Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  irngnminplynz Structured version   Visualization version   GIF version

Theorem irngnminplynz 33705
Description: Integral elements have nonzero minimal polynomials. (Contributed by Thierry Arnoux, 22-Mar-2025.)
Hypotheses
Ref Expression
irngnminplynz.z 𝑍 = (0g‘(Poly1𝐸))
irngnminplynz.e (𝜑𝐸 ∈ Field)
irngnminplynz.f (𝜑𝐹 ∈ (SubDRing‘𝐸))
irngnminplynz.m 𝑀 = (𝐸 minPoly 𝐹)
irngnminplynz.a (𝜑𝐴 ∈ (𝐸 IntgRing 𝐹))
Assertion
Ref Expression
irngnminplynz (𝜑 → (𝑀𝐴) ≠ 𝑍)

Proof of Theorem irngnminplynz
Dummy variables 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 irngnminplynz.f . . . . . 6 (𝜑𝐹 ∈ (SubDRing‘𝐸))
2 sdrgsubrg 20814 . . . . . 6 (𝐹 ∈ (SubDRing‘𝐸) → 𝐹 ∈ (SubRing‘𝐸))
31, 2syl 17 . . . . 5 (𝜑𝐹 ∈ (SubRing‘𝐸))
4 eqid 2740 . . . . . 6 (𝐸s 𝐹) = (𝐸s 𝐹)
54subrgring 20602 . . . . 5 (𝐹 ∈ (SubRing‘𝐸) → (𝐸s 𝐹) ∈ Ring)
63, 5syl 17 . . . 4 (𝜑 → (𝐸s 𝐹) ∈ Ring)
7 eqid 2740 . . . . 5 (Poly1‘(𝐸s 𝐹)) = (Poly1‘(𝐸s 𝐹))
87ply1ring 22270 . . . 4 ((𝐸s 𝐹) ∈ Ring → (Poly1‘(𝐸s 𝐹)) ∈ Ring)
96, 8syl 17 . . 3 (𝜑 → (Poly1‘(𝐸s 𝐹)) ∈ Ring)
10 eqid 2740 . . . . . 6 (𝐸 evalSub1 𝐹) = (𝐸 evalSub1 𝐹)
11 eqid 2740 . . . . . 6 (Base‘𝐸) = (Base‘𝐸)
12 irngnminplynz.e . . . . . . 7 (𝜑𝐸 ∈ Field)
1312fldcrngd 20764 . . . . . 6 (𝜑𝐸 ∈ CRing)
14 eqid 2740 . . . . . . . 8 (0g𝐸) = (0g𝐸)
1510, 4, 11, 14, 13, 3irngssv 33688 . . . . . . 7 (𝜑 → (𝐸 IntgRing 𝐹) ⊆ (Base‘𝐸))
16 irngnminplynz.a . . . . . . 7 (𝜑𝐴 ∈ (𝐸 IntgRing 𝐹))
1715, 16sseldd 4009 . . . . . 6 (𝜑𝐴 ∈ (Base‘𝐸))
18 eqid 2740 . . . . . 6 {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g𝐸)} = {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g𝐸)}
1910, 7, 11, 13, 3, 17, 14, 18ply1annidl 33695 . . . . 5 (𝜑 → {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g𝐸)} ∈ (LIdeal‘(Poly1‘(𝐸s 𝐹))))
20 eqid 2740 . . . . . 6 (Base‘(Poly1‘(𝐸s 𝐹))) = (Base‘(Poly1‘(𝐸s 𝐹)))
21 eqid 2740 . . . . . 6 (LIdeal‘(Poly1‘(𝐸s 𝐹))) = (LIdeal‘(Poly1‘(𝐸s 𝐹)))
2220, 21lidlss 21245 . . . . 5 ({𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g𝐸)} ∈ (LIdeal‘(Poly1‘(𝐸s 𝐹))) → {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g𝐸)} ⊆ (Base‘(Poly1‘(𝐸s 𝐹))))
2319, 22syl 17 . . . 4 (𝜑 → {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g𝐸)} ⊆ (Base‘(Poly1‘(𝐸s 𝐹))))
244sdrgdrng 20813 . . . . . 6 (𝐹 ∈ (SubDRing‘𝐸) → (𝐸s 𝐹) ∈ DivRing)
251, 24syl 17 . . . . 5 (𝜑 → (𝐸s 𝐹) ∈ DivRing)
26 eqid 2740 . . . . . 6 (idlGen1p‘(𝐸s 𝐹)) = (idlGen1p‘(𝐸s 𝐹))
277, 26, 21ig1pcl 26238 . . . . 5 (((𝐸s 𝐹) ∈ DivRing ∧ {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g𝐸)} ∈ (LIdeal‘(Poly1‘(𝐸s 𝐹)))) → ((idlGen1p‘(𝐸s 𝐹))‘{𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g𝐸)}) ∈ {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g𝐸)})
2825, 19, 27syl2anc 583 . . . 4 (𝜑 → ((idlGen1p‘(𝐸s 𝐹))‘{𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g𝐸)}) ∈ {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g𝐸)})
2923, 28sseldd 4009 . . 3 (𝜑 → ((idlGen1p‘(𝐸s 𝐹))‘{𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g𝐸)}) ∈ (Base‘(Poly1‘(𝐸s 𝐹))))
30 eqid 2740 . . . . 5 (RSpan‘(Poly1‘(𝐸s 𝐹))) = (RSpan‘(Poly1‘(𝐸s 𝐹)))
3110, 7, 11, 12, 1, 17, 14, 18, 30, 26ply1annig1p 33697 . . . 4 (𝜑 → {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g𝐸)} = ((RSpan‘(Poly1‘(𝐸s 𝐹)))‘{((idlGen1p‘(𝐸s 𝐹))‘{𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g𝐸)})}))
32 fveq2 6920 . . . . . . . . 9 (𝑞 = 𝑝 → ((𝐸 evalSub1 𝐹)‘𝑞) = ((𝐸 evalSub1 𝐹)‘𝑝))
3332fveq1d 6922 . . . . . . . 8 (𝑞 = 𝑝 → (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (((𝐸 evalSub1 𝐹)‘𝑝)‘𝐴))
3433eqeq1d 2742 . . . . . . 7 (𝑞 = 𝑝 → ((((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g𝐸) ↔ (((𝐸 evalSub1 𝐹)‘𝑝)‘𝐴) = (0g𝐸)))
35 simplr 768 . . . . . . . 8 (((𝜑𝑝 ∈ (dom (𝐸 evalSub1 𝐹) ∖ {𝑍})) ∧ 𝐴 ∈ (((𝐸 evalSub1 𝐹)‘𝑝) “ {(0g𝐸)})) → 𝑝 ∈ (dom (𝐸 evalSub1 𝐹) ∖ {𝑍}))
3635eldifad 3988 . . . . . . 7 (((𝜑𝑝 ∈ (dom (𝐸 evalSub1 𝐹) ∖ {𝑍})) ∧ 𝐴 ∈ (((𝐸 evalSub1 𝐹)‘𝑝) “ {(0g𝐸)})) → 𝑝 ∈ dom (𝐸 evalSub1 𝐹))
3713ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑝 ∈ (dom (𝐸 evalSub1 𝐹) ∖ {𝑍})) ∧ 𝐴 ∈ (((𝐸 evalSub1 𝐹)‘𝑝) “ {(0g𝐸)})) → 𝐸 ∈ CRing)
383ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑝 ∈ (dom (𝐸 evalSub1 𝐹) ∖ {𝑍})) ∧ 𝐴 ∈ (((𝐸 evalSub1 𝐹)‘𝑝) “ {(0g𝐸)})) → 𝐹 ∈ (SubRing‘𝐸))
3910, 7, 20, 13, 3evls1dm 33552 . . . . . . . . . . . . 13 (𝜑 → dom (𝐸 evalSub1 𝐹) = (Base‘(Poly1‘(𝐸s 𝐹))))
4039ad2antrr 725 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ (dom (𝐸 evalSub1 𝐹) ∖ {𝑍})) ∧ 𝐴 ∈ (((𝐸 evalSub1 𝐹)‘𝑝) “ {(0g𝐸)})) → dom (𝐸 evalSub1 𝐹) = (Base‘(Poly1‘(𝐸s 𝐹))))
4136, 40eleqtrd 2846 . . . . . . . . . . 11 (((𝜑𝑝 ∈ (dom (𝐸 evalSub1 𝐹) ∖ {𝑍})) ∧ 𝐴 ∈ (((𝐸 evalSub1 𝐹)‘𝑝) “ {(0g𝐸)})) → 𝑝 ∈ (Base‘(Poly1‘(𝐸s 𝐹))))
4210, 7, 20, 37, 38, 11, 41evls1fvf 33553 . . . . . . . . . 10 (((𝜑𝑝 ∈ (dom (𝐸 evalSub1 𝐹) ∖ {𝑍})) ∧ 𝐴 ∈ (((𝐸 evalSub1 𝐹)‘𝑝) “ {(0g𝐸)})) → ((𝐸 evalSub1 𝐹)‘𝑝):(Base‘𝐸)⟶(Base‘𝐸))
4342ffnd 6748 . . . . . . . . 9 (((𝜑𝑝 ∈ (dom (𝐸 evalSub1 𝐹) ∖ {𝑍})) ∧ 𝐴 ∈ (((𝐸 evalSub1 𝐹)‘𝑝) “ {(0g𝐸)})) → ((𝐸 evalSub1 𝐹)‘𝑝) Fn (Base‘𝐸))
44 elpreima 7091 . . . . . . . . . 10 (((𝐸 evalSub1 𝐹)‘𝑝) Fn (Base‘𝐸) → (𝐴 ∈ (((𝐸 evalSub1 𝐹)‘𝑝) “ {(0g𝐸)}) ↔ (𝐴 ∈ (Base‘𝐸) ∧ (((𝐸 evalSub1 𝐹)‘𝑝)‘𝐴) ∈ {(0g𝐸)})))
4544simplbda 499 . . . . . . . . 9 ((((𝐸 evalSub1 𝐹)‘𝑝) Fn (Base‘𝐸) ∧ 𝐴 ∈ (((𝐸 evalSub1 𝐹)‘𝑝) “ {(0g𝐸)})) → (((𝐸 evalSub1 𝐹)‘𝑝)‘𝐴) ∈ {(0g𝐸)})
4643, 45sylancom 587 . . . . . . . 8 (((𝜑𝑝 ∈ (dom (𝐸 evalSub1 𝐹) ∖ {𝑍})) ∧ 𝐴 ∈ (((𝐸 evalSub1 𝐹)‘𝑝) “ {(0g𝐸)})) → (((𝐸 evalSub1 𝐹)‘𝑝)‘𝐴) ∈ {(0g𝐸)})
47 elsni 4665 . . . . . . . 8 ((((𝐸 evalSub1 𝐹)‘𝑝)‘𝐴) ∈ {(0g𝐸)} → (((𝐸 evalSub1 𝐹)‘𝑝)‘𝐴) = (0g𝐸))
4846, 47syl 17 . . . . . . 7 (((𝜑𝑝 ∈ (dom (𝐸 evalSub1 𝐹) ∖ {𝑍})) ∧ 𝐴 ∈ (((𝐸 evalSub1 𝐹)‘𝑝) “ {(0g𝐸)})) → (((𝐸 evalSub1 𝐹)‘𝑝)‘𝐴) = (0g𝐸))
4934, 36, 48elrabd 3710 . . . . . 6 (((𝜑𝑝 ∈ (dom (𝐸 evalSub1 𝐹) ∖ {𝑍})) ∧ 𝐴 ∈ (((𝐸 evalSub1 𝐹)‘𝑝) “ {(0g𝐸)})) → 𝑝 ∈ {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g𝐸)})
50 eldifsni 4815 . . . . . . . . 9 (𝑝 ∈ (dom (𝐸 evalSub1 𝐹) ∖ {𝑍}) → 𝑝𝑍)
5135, 50syl 17 . . . . . . . 8 (((𝜑𝑝 ∈ (dom (𝐸 evalSub1 𝐹) ∖ {𝑍})) ∧ 𝐴 ∈ (((𝐸 evalSub1 𝐹)‘𝑝) “ {(0g𝐸)})) → 𝑝𝑍)
52 eqid 2740 . . . . . . . . . 10 (Poly1𝐸) = (Poly1𝐸)
53 irngnminplynz.z . . . . . . . . . 10 𝑍 = (0g‘(Poly1𝐸))
5452, 4, 7, 20, 3, 53ressply10g 33557 . . . . . . . . 9 (𝜑𝑍 = (0g‘(Poly1‘(𝐸s 𝐹))))
5554ad2antrr 725 . . . . . . . 8 (((𝜑𝑝 ∈ (dom (𝐸 evalSub1 𝐹) ∖ {𝑍})) ∧ 𝐴 ∈ (((𝐸 evalSub1 𝐹)‘𝑝) “ {(0g𝐸)})) → 𝑍 = (0g‘(Poly1‘(𝐸s 𝐹))))
5651, 55neeqtrd 3016 . . . . . . 7 (((𝜑𝑝 ∈ (dom (𝐸 evalSub1 𝐹) ∖ {𝑍})) ∧ 𝐴 ∈ (((𝐸 evalSub1 𝐹)‘𝑝) “ {(0g𝐸)})) → 𝑝 ≠ (0g‘(Poly1‘(𝐸s 𝐹))))
57 nelsn 4688 . . . . . . 7 (𝑝 ≠ (0g‘(Poly1‘(𝐸s 𝐹))) → ¬ 𝑝 ∈ {(0g‘(Poly1‘(𝐸s 𝐹)))})
5856, 57syl 17 . . . . . 6 (((𝜑𝑝 ∈ (dom (𝐸 evalSub1 𝐹) ∖ {𝑍})) ∧ 𝐴 ∈ (((𝐸 evalSub1 𝐹)‘𝑝) “ {(0g𝐸)})) → ¬ 𝑝 ∈ {(0g‘(Poly1‘(𝐸s 𝐹)))})
59 nelne1 3045 . . . . . 6 ((𝑝 ∈ {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g𝐸)} ∧ ¬ 𝑝 ∈ {(0g‘(Poly1‘(𝐸s 𝐹)))}) → {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g𝐸)} ≠ {(0g‘(Poly1‘(𝐸s 𝐹)))})
6049, 58, 59syl2anc 583 . . . . 5 (((𝜑𝑝 ∈ (dom (𝐸 evalSub1 𝐹) ∖ {𝑍})) ∧ 𝐴 ∈ (((𝐸 evalSub1 𝐹)‘𝑝) “ {(0g𝐸)})) → {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g𝐸)} ≠ {(0g‘(Poly1‘(𝐸s 𝐹)))})
6110, 53, 14, 12, 1irngnzply1 33691 . . . . . . 7 (𝜑 → (𝐸 IntgRing 𝐹) = 𝑝 ∈ (dom (𝐸 evalSub1 𝐹) ∖ {𝑍})(((𝐸 evalSub1 𝐹)‘𝑝) “ {(0g𝐸)}))
6216, 61eleqtrd 2846 . . . . . 6 (𝜑𝐴 𝑝 ∈ (dom (𝐸 evalSub1 𝐹) ∖ {𝑍})(((𝐸 evalSub1 𝐹)‘𝑝) “ {(0g𝐸)}))
63 eliun 5019 . . . . . 6 (𝐴 𝑝 ∈ (dom (𝐸 evalSub1 𝐹) ∖ {𝑍})(((𝐸 evalSub1 𝐹)‘𝑝) “ {(0g𝐸)}) ↔ ∃𝑝 ∈ (dom (𝐸 evalSub1 𝐹) ∖ {𝑍})𝐴 ∈ (((𝐸 evalSub1 𝐹)‘𝑝) “ {(0g𝐸)}))
6462, 63sylib 218 . . . . 5 (𝜑 → ∃𝑝 ∈ (dom (𝐸 evalSub1 𝐹) ∖ {𝑍})𝐴 ∈ (((𝐸 evalSub1 𝐹)‘𝑝) “ {(0g𝐸)}))
6560, 64r19.29a 3168 . . . 4 (𝜑 → {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g𝐸)} ≠ {(0g‘(Poly1‘(𝐸s 𝐹)))})
6631, 65eqnetrrd 3015 . . 3 (𝜑 → ((RSpan‘(Poly1‘(𝐸s 𝐹)))‘{((idlGen1p‘(𝐸s 𝐹))‘{𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g𝐸)})}) ≠ {(0g‘(Poly1‘(𝐸s 𝐹)))})
67 eqid 2740 . . . . 5 (0g‘(Poly1‘(𝐸s 𝐹))) = (0g‘(Poly1‘(𝐸s 𝐹)))
6820, 67, 30pidlnzb 33415 . . . 4 (((Poly1‘(𝐸s 𝐹)) ∈ Ring ∧ ((idlGen1p‘(𝐸s 𝐹))‘{𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g𝐸)}) ∈ (Base‘(Poly1‘(𝐸s 𝐹)))) → (((idlGen1p‘(𝐸s 𝐹))‘{𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g𝐸)}) ≠ (0g‘(Poly1‘(𝐸s 𝐹))) ↔ ((RSpan‘(Poly1‘(𝐸s 𝐹)))‘{((idlGen1p‘(𝐸s 𝐹))‘{𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g𝐸)})}) ≠ {(0g‘(Poly1‘(𝐸s 𝐹)))}))
6968biimpar 477 . . 3 ((((Poly1‘(𝐸s 𝐹)) ∈ Ring ∧ ((idlGen1p‘(𝐸s 𝐹))‘{𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g𝐸)}) ∈ (Base‘(Poly1‘(𝐸s 𝐹)))) ∧ ((RSpan‘(Poly1‘(𝐸s 𝐹)))‘{((idlGen1p‘(𝐸s 𝐹))‘{𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g𝐸)})}) ≠ {(0g‘(Poly1‘(𝐸s 𝐹)))}) → ((idlGen1p‘(𝐸s 𝐹))‘{𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g𝐸)}) ≠ (0g‘(Poly1‘(𝐸s 𝐹))))
709, 29, 66, 69syl21anc 837 . 2 (𝜑 → ((idlGen1p‘(𝐸s 𝐹))‘{𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g𝐸)}) ≠ (0g‘(Poly1‘(𝐸s 𝐹))))
71 irngnminplynz.m . . 3 𝑀 = (𝐸 minPoly 𝐹)
7210, 7, 11, 12, 1, 17, 14, 18, 30, 26, 71minplyval 33698 . 2 (𝜑 → (𝑀𝐴) = ((idlGen1p‘(𝐸s 𝐹))‘{𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g𝐸)}))
7370, 72, 543netr4d 3024 1 (𝜑 → (𝑀𝐴) ≠ 𝑍)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2108  wne 2946  wrex 3076  {crab 3443  cdif 3973  wss 3976  {csn 4648   ciun 5015  ccnv 5699  dom cdm 5700  cima 5703   Fn wfn 6568  cfv 6573  (class class class)co 7448  Basecbs 17258  s cress 17287  0gc0g 17499  Ringcrg 20260  CRingccrg 20261  SubRingcsubrg 20595  DivRingcdr 20751  Fieldcfield 20752  SubDRingcsdrg 20809  LIdealclidl 21239  RSpancrsp 21240  Poly1cpl1 22199   evalSub1 ces1 22338  idlGen1pcig1p 26189   IntgRing cirng 33683   minPoly cminply 33692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-ofr 7715  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-0g 17501  df-gsum 17502  df-prds 17507  df-pws 17509  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-ghm 19253  df-cntz 19357  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-srg 20214  df-ring 20262  df-cring 20263  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-rhm 20498  df-subrng 20572  df-subrg 20597  df-rlreg 20716  df-drng 20753  df-field 20754  df-sdrg 20810  df-lmod 20882  df-lss 20953  df-lsp 20993  df-sra 21195  df-rgmod 21196  df-lidl 21241  df-rsp 21242  df-cnfld 21388  df-assa 21896  df-asp 21897  df-ascl 21898  df-psr 21952  df-mvr 21953  df-mpl 21954  df-opsr 21956  df-evls 22121  df-evl 22122  df-psr1 22202  df-vr1 22203  df-ply1 22204  df-coe1 22205  df-evls1 22340  df-evl1 22341  df-mdeg 26114  df-deg1 26115  df-mon1 26190  df-uc1p 26191  df-q1p 26192  df-r1p 26193  df-ig1p 26194  df-irng 33684  df-minply 33693
This theorem is referenced by:  minplym1p  33706  irredminply  33707  algextdeglem4  33711  algextdeglem7  33714  algextdeglem8  33715
  Copyright terms: Public domain W3C validator