| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2734 |
. . 3
⊢ (𝐸 evalSub1 𝐹) = (𝐸 evalSub1 𝐹) |
| 2 | | eqid 2734 |
. . 3
⊢
(Poly1‘(𝐸 ↾s 𝐹)) = (Poly1‘(𝐸 ↾s 𝐹)) |
| 3 | | eqid 2734 |
. . 3
⊢
(Base‘𝐸) =
(Base‘𝐸) |
| 4 | | irngnminplynz.e |
. . 3
⊢ (𝜑 → 𝐸 ∈ Field) |
| 5 | | irngnminplynz.f |
. . 3
⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) |
| 6 | | eqid 2734 |
. . . . 5
⊢ (𝐸 ↾s 𝐹) = (𝐸 ↾s 𝐹) |
| 7 | | eqid 2734 |
. . . . 5
⊢
(0g‘𝐸) = (0g‘𝐸) |
| 8 | 4 | fldcrngd 20711 |
. . . . 5
⊢ (𝜑 → 𝐸 ∈ CRing) |
| 9 | | sdrgsubrg 20761 |
. . . . . 6
⊢ (𝐹 ∈ (SubDRing‘𝐸) → 𝐹 ∈ (SubRing‘𝐸)) |
| 10 | 5, 9 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ (SubRing‘𝐸)) |
| 11 | 1, 6, 3, 7, 8, 10 | irngssv 33680 |
. . . 4
⊢ (𝜑 → (𝐸 IntgRing 𝐹) ⊆ (Base‘𝐸)) |
| 12 | | irngnminplynz.a |
. . . 4
⊢ (𝜑 → 𝐴 ∈ (𝐸 IntgRing 𝐹)) |
| 13 | 11, 12 | sseldd 3964 |
. . 3
⊢ (𝜑 → 𝐴 ∈ (Base‘𝐸)) |
| 14 | | eqid 2734 |
. . 3
⊢ {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)} = {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)} |
| 15 | | eqid 2734 |
. . 3
⊢
(RSpan‘(Poly1‘(𝐸 ↾s 𝐹))) =
(RSpan‘(Poly1‘(𝐸 ↾s 𝐹))) |
| 16 | | eqid 2734 |
. . 3
⊢
(idlGen1p‘(𝐸 ↾s 𝐹)) = (idlGen1p‘(𝐸 ↾s 𝐹)) |
| 17 | | irngnminplynz.m |
. . 3
⊢ 𝑀 = (𝐸 minPoly 𝐹) |
| 18 | 1, 2, 3, 4, 5, 13,
7, 14, 15, 16, 17 | minplyval 33690 |
. 2
⊢ (𝜑 → (𝑀‘𝐴) = ((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)})) |
| 19 | 6 | sdrgdrng 20760 |
. . . . 5
⊢ (𝐹 ∈ (SubDRing‘𝐸) → (𝐸 ↾s 𝐹) ∈ DivRing) |
| 20 | 5, 19 | syl 17 |
. . . 4
⊢ (𝜑 → (𝐸 ↾s 𝐹) ∈ DivRing) |
| 21 | 1, 2, 3, 8, 10, 13, 7, 14 | ply1annidl 33687 |
. . . 4
⊢ (𝜑 → {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)} ∈
(LIdeal‘(Poly1‘(𝐸 ↾s 𝐹)))) |
| 22 | 18 | sneqd 4618 |
. . . . . . 7
⊢ (𝜑 → {(𝑀‘𝐴)} = {((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)})}) |
| 23 | 22 | fveq2d 6890 |
. . . . . 6
⊢ (𝜑 →
((RSpan‘(Poly1‘(𝐸 ↾s 𝐹)))‘{(𝑀‘𝐴)}) =
((RSpan‘(Poly1‘(𝐸 ↾s 𝐹)))‘{((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)})})) |
| 24 | 1, 2, 3, 4, 5, 13,
7, 14, 15, 16 | ply1annig1p 33689 |
. . . . . 6
⊢ (𝜑 → {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)} =
((RSpan‘(Poly1‘(𝐸 ↾s 𝐹)))‘{((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)})})) |
| 25 | 23, 24 | eqtr4d 2772 |
. . . . 5
⊢ (𝜑 →
((RSpan‘(Poly1‘(𝐸 ↾s 𝐹)))‘{(𝑀‘𝐴)}) = {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)}) |
| 26 | 20 | drngringd 20706 |
. . . . . . 7
⊢ (𝜑 → (𝐸 ↾s 𝐹) ∈ Ring) |
| 27 | 2 | ply1ring 22198 |
. . . . . . 7
⊢ ((𝐸 ↾s 𝐹) ∈ Ring →
(Poly1‘(𝐸
↾s 𝐹))
∈ Ring) |
| 28 | 26, 27 | syl 17 |
. . . . . 6
⊢ (𝜑 →
(Poly1‘(𝐸
↾s 𝐹))
∈ Ring) |
| 29 | 1, 2, 3, 4, 5, 13,
7, 14, 15, 16, 17 | minplycl 33691 |
. . . . . 6
⊢ (𝜑 → (𝑀‘𝐴) ∈
(Base‘(Poly1‘(𝐸 ↾s 𝐹)))) |
| 30 | | irngnminplynz.z |
. . . . . . . 8
⊢ 𝑍 =
(0g‘(Poly1‘𝐸)) |
| 31 | 30, 4, 5, 17, 12 | irngnminplynz 33697 |
. . . . . . 7
⊢ (𝜑 → (𝑀‘𝐴) ≠ 𝑍) |
| 32 | | eqid 2734 |
. . . . . . . 8
⊢
(Poly1‘𝐸) = (Poly1‘𝐸) |
| 33 | | eqid 2734 |
. . . . . . . 8
⊢
(Base‘(Poly1‘(𝐸 ↾s 𝐹))) =
(Base‘(Poly1‘(𝐸 ↾s 𝐹))) |
| 34 | 32, 6, 2, 33, 10, 30 | ressply10g 33532 |
. . . . . . 7
⊢ (𝜑 → 𝑍 =
(0g‘(Poly1‘(𝐸 ↾s 𝐹)))) |
| 35 | 31, 34 | neeqtrd 3000 |
. . . . . 6
⊢ (𝜑 → (𝑀‘𝐴) ≠
(0g‘(Poly1‘(𝐸 ↾s 𝐹)))) |
| 36 | | eqid 2734 |
. . . . . . 7
⊢
(0g‘(Poly1‘(𝐸 ↾s 𝐹))) =
(0g‘(Poly1‘(𝐸 ↾s 𝐹))) |
| 37 | 33, 36, 15 | pidlnz 33344 |
. . . . . 6
⊢
(((Poly1‘(𝐸 ↾s 𝐹)) ∈ Ring ∧ (𝑀‘𝐴) ∈
(Base‘(Poly1‘(𝐸 ↾s 𝐹))) ∧ (𝑀‘𝐴) ≠
(0g‘(Poly1‘(𝐸 ↾s 𝐹)))) →
((RSpan‘(Poly1‘(𝐸 ↾s 𝐹)))‘{(𝑀‘𝐴)}) ≠
{(0g‘(Poly1‘(𝐸 ↾s 𝐹)))}) |
| 38 | 28, 29, 35, 37 | syl3anc 1372 |
. . . . 5
⊢ (𝜑 →
((RSpan‘(Poly1‘(𝐸 ↾s 𝐹)))‘{(𝑀‘𝐴)}) ≠
{(0g‘(Poly1‘(𝐸 ↾s 𝐹)))}) |
| 39 | 25, 38 | eqnetrrd 2999 |
. . . 4
⊢ (𝜑 → {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)} ≠
{(0g‘(Poly1‘(𝐸 ↾s 𝐹)))}) |
| 40 | | eqid 2734 |
. . . . 5
⊢
(LIdeal‘(Poly1‘(𝐸 ↾s 𝐹))) =
(LIdeal‘(Poly1‘(𝐸 ↾s 𝐹))) |
| 41 | | eqid 2734 |
. . . . 5
⊢
(deg1‘(𝐸 ↾s 𝐹)) = (deg1‘(𝐸 ↾s 𝐹)) |
| 42 | | minplym1p.1 |
. . . . 5
⊢ 𝑈 =
(Monic1p‘(𝐸 ↾s 𝐹)) |
| 43 | 2, 16, 36, 40, 41, 42 | ig1pval3 26154 |
. . . 4
⊢ (((𝐸 ↾s 𝐹) ∈ DivRing ∧ {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)} ∈
(LIdeal‘(Poly1‘(𝐸 ↾s 𝐹))) ∧ {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)} ≠
{(0g‘(Poly1‘(𝐸 ↾s 𝐹)))}) →
(((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)}) ∈ {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)} ∧ ((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)}) ∈ 𝑈 ∧ ((deg1‘(𝐸 ↾s 𝐹))‘((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)})) = inf(((deg1‘(𝐸 ↾s 𝐹)) “ ({𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)} ∖
{(0g‘(Poly1‘(𝐸 ↾s 𝐹)))})), ℝ, < ))) |
| 44 | 20, 21, 39, 43 | syl3anc 1372 |
. . 3
⊢ (𝜑 →
(((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)}) ∈ {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)} ∧ ((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)}) ∈ 𝑈 ∧ ((deg1‘(𝐸 ↾s 𝐹))‘((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)})) = inf(((deg1‘(𝐸 ↾s 𝐹)) “ ({𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)} ∖
{(0g‘(Poly1‘(𝐸 ↾s 𝐹)))})), ℝ, < ))) |
| 45 | 44 | simp2d 1143 |
. 2
⊢ (𝜑 →
((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)}) ∈ 𝑈) |
| 46 | 18, 45 | eqeltrd 2833 |
1
⊢ (𝜑 → (𝑀‘𝐴) ∈ 𝑈) |