Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  irngnminplynz Structured version   Visualization version   GIF version

Theorem irngnminplynz 33075
Description: Integral elements have nonzero minimal polynomials. (Contributed by Thierry Arnoux, 22-Mar-2025.)
Hypotheses
Ref Expression
irngnminplynz.z 𝑍 = (0g‘(Poly1𝐸))
irngnminplynz.e (𝜑𝐸 ∈ Field)
irngnminplynz.f (𝜑𝐹 ∈ (SubDRing‘𝐸))
irngnminplynz.m 𝑀 = (𝐸 minPoly 𝐹)
irngnminplynz.a (𝜑𝐴 ∈ (𝐸 IntgRing 𝐹))
Assertion
Ref Expression
irngnminplynz (𝜑 → (𝑀𝐴) ≠ 𝑍)

Proof of Theorem irngnminplynz
Dummy variables 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 irngnminplynz.f . . . . . 6 (𝜑𝐹 ∈ (SubDRing‘𝐸))
2 sdrgsubrg 20554 . . . . . 6 (𝐹 ∈ (SubDRing‘𝐸) → 𝐹 ∈ (SubRing‘𝐸))
31, 2syl 17 . . . . 5 (𝜑𝐹 ∈ (SubRing‘𝐸))
4 eqid 2731 . . . . . 6 (𝐸s 𝐹) = (𝐸s 𝐹)
54subrgring 20468 . . . . 5 (𝐹 ∈ (SubRing‘𝐸) → (𝐸s 𝐹) ∈ Ring)
63, 5syl 17 . . . 4 (𝜑 → (𝐸s 𝐹) ∈ Ring)
7 eqid 2731 . . . . 5 (Poly1‘(𝐸s 𝐹)) = (Poly1‘(𝐸s 𝐹))
87ply1ring 22003 . . . 4 ((𝐸s 𝐹) ∈ Ring → (Poly1‘(𝐸s 𝐹)) ∈ Ring)
96, 8syl 17 . . 3 (𝜑 → (Poly1‘(𝐸s 𝐹)) ∈ Ring)
10 eqid 2731 . . . . . 6 (𝐸 evalSub1 𝐹) = (𝐸 evalSub1 𝐹)
11 eqid 2731 . . . . . 6 (Base‘𝐸) = (Base‘𝐸)
12 irngnminplynz.e . . . . . . 7 (𝜑𝐸 ∈ Field)
1312fldcrngd 20517 . . . . . 6 (𝜑𝐸 ∈ CRing)
14 eqid 2731 . . . . . . . 8 (0g𝐸) = (0g𝐸)
1510, 4, 11, 14, 13, 3irngssv 33056 . . . . . . 7 (𝜑 → (𝐸 IntgRing 𝐹) ⊆ (Base‘𝐸))
16 irngnminplynz.a . . . . . . 7 (𝜑𝐴 ∈ (𝐸 IntgRing 𝐹))
1715, 16sseldd 3983 . . . . . 6 (𝜑𝐴 ∈ (Base‘𝐸))
18 eqid 2731 . . . . . 6 {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g𝐸)} = {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g𝐸)}
1910, 7, 11, 13, 3, 17, 14, 18ply1annidl 33067 . . . . 5 (𝜑 → {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g𝐸)} ∈ (LIdeal‘(Poly1‘(𝐸s 𝐹))))
20 eqid 2731 . . . . . 6 (Base‘(Poly1‘(𝐸s 𝐹))) = (Base‘(Poly1‘(𝐸s 𝐹)))
21 eqid 2731 . . . . . 6 (LIdeal‘(Poly1‘(𝐸s 𝐹))) = (LIdeal‘(Poly1‘(𝐸s 𝐹)))
2220, 21lidlss 20982 . . . . 5 ({𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g𝐸)} ∈ (LIdeal‘(Poly1‘(𝐸s 𝐹))) → {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g𝐸)} ⊆ (Base‘(Poly1‘(𝐸s 𝐹))))
2319, 22syl 17 . . . 4 (𝜑 → {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g𝐸)} ⊆ (Base‘(Poly1‘(𝐸s 𝐹))))
244sdrgdrng 20553 . . . . . 6 (𝐹 ∈ (SubDRing‘𝐸) → (𝐸s 𝐹) ∈ DivRing)
251, 24syl 17 . . . . 5 (𝜑 → (𝐸s 𝐹) ∈ DivRing)
26 eqid 2731 . . . . . 6 (idlGen1p‘(𝐸s 𝐹)) = (idlGen1p‘(𝐸s 𝐹))
277, 26, 21ig1pcl 25942 . . . . 5 (((𝐸s 𝐹) ∈ DivRing ∧ {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g𝐸)} ∈ (LIdeal‘(Poly1‘(𝐸s 𝐹)))) → ((idlGen1p‘(𝐸s 𝐹))‘{𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g𝐸)}) ∈ {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g𝐸)})
2825, 19, 27syl2anc 583 . . . 4 (𝜑 → ((idlGen1p‘(𝐸s 𝐹))‘{𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g𝐸)}) ∈ {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g𝐸)})
2923, 28sseldd 3983 . . 3 (𝜑 → ((idlGen1p‘(𝐸s 𝐹))‘{𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g𝐸)}) ∈ (Base‘(Poly1‘(𝐸s 𝐹))))
30 eqid 2731 . . . . 5 (RSpan‘(Poly1‘(𝐸s 𝐹))) = (RSpan‘(Poly1‘(𝐸s 𝐹)))
3110, 7, 11, 12, 1, 17, 14, 18, 30, 26ply1annig1p 33069 . . . 4 (𝜑 → {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g𝐸)} = ((RSpan‘(Poly1‘(𝐸s 𝐹)))‘{((idlGen1p‘(𝐸s 𝐹))‘{𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g𝐸)})}))
32 fveq2 6891 . . . . . . . . 9 (𝑞 = 𝑝 → ((𝐸 evalSub1 𝐹)‘𝑞) = ((𝐸 evalSub1 𝐹)‘𝑝))
3332fveq1d 6893 . . . . . . . 8 (𝑞 = 𝑝 → (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (((𝐸 evalSub1 𝐹)‘𝑝)‘𝐴))
3433eqeq1d 2733 . . . . . . 7 (𝑞 = 𝑝 → ((((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g𝐸) ↔ (((𝐸 evalSub1 𝐹)‘𝑝)‘𝐴) = (0g𝐸)))
35 simplr 766 . . . . . . . 8 (((𝜑𝑝 ∈ (dom (𝐸 evalSub1 𝐹) ∖ {𝑍})) ∧ 𝐴 ∈ (((𝐸 evalSub1 𝐹)‘𝑝) “ {(0g𝐸)})) → 𝑝 ∈ (dom (𝐸 evalSub1 𝐹) ∖ {𝑍}))
3635eldifad 3960 . . . . . . 7 (((𝜑𝑝 ∈ (dom (𝐸 evalSub1 𝐹) ∖ {𝑍})) ∧ 𝐴 ∈ (((𝐸 evalSub1 𝐹)‘𝑝) “ {(0g𝐸)})) → 𝑝 ∈ dom (𝐸 evalSub1 𝐹))
3713ad2antrr 723 . . . . . . . . . . 11 (((𝜑𝑝 ∈ (dom (𝐸 evalSub1 𝐹) ∖ {𝑍})) ∧ 𝐴 ∈ (((𝐸 evalSub1 𝐹)‘𝑝) “ {(0g𝐸)})) → 𝐸 ∈ CRing)
383ad2antrr 723 . . . . . . . . . . 11 (((𝜑𝑝 ∈ (dom (𝐸 evalSub1 𝐹) ∖ {𝑍})) ∧ 𝐴 ∈ (((𝐸 evalSub1 𝐹)‘𝑝) “ {(0g𝐸)})) → 𝐹 ∈ (SubRing‘𝐸))
3910, 7, 20, 13, 3evls1dm 32930 . . . . . . . . . . . . 13 (𝜑 → dom (𝐸 evalSub1 𝐹) = (Base‘(Poly1‘(𝐸s 𝐹))))
4039ad2antrr 723 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ (dom (𝐸 evalSub1 𝐹) ∖ {𝑍})) ∧ 𝐴 ∈ (((𝐸 evalSub1 𝐹)‘𝑝) “ {(0g𝐸)})) → dom (𝐸 evalSub1 𝐹) = (Base‘(Poly1‘(𝐸s 𝐹))))
4136, 40eleqtrd 2834 . . . . . . . . . . 11 (((𝜑𝑝 ∈ (dom (𝐸 evalSub1 𝐹) ∖ {𝑍})) ∧ 𝐴 ∈ (((𝐸 evalSub1 𝐹)‘𝑝) “ {(0g𝐸)})) → 𝑝 ∈ (Base‘(Poly1‘(𝐸s 𝐹))))
4210, 7, 20, 37, 38, 11, 41evls1fvf 32931 . . . . . . . . . 10 (((𝜑𝑝 ∈ (dom (𝐸 evalSub1 𝐹) ∖ {𝑍})) ∧ 𝐴 ∈ (((𝐸 evalSub1 𝐹)‘𝑝) “ {(0g𝐸)})) → ((𝐸 evalSub1 𝐹)‘𝑝):(Base‘𝐸)⟶(Base‘𝐸))
4342ffnd 6718 . . . . . . . . 9 (((𝜑𝑝 ∈ (dom (𝐸 evalSub1 𝐹) ∖ {𝑍})) ∧ 𝐴 ∈ (((𝐸 evalSub1 𝐹)‘𝑝) “ {(0g𝐸)})) → ((𝐸 evalSub1 𝐹)‘𝑝) Fn (Base‘𝐸))
44 elpreima 7059 . . . . . . . . . 10 (((𝐸 evalSub1 𝐹)‘𝑝) Fn (Base‘𝐸) → (𝐴 ∈ (((𝐸 evalSub1 𝐹)‘𝑝) “ {(0g𝐸)}) ↔ (𝐴 ∈ (Base‘𝐸) ∧ (((𝐸 evalSub1 𝐹)‘𝑝)‘𝐴) ∈ {(0g𝐸)})))
4544simplbda 499 . . . . . . . . 9 ((((𝐸 evalSub1 𝐹)‘𝑝) Fn (Base‘𝐸) ∧ 𝐴 ∈ (((𝐸 evalSub1 𝐹)‘𝑝) “ {(0g𝐸)})) → (((𝐸 evalSub1 𝐹)‘𝑝)‘𝐴) ∈ {(0g𝐸)})
4643, 45sylancom 587 . . . . . . . 8 (((𝜑𝑝 ∈ (dom (𝐸 evalSub1 𝐹) ∖ {𝑍})) ∧ 𝐴 ∈ (((𝐸 evalSub1 𝐹)‘𝑝) “ {(0g𝐸)})) → (((𝐸 evalSub1 𝐹)‘𝑝)‘𝐴) ∈ {(0g𝐸)})
47 elsni 4645 . . . . . . . 8 ((((𝐸 evalSub1 𝐹)‘𝑝)‘𝐴) ∈ {(0g𝐸)} → (((𝐸 evalSub1 𝐹)‘𝑝)‘𝐴) = (0g𝐸))
4846, 47syl 17 . . . . . . 7 (((𝜑𝑝 ∈ (dom (𝐸 evalSub1 𝐹) ∖ {𝑍})) ∧ 𝐴 ∈ (((𝐸 evalSub1 𝐹)‘𝑝) “ {(0g𝐸)})) → (((𝐸 evalSub1 𝐹)‘𝑝)‘𝐴) = (0g𝐸))
4934, 36, 48elrabd 3685 . . . . . 6 (((𝜑𝑝 ∈ (dom (𝐸 evalSub1 𝐹) ∖ {𝑍})) ∧ 𝐴 ∈ (((𝐸 evalSub1 𝐹)‘𝑝) “ {(0g𝐸)})) → 𝑝 ∈ {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g𝐸)})
50 eldifsni 4793 . . . . . . . . 9 (𝑝 ∈ (dom (𝐸 evalSub1 𝐹) ∖ {𝑍}) → 𝑝𝑍)
5135, 50syl 17 . . . . . . . 8 (((𝜑𝑝 ∈ (dom (𝐸 evalSub1 𝐹) ∖ {𝑍})) ∧ 𝐴 ∈ (((𝐸 evalSub1 𝐹)‘𝑝) “ {(0g𝐸)})) → 𝑝𝑍)
52 eqid 2731 . . . . . . . . . 10 (Poly1𝐸) = (Poly1𝐸)
53 irngnminplynz.z . . . . . . . . . 10 𝑍 = (0g‘(Poly1𝐸))
5452, 4, 7, 20, 3, 53ressply10g 32945 . . . . . . . . 9 (𝜑𝑍 = (0g‘(Poly1‘(𝐸s 𝐹))))
5554ad2antrr 723 . . . . . . . 8 (((𝜑𝑝 ∈ (dom (𝐸 evalSub1 𝐹) ∖ {𝑍})) ∧ 𝐴 ∈ (((𝐸 evalSub1 𝐹)‘𝑝) “ {(0g𝐸)})) → 𝑍 = (0g‘(Poly1‘(𝐸s 𝐹))))
5651, 55neeqtrd 3009 . . . . . . 7 (((𝜑𝑝 ∈ (dom (𝐸 evalSub1 𝐹) ∖ {𝑍})) ∧ 𝐴 ∈ (((𝐸 evalSub1 𝐹)‘𝑝) “ {(0g𝐸)})) → 𝑝 ≠ (0g‘(Poly1‘(𝐸s 𝐹))))
57 nelsn 4668 . . . . . . 7 (𝑝 ≠ (0g‘(Poly1‘(𝐸s 𝐹))) → ¬ 𝑝 ∈ {(0g‘(Poly1‘(𝐸s 𝐹)))})
5856, 57syl 17 . . . . . 6 (((𝜑𝑝 ∈ (dom (𝐸 evalSub1 𝐹) ∖ {𝑍})) ∧ 𝐴 ∈ (((𝐸 evalSub1 𝐹)‘𝑝) “ {(0g𝐸)})) → ¬ 𝑝 ∈ {(0g‘(Poly1‘(𝐸s 𝐹)))})
59 nelne1 3038 . . . . . 6 ((𝑝 ∈ {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g𝐸)} ∧ ¬ 𝑝 ∈ {(0g‘(Poly1‘(𝐸s 𝐹)))}) → {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g𝐸)} ≠ {(0g‘(Poly1‘(𝐸s 𝐹)))})
6049, 58, 59syl2anc 583 . . . . 5 (((𝜑𝑝 ∈ (dom (𝐸 evalSub1 𝐹) ∖ {𝑍})) ∧ 𝐴 ∈ (((𝐸 evalSub1 𝐹)‘𝑝) “ {(0g𝐸)})) → {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g𝐸)} ≠ {(0g‘(Poly1‘(𝐸s 𝐹)))})
6110, 53, 14, 12, 1irngnzply1 33059 . . . . . . 7 (𝜑 → (𝐸 IntgRing 𝐹) = 𝑝 ∈ (dom (𝐸 evalSub1 𝐹) ∖ {𝑍})(((𝐸 evalSub1 𝐹)‘𝑝) “ {(0g𝐸)}))
6216, 61eleqtrd 2834 . . . . . 6 (𝜑𝐴 𝑝 ∈ (dom (𝐸 evalSub1 𝐹) ∖ {𝑍})(((𝐸 evalSub1 𝐹)‘𝑝) “ {(0g𝐸)}))
63 eliun 5001 . . . . . 6 (𝐴 𝑝 ∈ (dom (𝐸 evalSub1 𝐹) ∖ {𝑍})(((𝐸 evalSub1 𝐹)‘𝑝) “ {(0g𝐸)}) ↔ ∃𝑝 ∈ (dom (𝐸 evalSub1 𝐹) ∖ {𝑍})𝐴 ∈ (((𝐸 evalSub1 𝐹)‘𝑝) “ {(0g𝐸)}))
6462, 63sylib 217 . . . . 5 (𝜑 → ∃𝑝 ∈ (dom (𝐸 evalSub1 𝐹) ∖ {𝑍})𝐴 ∈ (((𝐸 evalSub1 𝐹)‘𝑝) “ {(0g𝐸)}))
6560, 64r19.29a 3161 . . . 4 (𝜑 → {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g𝐸)} ≠ {(0g‘(Poly1‘(𝐸s 𝐹)))})
6631, 65eqnetrrd 3008 . . 3 (𝜑 → ((RSpan‘(Poly1‘(𝐸s 𝐹)))‘{((idlGen1p‘(𝐸s 𝐹))‘{𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g𝐸)})}) ≠ {(0g‘(Poly1‘(𝐸s 𝐹)))})
67 eqid 2731 . . . . 5 (0g‘(Poly1‘(𝐸s 𝐹))) = (0g‘(Poly1‘(𝐸s 𝐹)))
6820, 67, 30pidlnzb 32829 . . . 4 (((Poly1‘(𝐸s 𝐹)) ∈ Ring ∧ ((idlGen1p‘(𝐸s 𝐹))‘{𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g𝐸)}) ∈ (Base‘(Poly1‘(𝐸s 𝐹)))) → (((idlGen1p‘(𝐸s 𝐹))‘{𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g𝐸)}) ≠ (0g‘(Poly1‘(𝐸s 𝐹))) ↔ ((RSpan‘(Poly1‘(𝐸s 𝐹)))‘{((idlGen1p‘(𝐸s 𝐹))‘{𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g𝐸)})}) ≠ {(0g‘(Poly1‘(𝐸s 𝐹)))}))
6968biimpar 477 . . 3 ((((Poly1‘(𝐸s 𝐹)) ∈ Ring ∧ ((idlGen1p‘(𝐸s 𝐹))‘{𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g𝐸)}) ∈ (Base‘(Poly1‘(𝐸s 𝐹)))) ∧ ((RSpan‘(Poly1‘(𝐸s 𝐹)))‘{((idlGen1p‘(𝐸s 𝐹))‘{𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g𝐸)})}) ≠ {(0g‘(Poly1‘(𝐸s 𝐹)))}) → ((idlGen1p‘(𝐸s 𝐹))‘{𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g𝐸)}) ≠ (0g‘(Poly1‘(𝐸s 𝐹))))
709, 29, 66, 69syl21anc 835 . 2 (𝜑 → ((idlGen1p‘(𝐸s 𝐹))‘{𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g𝐸)}) ≠ (0g‘(Poly1‘(𝐸s 𝐹))))
71 irngnminplynz.m . . 3 𝑀 = (𝐸 minPoly 𝐹)
7210, 7, 11, 12, 1, 17, 14, 18, 30, 26, 71minplyval 33070 . 2 (𝜑 → (𝑀𝐴) = ((idlGen1p‘(𝐸s 𝐹))‘{𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g𝐸)}))
7370, 72, 543netr4d 3017 1 (𝜑 → (𝑀𝐴) ≠ 𝑍)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2105  wne 2939  wrex 3069  {crab 3431  cdif 3945  wss 3948  {csn 4628   ciun 4997  ccnv 5675  dom cdm 5676  cima 5679   Fn wfn 6538  cfv 6543  (class class class)co 7412  Basecbs 17151  s cress 17180  0gc0g 17392  Ringcrg 20131  CRingccrg 20132  SubRingcsubrg 20461  DivRingcdr 20504  Fieldcfield 20505  SubDRingcsdrg 20549  LIdealclidl 20932  RSpancrsp 20933  Poly1cpl1 21933   evalSub1 ces1 22065  idlGen1pcig1p 25896   IntgRing cirng 33051   minPoly cminply 33060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193  ax-pre-sup 11194  ax-addf 11195  ax-mulf 11196
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-of 7674  df-ofr 7675  df-om 7860  df-1st 7979  df-2nd 7980  df-supp 8152  df-tpos 8217  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-er 8709  df-map 8828  df-pm 8829  df-ixp 8898  df-en 8946  df-dom 8947  df-sdom 8948  df-fin 8949  df-fsupp 9368  df-sup 9443  df-inf 9444  df-oi 9511  df-card 9940  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-nn 12220  df-2 12282  df-3 12283  df-4 12284  df-5 12285  df-6 12286  df-7 12287  df-8 12288  df-9 12289  df-n0 12480  df-z 12566  df-dec 12685  df-uz 12830  df-fz 13492  df-fzo 13635  df-seq 13974  df-hash 14298  df-struct 17087  df-sets 17104  df-slot 17122  df-ndx 17134  df-base 17152  df-ress 17181  df-plusg 17217  df-mulr 17218  df-starv 17219  df-sca 17220  df-vsca 17221  df-ip 17222  df-tset 17223  df-ple 17224  df-ds 17226  df-unif 17227  df-hom 17228  df-cco 17229  df-0g 17394  df-gsum 17395  df-prds 17400  df-pws 17402  df-mre 17537  df-mrc 17538  df-acs 17540  df-mgm 18568  df-sgrp 18647  df-mnd 18663  df-mhm 18708  df-submnd 18709  df-grp 18861  df-minusg 18862  df-sbg 18863  df-mulg 18991  df-subg 19043  df-ghm 19132  df-cntz 19226  df-cmn 19695  df-abl 19696  df-mgp 20033  df-rng 20051  df-ur 20080  df-srg 20085  df-ring 20133  df-cring 20134  df-oppr 20229  df-dvdsr 20252  df-unit 20253  df-invr 20283  df-rhm 20367  df-subrng 20438  df-subrg 20463  df-drng 20506  df-field 20507  df-sdrg 20550  df-lmod 20620  df-lss 20691  df-lsp 20731  df-sra 20934  df-rgmod 20935  df-lidl 20936  df-rsp 20937  df-rlreg 21103  df-cnfld 21149  df-assa 21631  df-asp 21632  df-ascl 21633  df-psr 21685  df-mvr 21686  df-mpl 21687  df-opsr 21689  df-evls 21859  df-evl 21860  df-psr1 21936  df-vr1 21937  df-ply1 21938  df-coe1 21939  df-evls1 22067  df-evl1 22068  df-mdeg 25819  df-deg1 25820  df-mon1 25897  df-uc1p 25898  df-q1p 25899  df-r1p 25900  df-ig1p 25901  df-irng 33052  df-minply 33061
This theorem is referenced by:  minplym1p  33076  algextdeglem4  33080  algextdeglem7  33083  algextdeglem8  33084
  Copyright terms: Public domain W3C validator