Step | Hyp | Ref
| Expression |
1 | | irngnminplynz.f |
. . . . . 6
β’ (π β πΉ β (SubDRingβπΈ)) |
2 | | sdrgsubrg 20406 |
. . . . . 6
β’ (πΉ β (SubDRingβπΈ) β πΉ β (SubRingβπΈ)) |
3 | 1, 2 | syl 17 |
. . . . 5
β’ (π β πΉ β (SubRingβπΈ)) |
4 | | eqid 2732 |
. . . . . 6
β’ (πΈ βΎs πΉ) = (πΈ βΎs πΉ) |
5 | 4 | subrgring 20321 |
. . . . 5
β’ (πΉ β (SubRingβπΈ) β (πΈ βΎs πΉ) β Ring) |
6 | 3, 5 | syl 17 |
. . . 4
β’ (π β (πΈ βΎs πΉ) β Ring) |
7 | | eqid 2732 |
. . . . 5
β’
(Poly1β(πΈ βΎs πΉ)) = (Poly1β(πΈ βΎs πΉ)) |
8 | 7 | ply1ring 21769 |
. . . 4
β’ ((πΈ βΎs πΉ) β Ring β
(Poly1β(πΈ
βΎs πΉ))
β Ring) |
9 | 6, 8 | syl 17 |
. . 3
β’ (π β
(Poly1β(πΈ
βΎs πΉ))
β Ring) |
10 | | eqid 2732 |
. . . . . 6
β’ (πΈ evalSub1 πΉ) = (πΈ evalSub1 πΉ) |
11 | | eqid 2732 |
. . . . . 6
β’
(BaseβπΈ) =
(BaseβπΈ) |
12 | | irngnminplynz.e |
. . . . . . 7
β’ (π β πΈ β Field) |
13 | 12 | fldcrngd 20369 |
. . . . . 6
β’ (π β πΈ β CRing) |
14 | | eqid 2732 |
. . . . . . . 8
β’
(0gβπΈ) = (0gβπΈ) |
15 | 10, 4, 11, 14, 13, 3 | irngssv 32747 |
. . . . . . 7
β’ (π β (πΈ IntgRing πΉ) β (BaseβπΈ)) |
16 | | irngnminplynz.a |
. . . . . . 7
β’ (π β π΄ β (πΈ IntgRing πΉ)) |
17 | 15, 16 | sseldd 3983 |
. . . . . 6
β’ (π β π΄ β (BaseβπΈ)) |
18 | | eqid 2732 |
. . . . . 6
β’ {π β dom (πΈ evalSub1 πΉ) β£ (((πΈ evalSub1 πΉ)βπ)βπ΄) = (0gβπΈ)} = {π β dom (πΈ evalSub1 πΉ) β£ (((πΈ evalSub1 πΉ)βπ)βπ΄) = (0gβπΈ)} |
19 | 10, 7, 11, 13, 3, 17, 14, 18 | ply1annidl 32758 |
. . . . 5
β’ (π β {π β dom (πΈ evalSub1 πΉ) β£ (((πΈ evalSub1 πΉ)βπ)βπ΄) = (0gβπΈ)} β
(LIdealβ(Poly1β(πΈ βΎs πΉ)))) |
20 | | eqid 2732 |
. . . . . 6
β’
(Baseβ(Poly1β(πΈ βΎs πΉ))) =
(Baseβ(Poly1β(πΈ βΎs πΉ))) |
21 | | eqid 2732 |
. . . . . 6
β’
(LIdealβ(Poly1β(πΈ βΎs πΉ))) =
(LIdealβ(Poly1β(πΈ βΎs πΉ))) |
22 | 20, 21 | lidlss 20832 |
. . . . 5
β’ ({π β dom (πΈ evalSub1 πΉ) β£ (((πΈ evalSub1 πΉ)βπ)βπ΄) = (0gβπΈ)} β
(LIdealβ(Poly1β(πΈ βΎs πΉ))) β {π β dom (πΈ evalSub1 πΉ) β£ (((πΈ evalSub1 πΉ)βπ)βπ΄) = (0gβπΈ)} β
(Baseβ(Poly1β(πΈ βΎs πΉ)))) |
23 | 19, 22 | syl 17 |
. . . 4
β’ (π β {π β dom (πΈ evalSub1 πΉ) β£ (((πΈ evalSub1 πΉ)βπ)βπ΄) = (0gβπΈ)} β
(Baseβ(Poly1β(πΈ βΎs πΉ)))) |
24 | 4 | sdrgdrng 20405 |
. . . . . 6
β’ (πΉ β (SubDRingβπΈ) β (πΈ βΎs πΉ) β DivRing) |
25 | 1, 24 | syl 17 |
. . . . 5
β’ (π β (πΈ βΎs πΉ) β DivRing) |
26 | | eqid 2732 |
. . . . . 6
β’
(idlGen1pβ(πΈ βΎs πΉ)) = (idlGen1pβ(πΈ βΎs πΉ)) |
27 | 7, 26, 21 | ig1pcl 25692 |
. . . . 5
β’ (((πΈ βΎs πΉ) β DivRing β§ {π β dom (πΈ evalSub1 πΉ) β£ (((πΈ evalSub1 πΉ)βπ)βπ΄) = (0gβπΈ)} β
(LIdealβ(Poly1β(πΈ βΎs πΉ)))) β
((idlGen1pβ(πΈ βΎs πΉ))β{π β dom (πΈ evalSub1 πΉ) β£ (((πΈ evalSub1 πΉ)βπ)βπ΄) = (0gβπΈ)}) β {π β dom (πΈ evalSub1 πΉ) β£ (((πΈ evalSub1 πΉ)βπ)βπ΄) = (0gβπΈ)}) |
28 | 25, 19, 27 | syl2anc 584 |
. . . 4
β’ (π β
((idlGen1pβ(πΈ βΎs πΉ))β{π β dom (πΈ evalSub1 πΉ) β£ (((πΈ evalSub1 πΉ)βπ)βπ΄) = (0gβπΈ)}) β {π β dom (πΈ evalSub1 πΉ) β£ (((πΈ evalSub1 πΉ)βπ)βπ΄) = (0gβπΈ)}) |
29 | 23, 28 | sseldd 3983 |
. . 3
β’ (π β
((idlGen1pβ(πΈ βΎs πΉ))β{π β dom (πΈ evalSub1 πΉ) β£ (((πΈ evalSub1 πΉ)βπ)βπ΄) = (0gβπΈ)}) β
(Baseβ(Poly1β(πΈ βΎs πΉ)))) |
30 | | eqid 2732 |
. . . . 5
β’
(RSpanβ(Poly1β(πΈ βΎs πΉ))) =
(RSpanβ(Poly1β(πΈ βΎs πΉ))) |
31 | 10, 7, 11, 12, 1, 17, 14, 18, 30, 26 | ply1annig1p 32760 |
. . . 4
β’ (π β {π β dom (πΈ evalSub1 πΉ) β£ (((πΈ evalSub1 πΉ)βπ)βπ΄) = (0gβπΈ)} =
((RSpanβ(Poly1β(πΈ βΎs πΉ)))β{((idlGen1pβ(πΈ βΎs πΉ))β{π β dom (πΈ evalSub1 πΉ) β£ (((πΈ evalSub1 πΉ)βπ)βπ΄) = (0gβπΈ)})})) |
32 | | fveq2 6891 |
. . . . . . . . 9
β’ (π = π β ((πΈ evalSub1 πΉ)βπ) = ((πΈ evalSub1 πΉ)βπ)) |
33 | 32 | fveq1d 6893 |
. . . . . . . 8
β’ (π = π β (((πΈ evalSub1 πΉ)βπ)βπ΄) = (((πΈ evalSub1 πΉ)βπ)βπ΄)) |
34 | 33 | eqeq1d 2734 |
. . . . . . 7
β’ (π = π β ((((πΈ evalSub1 πΉ)βπ)βπ΄) = (0gβπΈ) β (((πΈ evalSub1 πΉ)βπ)βπ΄) = (0gβπΈ))) |
35 | | simplr 767 |
. . . . . . . 8
β’ (((π β§ π β (dom (πΈ evalSub1 πΉ) β {π})) β§ π΄ β (β‘((πΈ evalSub1 πΉ)βπ) β {(0gβπΈ)})) β π β (dom (πΈ evalSub1 πΉ) β {π})) |
36 | 35 | eldifad 3960 |
. . . . . . 7
β’ (((π β§ π β (dom (πΈ evalSub1 πΉ) β {π})) β§ π΄ β (β‘((πΈ evalSub1 πΉ)βπ) β {(0gβπΈ)})) β π β dom (πΈ evalSub1 πΉ)) |
37 | 13 | ad2antrr 724 |
. . . . . . . . . . 11
β’ (((π β§ π β (dom (πΈ evalSub1 πΉ) β {π})) β§ π΄ β (β‘((πΈ evalSub1 πΉ)βπ) β {(0gβπΈ)})) β πΈ β CRing) |
38 | 3 | ad2antrr 724 |
. . . . . . . . . . 11
β’ (((π β§ π β (dom (πΈ evalSub1 πΉ) β {π})) β§ π΄ β (β‘((πΈ evalSub1 πΉ)βπ) β {(0gβπΈ)})) β πΉ β (SubRingβπΈ)) |
39 | 10, 7, 20, 13, 3 | evls1dm 32636 |
. . . . . . . . . . . . 13
β’ (π β dom (πΈ evalSub1 πΉ) =
(Baseβ(Poly1β(πΈ βΎs πΉ)))) |
40 | 39 | ad2antrr 724 |
. . . . . . . . . . . 12
β’ (((π β§ π β (dom (πΈ evalSub1 πΉ) β {π})) β§ π΄ β (β‘((πΈ evalSub1 πΉ)βπ) β {(0gβπΈ)})) β dom (πΈ evalSub1 πΉ) =
(Baseβ(Poly1β(πΈ βΎs πΉ)))) |
41 | 36, 40 | eleqtrd 2835 |
. . . . . . . . . . 11
β’ (((π β§ π β (dom (πΈ evalSub1 πΉ) β {π})) β§ π΄ β (β‘((πΈ evalSub1 πΉ)βπ) β {(0gβπΈ)})) β π β
(Baseβ(Poly1β(πΈ βΎs πΉ)))) |
42 | 10, 7, 20, 37, 38, 11, 41 | evls1fvf 32637 |
. . . . . . . . . 10
β’ (((π β§ π β (dom (πΈ evalSub1 πΉ) β {π})) β§ π΄ β (β‘((πΈ evalSub1 πΉ)βπ) β {(0gβπΈ)})) β ((πΈ evalSub1 πΉ)βπ):(BaseβπΈ)βΆ(BaseβπΈ)) |
43 | 42 | ffnd 6718 |
. . . . . . . . 9
β’ (((π β§ π β (dom (πΈ evalSub1 πΉ) β {π})) β§ π΄ β (β‘((πΈ evalSub1 πΉ)βπ) β {(0gβπΈ)})) β ((πΈ evalSub1 πΉ)βπ) Fn (BaseβπΈ)) |
44 | | elpreima 7059 |
. . . . . . . . . 10
β’ (((πΈ evalSub1 πΉ)βπ) Fn (BaseβπΈ) β (π΄ β (β‘((πΈ evalSub1 πΉ)βπ) β {(0gβπΈ)}) β (π΄ β (BaseβπΈ) β§ (((πΈ evalSub1 πΉ)βπ)βπ΄) β {(0gβπΈ)}))) |
45 | 44 | simplbda 500 |
. . . . . . . . 9
β’ ((((πΈ evalSub1 πΉ)βπ) Fn (BaseβπΈ) β§ π΄ β (β‘((πΈ evalSub1 πΉ)βπ) β {(0gβπΈ)})) β (((πΈ evalSub1 πΉ)βπ)βπ΄) β {(0gβπΈ)}) |
46 | 43, 45 | sylancom 588 |
. . . . . . . 8
β’ (((π β§ π β (dom (πΈ evalSub1 πΉ) β {π})) β§ π΄ β (β‘((πΈ evalSub1 πΉ)βπ) β {(0gβπΈ)})) β (((πΈ evalSub1 πΉ)βπ)βπ΄) β {(0gβπΈ)}) |
47 | | elsni 4645 |
. . . . . . . 8
β’ ((((πΈ evalSub1 πΉ)βπ)βπ΄) β {(0gβπΈ)} β (((πΈ evalSub1 πΉ)βπ)βπ΄) = (0gβπΈ)) |
48 | 46, 47 | syl 17 |
. . . . . . 7
β’ (((π β§ π β (dom (πΈ evalSub1 πΉ) β {π})) β§ π΄ β (β‘((πΈ evalSub1 πΉ)βπ) β {(0gβπΈ)})) β (((πΈ evalSub1 πΉ)βπ)βπ΄) = (0gβπΈ)) |
49 | 34, 36, 48 | elrabd 3685 |
. . . . . 6
β’ (((π β§ π β (dom (πΈ evalSub1 πΉ) β {π})) β§ π΄ β (β‘((πΈ evalSub1 πΉ)βπ) β {(0gβπΈ)})) β π β {π β dom (πΈ evalSub1 πΉ) β£ (((πΈ evalSub1 πΉ)βπ)βπ΄) = (0gβπΈ)}) |
50 | | eldifsni 4793 |
. . . . . . . . 9
β’ (π β (dom (πΈ evalSub1 πΉ) β {π}) β π β π) |
51 | 35, 50 | syl 17 |
. . . . . . . 8
β’ (((π β§ π β (dom (πΈ evalSub1 πΉ) β {π})) β§ π΄ β (β‘((πΈ evalSub1 πΉ)βπ) β {(0gβπΈ)})) β π β π) |
52 | | eqid 2732 |
. . . . . . . . . 10
β’
(Poly1βπΈ) = (Poly1βπΈ) |
53 | | irngnminplynz.z |
. . . . . . . . . 10
β’ π =
(0gβ(Poly1βπΈ)) |
54 | 52, 4, 7, 20, 3, 53 | ressply10g 32651 |
. . . . . . . . 9
β’ (π β π =
(0gβ(Poly1β(πΈ βΎs πΉ)))) |
55 | 54 | ad2antrr 724 |
. . . . . . . 8
β’ (((π β§ π β (dom (πΈ evalSub1 πΉ) β {π})) β§ π΄ β (β‘((πΈ evalSub1 πΉ)βπ) β {(0gβπΈ)})) β π =
(0gβ(Poly1β(πΈ βΎs πΉ)))) |
56 | 51, 55 | neeqtrd 3010 |
. . . . . . 7
β’ (((π β§ π β (dom (πΈ evalSub1 πΉ) β {π})) β§ π΄ β (β‘((πΈ evalSub1 πΉ)βπ) β {(0gβπΈ)})) β π β
(0gβ(Poly1β(πΈ βΎs πΉ)))) |
57 | | nelsn 4668 |
. . . . . . 7
β’ (π β
(0gβ(Poly1β(πΈ βΎs πΉ))) β Β¬ π β
{(0gβ(Poly1β(πΈ βΎs πΉ)))}) |
58 | 56, 57 | syl 17 |
. . . . . 6
β’ (((π β§ π β (dom (πΈ evalSub1 πΉ) β {π})) β§ π΄ β (β‘((πΈ evalSub1 πΉ)βπ) β {(0gβπΈ)})) β Β¬ π β
{(0gβ(Poly1β(πΈ βΎs πΉ)))}) |
59 | | nelne1 3039 |
. . . . . 6
β’ ((π β {π β dom (πΈ evalSub1 πΉ) β£ (((πΈ evalSub1 πΉ)βπ)βπ΄) = (0gβπΈ)} β§ Β¬ π β
{(0gβ(Poly1β(πΈ βΎs πΉ)))}) β {π β dom (πΈ evalSub1 πΉ) β£ (((πΈ evalSub1 πΉ)βπ)βπ΄) = (0gβπΈ)} β
{(0gβ(Poly1β(πΈ βΎs πΉ)))}) |
60 | 49, 58, 59 | syl2anc 584 |
. . . . 5
β’ (((π β§ π β (dom (πΈ evalSub1 πΉ) β {π})) β§ π΄ β (β‘((πΈ evalSub1 πΉ)βπ) β {(0gβπΈ)})) β {π β dom (πΈ evalSub1 πΉ) β£ (((πΈ evalSub1 πΉ)βπ)βπ΄) = (0gβπΈ)} β
{(0gβ(Poly1β(πΈ βΎs πΉ)))}) |
61 | 10, 53, 14, 12, 1 | irngnzply1 32750 |
. . . . . . 7
β’ (π β (πΈ IntgRing πΉ) = βͺ
π β (dom (πΈ evalSub1 πΉ) β {π})(β‘((πΈ evalSub1 πΉ)βπ) β {(0gβπΈ)})) |
62 | 16, 61 | eleqtrd 2835 |
. . . . . 6
β’ (π β π΄ β βͺ
π β (dom (πΈ evalSub1 πΉ) β {π})(β‘((πΈ evalSub1 πΉ)βπ) β {(0gβπΈ)})) |
63 | | eliun 5001 |
. . . . . 6
β’ (π΄ β βͺ π β (dom (πΈ evalSub1 πΉ) β {π})(β‘((πΈ evalSub1 πΉ)βπ) β {(0gβπΈ)}) β βπ β (dom (πΈ evalSub1 πΉ) β {π})π΄ β (β‘((πΈ evalSub1 πΉ)βπ) β {(0gβπΈ)})) |
64 | 62, 63 | sylib 217 |
. . . . 5
β’ (π β βπ β (dom (πΈ evalSub1 πΉ) β {π})π΄ β (β‘((πΈ evalSub1 πΉ)βπ) β {(0gβπΈ)})) |
65 | 60, 64 | r19.29a 3162 |
. . . 4
β’ (π β {π β dom (πΈ evalSub1 πΉ) β£ (((πΈ evalSub1 πΉ)βπ)βπ΄) = (0gβπΈ)} β
{(0gβ(Poly1β(πΈ βΎs πΉ)))}) |
66 | 31, 65 | eqnetrrd 3009 |
. . 3
β’ (π β
((RSpanβ(Poly1β(πΈ βΎs πΉ)))β{((idlGen1pβ(πΈ βΎs πΉ))β{π β dom (πΈ evalSub1 πΉ) β£ (((πΈ evalSub1 πΉ)βπ)βπ΄) = (0gβπΈ)})}) β
{(0gβ(Poly1β(πΈ βΎs πΉ)))}) |
67 | | eqid 2732 |
. . . . 5
β’
(0gβ(Poly1β(πΈ βΎs πΉ))) =
(0gβ(Poly1β(πΈ βΎs πΉ))) |
68 | 20, 67, 30 | pidlnzb 32535 |
. . . 4
β’
(((Poly1β(πΈ βΎs πΉ)) β Ring β§
((idlGen1pβ(πΈ βΎs πΉ))β{π β dom (πΈ evalSub1 πΉ) β£ (((πΈ evalSub1 πΉ)βπ)βπ΄) = (0gβπΈ)}) β
(Baseβ(Poly1β(πΈ βΎs πΉ)))) β
(((idlGen1pβ(πΈ βΎs πΉ))β{π β dom (πΈ evalSub1 πΉ) β£ (((πΈ evalSub1 πΉ)βπ)βπ΄) = (0gβπΈ)}) β
(0gβ(Poly1β(πΈ βΎs πΉ))) β
((RSpanβ(Poly1β(πΈ βΎs πΉ)))β{((idlGen1pβ(πΈ βΎs πΉ))β{π β dom (πΈ evalSub1 πΉ) β£ (((πΈ evalSub1 πΉ)βπ)βπ΄) = (0gβπΈ)})}) β
{(0gβ(Poly1β(πΈ βΎs πΉ)))})) |
69 | 68 | biimpar 478 |
. . 3
β’
((((Poly1β(πΈ βΎs πΉ)) β Ring β§
((idlGen1pβ(πΈ βΎs πΉ))β{π β dom (πΈ evalSub1 πΉ) β£ (((πΈ evalSub1 πΉ)βπ)βπ΄) = (0gβπΈ)}) β
(Baseβ(Poly1β(πΈ βΎs πΉ)))) β§
((RSpanβ(Poly1β(πΈ βΎs πΉ)))β{((idlGen1pβ(πΈ βΎs πΉ))β{π β dom (πΈ evalSub1 πΉ) β£ (((πΈ evalSub1 πΉ)βπ)βπ΄) = (0gβπΈ)})}) β
{(0gβ(Poly1β(πΈ βΎs πΉ)))}) β
((idlGen1pβ(πΈ βΎs πΉ))β{π β dom (πΈ evalSub1 πΉ) β£ (((πΈ evalSub1 πΉ)βπ)βπ΄) = (0gβπΈ)}) β
(0gβ(Poly1β(πΈ βΎs πΉ)))) |
70 | 9, 29, 66, 69 | syl21anc 836 |
. 2
β’ (π β
((idlGen1pβ(πΈ βΎs πΉ))β{π β dom (πΈ evalSub1 πΉ) β£ (((πΈ evalSub1 πΉ)βπ)βπ΄) = (0gβπΈ)}) β
(0gβ(Poly1β(πΈ βΎs πΉ)))) |
71 | | irngnminplynz.m |
. . 3
β’ π = (πΈ minPoly πΉ) |
72 | 10, 7, 11, 12, 1, 17, 14, 18, 30, 26, 71 | minplyval 32761 |
. 2
β’ (π β (πβπ΄) = ((idlGen1pβ(πΈ βΎs πΉ))β{π β dom (πΈ evalSub1 πΉ) β£ (((πΈ evalSub1 πΉ)βπ)βπ΄) = (0gβπΈ)})) |
73 | 70, 72, 54 | 3netr4d 3018 |
1
β’ (π β (πβπ΄) β π) |