219 df-rsp 21220 df-assa 21874 df-asp 21875 df-ascl 21876 df-psr 21930 df-mvr 21931 df-mpl 21932 df-opsr 21934 df-evls 22099 df-evl 22100 df-psr1 22182 df-vr1 22183 df-ply1 22184 df-coe1 22185 df-evls1 22320 df-evl1 22321 df-prmidl 33465 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |