Step | Hyp | Ref
| Expression |
1 | | eqid 2730 |
. . 3
β’ (πΈ evalSub1 πΉ) = (πΈ evalSub1 πΉ) |
2 | | eqid 2730 |
. . 3
β’
(Poly1β(πΈ βΎs πΉ)) = (Poly1β(πΈ βΎs πΉ)) |
3 | | eqid 2730 |
. . 3
β’
(BaseβπΈ) =
(BaseβπΈ) |
4 | | irngnminplynz.e |
. . 3
β’ (π β πΈ β Field) |
5 | | irngnminplynz.f |
. . 3
β’ (π β πΉ β (SubDRingβπΈ)) |
6 | | eqid 2730 |
. . . . 5
β’ (πΈ βΎs πΉ) = (πΈ βΎs πΉ) |
7 | | eqid 2730 |
. . . . 5
β’
(0gβπΈ) = (0gβπΈ) |
8 | 4 | fldcrngd 20513 |
. . . . 5
β’ (π β πΈ β CRing) |
9 | | sdrgsubrg 20550 |
. . . . . 6
β’ (πΉ β (SubDRingβπΈ) β πΉ β (SubRingβπΈ)) |
10 | 5, 9 | syl 17 |
. . . . 5
β’ (π β πΉ β (SubRingβπΈ)) |
11 | 1, 6, 3, 7, 8, 10 | irngssv 33041 |
. . . 4
β’ (π β (πΈ IntgRing πΉ) β (BaseβπΈ)) |
12 | | irngnminplynz.a |
. . . 4
β’ (π β π΄ β (πΈ IntgRing πΉ)) |
13 | 11, 12 | sseldd 3982 |
. . 3
β’ (π β π΄ β (BaseβπΈ)) |
14 | | eqid 2730 |
. . 3
β’ {π β dom (πΈ evalSub1 πΉ) β£ (((πΈ evalSub1 πΉ)βπ)βπ΄) = (0gβπΈ)} = {π β dom (πΈ evalSub1 πΉ) β£ (((πΈ evalSub1 πΉ)βπ)βπ΄) = (0gβπΈ)} |
15 | | eqid 2730 |
. . 3
β’
(RSpanβ(Poly1β(πΈ βΎs πΉ))) =
(RSpanβ(Poly1β(πΈ βΎs πΉ))) |
16 | | eqid 2730 |
. . 3
β’
(idlGen1pβ(πΈ βΎs πΉ)) = (idlGen1pβ(πΈ βΎs πΉ)) |
17 | | irngnminplynz.m |
. . 3
β’ π = (πΈ minPoly πΉ) |
18 | 1, 2, 3, 4, 5, 13,
7, 14, 15, 16, 17 | minplyval 33055 |
. 2
β’ (π β (πβπ΄) = ((idlGen1pβ(πΈ βΎs πΉ))β{π β dom (πΈ evalSub1 πΉ) β£ (((πΈ evalSub1 πΉ)βπ)βπ΄) = (0gβπΈ)})) |
19 | 6 | sdrgdrng 20549 |
. . . . 5
β’ (πΉ β (SubDRingβπΈ) β (πΈ βΎs πΉ) β DivRing) |
20 | 5, 19 | syl 17 |
. . . 4
β’ (π β (πΈ βΎs πΉ) β DivRing) |
21 | 1, 2, 3, 8, 10, 13, 7, 14 | ply1annidl 33052 |
. . . 4
β’ (π β {π β dom (πΈ evalSub1 πΉ) β£ (((πΈ evalSub1 πΉ)βπ)βπ΄) = (0gβπΈ)} β
(LIdealβ(Poly1β(πΈ βΎs πΉ)))) |
22 | 18 | sneqd 4639 |
. . . . . . 7
β’ (π β {(πβπ΄)} = {((idlGen1pβ(πΈ βΎs πΉ))β{π β dom (πΈ evalSub1 πΉ) β£ (((πΈ evalSub1 πΉ)βπ)βπ΄) = (0gβπΈ)})}) |
23 | 22 | fveq2d 6894 |
. . . . . 6
β’ (π β
((RSpanβ(Poly1β(πΈ βΎs πΉ)))β{(πβπ΄)}) =
((RSpanβ(Poly1β(πΈ βΎs πΉ)))β{((idlGen1pβ(πΈ βΎs πΉ))β{π β dom (πΈ evalSub1 πΉ) β£ (((πΈ evalSub1 πΉ)βπ)βπ΄) = (0gβπΈ)})})) |
24 | 1, 2, 3, 4, 5, 13,
7, 14, 15, 16 | ply1annig1p 33054 |
. . . . . 6
β’ (π β {π β dom (πΈ evalSub1 πΉ) β£ (((πΈ evalSub1 πΉ)βπ)βπ΄) = (0gβπΈ)} =
((RSpanβ(Poly1β(πΈ βΎs πΉ)))β{((idlGen1pβ(πΈ βΎs πΉ))β{π β dom (πΈ evalSub1 πΉ) β£ (((πΈ evalSub1 πΉ)βπ)βπ΄) = (0gβπΈ)})})) |
25 | 23, 24 | eqtr4d 2773 |
. . . . 5
β’ (π β
((RSpanβ(Poly1β(πΈ βΎs πΉ)))β{(πβπ΄)}) = {π β dom (πΈ evalSub1 πΉ) β£ (((πΈ evalSub1 πΉ)βπ)βπ΄) = (0gβπΈ)}) |
26 | 20 | drngringd 20508 |
. . . . . . 7
β’ (π β (πΈ βΎs πΉ) β Ring) |
27 | 2 | ply1ring 21990 |
. . . . . . 7
β’ ((πΈ βΎs πΉ) β Ring β
(Poly1β(πΈ
βΎs πΉ))
β Ring) |
28 | 26, 27 | syl 17 |
. . . . . 6
β’ (π β
(Poly1β(πΈ
βΎs πΉ))
β Ring) |
29 | 1, 2, 3, 4, 5, 13,
7, 14, 15, 16, 17 | minplycl 33056 |
. . . . . 6
β’ (π β (πβπ΄) β
(Baseβ(Poly1β(πΈ βΎs πΉ)))) |
30 | | irngnminplynz.z |
. . . . . . . 8
β’ π =
(0gβ(Poly1βπΈ)) |
31 | 30, 4, 5, 17, 12 | irngnminplynz 33060 |
. . . . . . 7
β’ (π β (πβπ΄) β π) |
32 | | eqid 2730 |
. . . . . . . 8
β’
(Poly1βπΈ) = (Poly1βπΈ) |
33 | | eqid 2730 |
. . . . . . . 8
β’
(Baseβ(Poly1β(πΈ βΎs πΉ))) =
(Baseβ(Poly1β(πΈ βΎs πΉ))) |
34 | 32, 6, 2, 33, 10, 30 | ressply10g 32930 |
. . . . . . 7
β’ (π β π =
(0gβ(Poly1β(πΈ βΎs πΉ)))) |
35 | 31, 34 | neeqtrd 3008 |
. . . . . 6
β’ (π β (πβπ΄) β
(0gβ(Poly1β(πΈ βΎs πΉ)))) |
36 | | eqid 2730 |
. . . . . . 7
β’
(0gβ(Poly1β(πΈ βΎs πΉ))) =
(0gβ(Poly1β(πΈ βΎs πΉ))) |
37 | 33, 36, 15 | pidlnz 32762 |
. . . . . 6
β’
(((Poly1β(πΈ βΎs πΉ)) β Ring β§ (πβπ΄) β
(Baseβ(Poly1β(πΈ βΎs πΉ))) β§ (πβπ΄) β
(0gβ(Poly1β(πΈ βΎs πΉ)))) β
((RSpanβ(Poly1β(πΈ βΎs πΉ)))β{(πβπ΄)}) β
{(0gβ(Poly1β(πΈ βΎs πΉ)))}) |
38 | 28, 29, 35, 37 | syl3anc 1369 |
. . . . 5
β’ (π β
((RSpanβ(Poly1β(πΈ βΎs πΉ)))β{(πβπ΄)}) β
{(0gβ(Poly1β(πΈ βΎs πΉ)))}) |
39 | 25, 38 | eqnetrrd 3007 |
. . . 4
β’ (π β {π β dom (πΈ evalSub1 πΉ) β£ (((πΈ evalSub1 πΉ)βπ)βπ΄) = (0gβπΈ)} β
{(0gβ(Poly1β(πΈ βΎs πΉ)))}) |
40 | | eqid 2730 |
. . . . 5
β’
(LIdealβ(Poly1β(πΈ βΎs πΉ))) =
(LIdealβ(Poly1β(πΈ βΎs πΉ))) |
41 | | eqid 2730 |
. . . . 5
β’ (
deg1 β(πΈ
βΎs πΉ)) = (
deg1 β(πΈ
βΎs πΉ)) |
42 | | minplym1p.1 |
. . . . 5
β’ π =
(Monic1pβ(πΈ βΎs πΉ)) |
43 | 2, 16, 36, 40, 41, 42 | ig1pval3 25927 |
. . . 4
β’ (((πΈ βΎs πΉ) β DivRing β§ {π β dom (πΈ evalSub1 πΉ) β£ (((πΈ evalSub1 πΉ)βπ)βπ΄) = (0gβπΈ)} β
(LIdealβ(Poly1β(πΈ βΎs πΉ))) β§ {π β dom (πΈ evalSub1 πΉ) β£ (((πΈ evalSub1 πΉ)βπ)βπ΄) = (0gβπΈ)} β
{(0gβ(Poly1β(πΈ βΎs πΉ)))}) β
(((idlGen1pβ(πΈ βΎs πΉ))β{π β dom (πΈ evalSub1 πΉ) β£ (((πΈ evalSub1 πΉ)βπ)βπ΄) = (0gβπΈ)}) β {π β dom (πΈ evalSub1 πΉ) β£ (((πΈ evalSub1 πΉ)βπ)βπ΄) = (0gβπΈ)} β§ ((idlGen1pβ(πΈ βΎs πΉ))β{π β dom (πΈ evalSub1 πΉ) β£ (((πΈ evalSub1 πΉ)βπ)βπ΄) = (0gβπΈ)}) β π β§ (( deg1 β(πΈ βΎs πΉ))β((idlGen1pβ(πΈ βΎs πΉ))β{π β dom (πΈ evalSub1 πΉ) β£ (((πΈ evalSub1 πΉ)βπ)βπ΄) = (0gβπΈ)})) = inf((( deg1 β(πΈ βΎs πΉ)) β ({π β dom (πΈ evalSub1 πΉ) β£ (((πΈ evalSub1 πΉ)βπ)βπ΄) = (0gβπΈ)} β
{(0gβ(Poly1β(πΈ βΎs πΉ)))})), β, < ))) |
44 | 20, 21, 39, 43 | syl3anc 1369 |
. . 3
β’ (π β
(((idlGen1pβ(πΈ βΎs πΉ))β{π β dom (πΈ evalSub1 πΉ) β£ (((πΈ evalSub1 πΉ)βπ)βπ΄) = (0gβπΈ)}) β {π β dom (πΈ evalSub1 πΉ) β£ (((πΈ evalSub1 πΉ)βπ)βπ΄) = (0gβπΈ)} β§ ((idlGen1pβ(πΈ βΎs πΉ))β{π β dom (πΈ evalSub1 πΉ) β£ (((πΈ evalSub1 πΉ)βπ)βπ΄) = (0gβπΈ)}) β π β§ (( deg1 β(πΈ βΎs πΉ))β((idlGen1pβ(πΈ βΎs πΉ))β{π β dom (πΈ evalSub1 πΉ) β£ (((πΈ evalSub1 πΉ)βπ)βπ΄) = (0gβπΈ)})) = inf((( deg1 β(πΈ βΎs πΉ)) β ({π β dom (πΈ evalSub1 πΉ) β£ (((πΈ evalSub1 πΉ)βπ)βπ΄) = (0gβπΈ)} β
{(0gβ(Poly1β(πΈ βΎs πΉ)))})), β, < ))) |
45 | 44 | simp2d 1141 |
. 2
β’ (π β
((idlGen1pβ(πΈ βΎs πΉ))β{π β dom (πΈ evalSub1 πΉ) β£ (((πΈ evalSub1 πΉ)βπ)βπ΄) = (0gβπΈ)}) β π) |
46 | 18, 45 | eqeltrd 2831 |
1
β’ (π β (πβπ΄) β π) |