Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  irngnminplynz Structured version   Visualization version   GIF version

Theorem irngnminplynz 33702
Description: Integral elements have nonzero minimal polynomials. (Contributed by Thierry Arnoux, 22-Mar-2025.)
Hypotheses
Ref Expression
irngnminplynz.z 𝑍 = (0g‘(Poly1𝐸))
irngnminplynz.e (𝜑𝐸 ∈ Field)
irngnminplynz.f (𝜑𝐹 ∈ (SubDRing‘𝐸))
irngnminplynz.m 𝑀 = (𝐸 minPoly 𝐹)
irngnminplynz.a (𝜑𝐴 ∈ (𝐸 IntgRing 𝐹))
Assertion
Ref Expression
irngnminplynz (𝜑 → (𝑀𝐴) ≠ 𝑍)

Proof of Theorem irngnminplynz
Dummy variables 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 irngnminplynz.f . . . . . 6 (𝜑𝐹 ∈ (SubDRing‘𝐸))
2 sdrgsubrg 20700 . . . . . 6 (𝐹 ∈ (SubDRing‘𝐸) → 𝐹 ∈ (SubRing‘𝐸))
31, 2syl 17 . . . . 5 (𝜑𝐹 ∈ (SubRing‘𝐸))
4 eqid 2729 . . . . . 6 (𝐸s 𝐹) = (𝐸s 𝐹)
54subrgring 20483 . . . . 5 (𝐹 ∈ (SubRing‘𝐸) → (𝐸s 𝐹) ∈ Ring)
63, 5syl 17 . . . 4 (𝜑 → (𝐸s 𝐹) ∈ Ring)
7 eqid 2729 . . . . 5 (Poly1‘(𝐸s 𝐹)) = (Poly1‘(𝐸s 𝐹))
87ply1ring 22132 . . . 4 ((𝐸s 𝐹) ∈ Ring → (Poly1‘(𝐸s 𝐹)) ∈ Ring)
96, 8syl 17 . . 3 (𝜑 → (Poly1‘(𝐸s 𝐹)) ∈ Ring)
10 eqid 2729 . . . . . 6 (𝐸 evalSub1 𝐹) = (𝐸 evalSub1 𝐹)
11 eqid 2729 . . . . . 6 (Base‘𝐸) = (Base‘𝐸)
12 irngnminplynz.e . . . . . . 7 (𝜑𝐸 ∈ Field)
1312fldcrngd 20651 . . . . . 6 (𝜑𝐸 ∈ CRing)
14 eqid 2729 . . . . . . . 8 (0g𝐸) = (0g𝐸)
1510, 4, 11, 14, 13, 3irngssv 33683 . . . . . . 7 (𝜑 → (𝐸 IntgRing 𝐹) ⊆ (Base‘𝐸))
16 irngnminplynz.a . . . . . . 7 (𝜑𝐴 ∈ (𝐸 IntgRing 𝐹))
1715, 16sseldd 3947 . . . . . 6 (𝜑𝐴 ∈ (Base‘𝐸))
18 eqid 2729 . . . . . 6 {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g𝐸)} = {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g𝐸)}
1910, 7, 11, 13, 3, 17, 14, 18ply1annidl 33692 . . . . 5 (𝜑 → {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g𝐸)} ∈ (LIdeal‘(Poly1‘(𝐸s 𝐹))))
20 eqid 2729 . . . . . 6 (Base‘(Poly1‘(𝐸s 𝐹))) = (Base‘(Poly1‘(𝐸s 𝐹)))
21 eqid 2729 . . . . . 6 (LIdeal‘(Poly1‘(𝐸s 𝐹))) = (LIdeal‘(Poly1‘(𝐸s 𝐹)))
2220, 21lidlss 21122 . . . . 5 ({𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g𝐸)} ∈ (LIdeal‘(Poly1‘(𝐸s 𝐹))) → {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g𝐸)} ⊆ (Base‘(Poly1‘(𝐸s 𝐹))))
2319, 22syl 17 . . . 4 (𝜑 → {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g𝐸)} ⊆ (Base‘(Poly1‘(𝐸s 𝐹))))
244sdrgdrng 20699 . . . . . 6 (𝐹 ∈ (SubDRing‘𝐸) → (𝐸s 𝐹) ∈ DivRing)
251, 24syl 17 . . . . 5 (𝜑 → (𝐸s 𝐹) ∈ DivRing)
26 eqid 2729 . . . . . 6 (idlGen1p‘(𝐸s 𝐹)) = (idlGen1p‘(𝐸s 𝐹))
277, 26, 21ig1pcl 26084 . . . . 5 (((𝐸s 𝐹) ∈ DivRing ∧ {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g𝐸)} ∈ (LIdeal‘(Poly1‘(𝐸s 𝐹)))) → ((idlGen1p‘(𝐸s 𝐹))‘{𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g𝐸)}) ∈ {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g𝐸)})
2825, 19, 27syl2anc 584 . . . 4 (𝜑 → ((idlGen1p‘(𝐸s 𝐹))‘{𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g𝐸)}) ∈ {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g𝐸)})
2923, 28sseldd 3947 . . 3 (𝜑 → ((idlGen1p‘(𝐸s 𝐹))‘{𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g𝐸)}) ∈ (Base‘(Poly1‘(𝐸s 𝐹))))
30 eqid 2729 . . . . 5 (RSpan‘(Poly1‘(𝐸s 𝐹))) = (RSpan‘(Poly1‘(𝐸s 𝐹)))
3110, 7, 11, 12, 1, 17, 14, 18, 30, 26ply1annig1p 33694 . . . 4 (𝜑 → {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g𝐸)} = ((RSpan‘(Poly1‘(𝐸s 𝐹)))‘{((idlGen1p‘(𝐸s 𝐹))‘{𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g𝐸)})}))
32 fveq2 6858 . . . . . . . . 9 (𝑞 = 𝑝 → ((𝐸 evalSub1 𝐹)‘𝑞) = ((𝐸 evalSub1 𝐹)‘𝑝))
3332fveq1d 6860 . . . . . . . 8 (𝑞 = 𝑝 → (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (((𝐸 evalSub1 𝐹)‘𝑝)‘𝐴))
3433eqeq1d 2731 . . . . . . 7 (𝑞 = 𝑝 → ((((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g𝐸) ↔ (((𝐸 evalSub1 𝐹)‘𝑝)‘𝐴) = (0g𝐸)))
35 simplr 768 . . . . . . . 8 (((𝜑𝑝 ∈ (dom (𝐸 evalSub1 𝐹) ∖ {𝑍})) ∧ 𝐴 ∈ (((𝐸 evalSub1 𝐹)‘𝑝) “ {(0g𝐸)})) → 𝑝 ∈ (dom (𝐸 evalSub1 𝐹) ∖ {𝑍}))
3635eldifad 3926 . . . . . . 7 (((𝜑𝑝 ∈ (dom (𝐸 evalSub1 𝐹) ∖ {𝑍})) ∧ 𝐴 ∈ (((𝐸 evalSub1 𝐹)‘𝑝) “ {(0g𝐸)})) → 𝑝 ∈ dom (𝐸 evalSub1 𝐹))
3713ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑝 ∈ (dom (𝐸 evalSub1 𝐹) ∖ {𝑍})) ∧ 𝐴 ∈ (((𝐸 evalSub1 𝐹)‘𝑝) “ {(0g𝐸)})) → 𝐸 ∈ CRing)
383ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑝 ∈ (dom (𝐸 evalSub1 𝐹) ∖ {𝑍})) ∧ 𝐴 ∈ (((𝐸 evalSub1 𝐹)‘𝑝) “ {(0g𝐸)})) → 𝐹 ∈ (SubRing‘𝐸))
3910, 7, 20, 13, 3evls1dm 33530 . . . . . . . . . . . . 13 (𝜑 → dom (𝐸 evalSub1 𝐹) = (Base‘(Poly1‘(𝐸s 𝐹))))
4039ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ (dom (𝐸 evalSub1 𝐹) ∖ {𝑍})) ∧ 𝐴 ∈ (((𝐸 evalSub1 𝐹)‘𝑝) “ {(0g𝐸)})) → dom (𝐸 evalSub1 𝐹) = (Base‘(Poly1‘(𝐸s 𝐹))))
4136, 40eleqtrd 2830 . . . . . . . . . . 11 (((𝜑𝑝 ∈ (dom (𝐸 evalSub1 𝐹) ∖ {𝑍})) ∧ 𝐴 ∈ (((𝐸 evalSub1 𝐹)‘𝑝) “ {(0g𝐸)})) → 𝑝 ∈ (Base‘(Poly1‘(𝐸s 𝐹))))
4210, 7, 20, 37, 38, 11, 41evls1fvf 33531 . . . . . . . . . 10 (((𝜑𝑝 ∈ (dom (𝐸 evalSub1 𝐹) ∖ {𝑍})) ∧ 𝐴 ∈ (((𝐸 evalSub1 𝐹)‘𝑝) “ {(0g𝐸)})) → ((𝐸 evalSub1 𝐹)‘𝑝):(Base‘𝐸)⟶(Base‘𝐸))
4342ffnd 6689 . . . . . . . . 9 (((𝜑𝑝 ∈ (dom (𝐸 evalSub1 𝐹) ∖ {𝑍})) ∧ 𝐴 ∈ (((𝐸 evalSub1 𝐹)‘𝑝) “ {(0g𝐸)})) → ((𝐸 evalSub1 𝐹)‘𝑝) Fn (Base‘𝐸))
44 elpreima 7030 . . . . . . . . . 10 (((𝐸 evalSub1 𝐹)‘𝑝) Fn (Base‘𝐸) → (𝐴 ∈ (((𝐸 evalSub1 𝐹)‘𝑝) “ {(0g𝐸)}) ↔ (𝐴 ∈ (Base‘𝐸) ∧ (((𝐸 evalSub1 𝐹)‘𝑝)‘𝐴) ∈ {(0g𝐸)})))
4544simplbda 499 . . . . . . . . 9 ((((𝐸 evalSub1 𝐹)‘𝑝) Fn (Base‘𝐸) ∧ 𝐴 ∈ (((𝐸 evalSub1 𝐹)‘𝑝) “ {(0g𝐸)})) → (((𝐸 evalSub1 𝐹)‘𝑝)‘𝐴) ∈ {(0g𝐸)})
4643, 45sylancom 588 . . . . . . . 8 (((𝜑𝑝 ∈ (dom (𝐸 evalSub1 𝐹) ∖ {𝑍})) ∧ 𝐴 ∈ (((𝐸 evalSub1 𝐹)‘𝑝) “ {(0g𝐸)})) → (((𝐸 evalSub1 𝐹)‘𝑝)‘𝐴) ∈ {(0g𝐸)})
47 elsni 4606 . . . . . . . 8 ((((𝐸 evalSub1 𝐹)‘𝑝)‘𝐴) ∈ {(0g𝐸)} → (((𝐸 evalSub1 𝐹)‘𝑝)‘𝐴) = (0g𝐸))
4846, 47syl 17 . . . . . . 7 (((𝜑𝑝 ∈ (dom (𝐸 evalSub1 𝐹) ∖ {𝑍})) ∧ 𝐴 ∈ (((𝐸 evalSub1 𝐹)‘𝑝) “ {(0g𝐸)})) → (((𝐸 evalSub1 𝐹)‘𝑝)‘𝐴) = (0g𝐸))
4934, 36, 48elrabd 3661 . . . . . 6 (((𝜑𝑝 ∈ (dom (𝐸 evalSub1 𝐹) ∖ {𝑍})) ∧ 𝐴 ∈ (((𝐸 evalSub1 𝐹)‘𝑝) “ {(0g𝐸)})) → 𝑝 ∈ {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g𝐸)})
50 eldifsni 4754 . . . . . . . . 9 (𝑝 ∈ (dom (𝐸 evalSub1 𝐹) ∖ {𝑍}) → 𝑝𝑍)
5135, 50syl 17 . . . . . . . 8 (((𝜑𝑝 ∈ (dom (𝐸 evalSub1 𝐹) ∖ {𝑍})) ∧ 𝐴 ∈ (((𝐸 evalSub1 𝐹)‘𝑝) “ {(0g𝐸)})) → 𝑝𝑍)
52 eqid 2729 . . . . . . . . . 10 (Poly1𝐸) = (Poly1𝐸)
53 irngnminplynz.z . . . . . . . . . 10 𝑍 = (0g‘(Poly1𝐸))
5452, 4, 7, 20, 3, 53ressply10g 33536 . . . . . . . . 9 (𝜑𝑍 = (0g‘(Poly1‘(𝐸s 𝐹))))
5554ad2antrr 726 . . . . . . . 8 (((𝜑𝑝 ∈ (dom (𝐸 evalSub1 𝐹) ∖ {𝑍})) ∧ 𝐴 ∈ (((𝐸 evalSub1 𝐹)‘𝑝) “ {(0g𝐸)})) → 𝑍 = (0g‘(Poly1‘(𝐸s 𝐹))))
5651, 55neeqtrd 2994 . . . . . . 7 (((𝜑𝑝 ∈ (dom (𝐸 evalSub1 𝐹) ∖ {𝑍})) ∧ 𝐴 ∈ (((𝐸 evalSub1 𝐹)‘𝑝) “ {(0g𝐸)})) → 𝑝 ≠ (0g‘(Poly1‘(𝐸s 𝐹))))
57 nelsn 4630 . . . . . . 7 (𝑝 ≠ (0g‘(Poly1‘(𝐸s 𝐹))) → ¬ 𝑝 ∈ {(0g‘(Poly1‘(𝐸s 𝐹)))})
5856, 57syl 17 . . . . . 6 (((𝜑𝑝 ∈ (dom (𝐸 evalSub1 𝐹) ∖ {𝑍})) ∧ 𝐴 ∈ (((𝐸 evalSub1 𝐹)‘𝑝) “ {(0g𝐸)})) → ¬ 𝑝 ∈ {(0g‘(Poly1‘(𝐸s 𝐹)))})
59 nelne1 3022 . . . . . 6 ((𝑝 ∈ {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g𝐸)} ∧ ¬ 𝑝 ∈ {(0g‘(Poly1‘(𝐸s 𝐹)))}) → {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g𝐸)} ≠ {(0g‘(Poly1‘(𝐸s 𝐹)))})
6049, 58, 59syl2anc 584 . . . . 5 (((𝜑𝑝 ∈ (dom (𝐸 evalSub1 𝐹) ∖ {𝑍})) ∧ 𝐴 ∈ (((𝐸 evalSub1 𝐹)‘𝑝) “ {(0g𝐸)})) → {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g𝐸)} ≠ {(0g‘(Poly1‘(𝐸s 𝐹)))})
6110, 53, 14, 12, 1irngnzply1 33686 . . . . . . 7 (𝜑 → (𝐸 IntgRing 𝐹) = 𝑝 ∈ (dom (𝐸 evalSub1 𝐹) ∖ {𝑍})(((𝐸 evalSub1 𝐹)‘𝑝) “ {(0g𝐸)}))
6216, 61eleqtrd 2830 . . . . . 6 (𝜑𝐴 𝑝 ∈ (dom (𝐸 evalSub1 𝐹) ∖ {𝑍})(((𝐸 evalSub1 𝐹)‘𝑝) “ {(0g𝐸)}))
63 eliun 4959 . . . . . 6 (𝐴 𝑝 ∈ (dom (𝐸 evalSub1 𝐹) ∖ {𝑍})(((𝐸 evalSub1 𝐹)‘𝑝) “ {(0g𝐸)}) ↔ ∃𝑝 ∈ (dom (𝐸 evalSub1 𝐹) ∖ {𝑍})𝐴 ∈ (((𝐸 evalSub1 𝐹)‘𝑝) “ {(0g𝐸)}))
6462, 63sylib 218 . . . . 5 (𝜑 → ∃𝑝 ∈ (dom (𝐸 evalSub1 𝐹) ∖ {𝑍})𝐴 ∈ (((𝐸 evalSub1 𝐹)‘𝑝) “ {(0g𝐸)}))
6560, 64r19.29a 3141 . . . 4 (𝜑 → {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g𝐸)} ≠ {(0g‘(Poly1‘(𝐸s 𝐹)))})
6631, 65eqnetrrd 2993 . . 3 (𝜑 → ((RSpan‘(Poly1‘(𝐸s 𝐹)))‘{((idlGen1p‘(𝐸s 𝐹))‘{𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g𝐸)})}) ≠ {(0g‘(Poly1‘(𝐸s 𝐹)))})
67 eqid 2729 . . . . 5 (0g‘(Poly1‘(𝐸s 𝐹))) = (0g‘(Poly1‘(𝐸s 𝐹)))
6820, 67, 30pidlnzb 33393 . . . 4 (((Poly1‘(𝐸s 𝐹)) ∈ Ring ∧ ((idlGen1p‘(𝐸s 𝐹))‘{𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g𝐸)}) ∈ (Base‘(Poly1‘(𝐸s 𝐹)))) → (((idlGen1p‘(𝐸s 𝐹))‘{𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g𝐸)}) ≠ (0g‘(Poly1‘(𝐸s 𝐹))) ↔ ((RSpan‘(Poly1‘(𝐸s 𝐹)))‘{((idlGen1p‘(𝐸s 𝐹))‘{𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g𝐸)})}) ≠ {(0g‘(Poly1‘(𝐸s 𝐹)))}))
6968biimpar 477 . . 3 ((((Poly1‘(𝐸s 𝐹)) ∈ Ring ∧ ((idlGen1p‘(𝐸s 𝐹))‘{𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g𝐸)}) ∈ (Base‘(Poly1‘(𝐸s 𝐹)))) ∧ ((RSpan‘(Poly1‘(𝐸s 𝐹)))‘{((idlGen1p‘(𝐸s 𝐹))‘{𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g𝐸)})}) ≠ {(0g‘(Poly1‘(𝐸s 𝐹)))}) → ((idlGen1p‘(𝐸s 𝐹))‘{𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g𝐸)}) ≠ (0g‘(Poly1‘(𝐸s 𝐹))))
709, 29, 66, 69syl21anc 837 . 2 (𝜑 → ((idlGen1p‘(𝐸s 𝐹))‘{𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g𝐸)}) ≠ (0g‘(Poly1‘(𝐸s 𝐹))))
71 irngnminplynz.m . . 3 𝑀 = (𝐸 minPoly 𝐹)
7210, 7, 11, 12, 1, 17, 14, 18, 30, 26, 71minplyval 33695 . 2 (𝜑 → (𝑀𝐴) = ((idlGen1p‘(𝐸s 𝐹))‘{𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g𝐸)}))
7370, 72, 543netr4d 3002 1 (𝜑 → (𝑀𝐴) ≠ 𝑍)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wrex 3053  {crab 3405  cdif 3911  wss 3914  {csn 4589   ciun 4955  ccnv 5637  dom cdm 5638  cima 5641   Fn wfn 6506  cfv 6511  (class class class)co 7387  Basecbs 17179  s cress 17200  0gc0g 17402  Ringcrg 20142  CRingccrg 20143  SubRingcsubrg 20478  DivRingcdr 20638  Fieldcfield 20639  SubDRingcsdrg 20695  LIdealclidl 21116  RSpancrsp 21117  Poly1cpl1 22061   evalSub1 ces1 22200  idlGen1pcig1p 26035   IntgRing cirng 33678   minPoly cminply 33689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-ofr 7654  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-0g 17404  df-gsum 17405  df-prds 17410  df-pws 17412  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-ghm 19145  df-cntz 19249  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-srg 20096  df-ring 20144  df-cring 20145  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-invr 20297  df-rhm 20381  df-subrng 20455  df-subrg 20479  df-rlreg 20603  df-drng 20640  df-field 20641  df-sdrg 20696  df-lmod 20768  df-lss 20838  df-lsp 20878  df-sra 21080  df-rgmod 21081  df-lidl 21118  df-rsp 21119  df-cnfld 21265  df-assa 21762  df-asp 21763  df-ascl 21764  df-psr 21818  df-mvr 21819  df-mpl 21820  df-opsr 21822  df-evls 21981  df-evl 21982  df-psr1 22064  df-vr1 22065  df-ply1 22066  df-coe1 22067  df-evls1 22202  df-evl1 22203  df-mdeg 25960  df-deg1 25961  df-mon1 26036  df-uc1p 26037  df-q1p 26038  df-r1p 26039  df-ig1p 26040  df-irng 33679  df-minply 33690
This theorem is referenced by:  minplym1p  33703  irredminply  33706  algextdeglem4  33710  algextdeglem7  33713  algextdeglem8  33714
  Copyright terms: Public domain W3C validator