Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dnwech Structured version   Visualization version   GIF version

Theorem dnwech 43037
Description: Define a well-ordering from a choice function. (Contributed by Stefan O'Rear, 18-Jan-2015.)
Hypotheses
Ref Expression
dnnumch.f 𝐹 = recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧))))
dnnumch.a (𝜑𝐴𝑉)
dnnumch.g (𝜑 → ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝐺𝑦) ∈ 𝑦))
dnwech.h 𝐻 = {⟨𝑣, 𝑤⟩ ∣ (𝐹 “ {𝑣}) ∈ (𝐹 “ {𝑤})}
Assertion
Ref Expression
dnwech (𝜑𝐻 We 𝐴)
Distinct variable groups:   𝑣,𝐹,𝑤,𝑦   𝑣,𝐺,𝑤,𝑦,𝑧   𝑣,𝐴,𝑤,𝑦,𝑧   𝜑,𝑣,𝑤
Allowed substitution hints:   𝜑(𝑦,𝑧)   𝐹(𝑧)   𝐻(𝑦,𝑧,𝑤,𝑣)   𝑉(𝑦,𝑧,𝑤,𝑣)

Proof of Theorem dnwech
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dnnumch.f . . . . 5 𝐹 = recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧))))
2 dnnumch.a . . . . 5 (𝜑𝐴𝑉)
3 dnnumch.g . . . . 5 (𝜑 → ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝐺𝑦) ∈ 𝑦))
41, 2, 3dnnumch3 43036 . . . 4 (𝜑 → (𝑥𝐴 (𝐹 “ {𝑥})):𝐴1-1→On)
5 f1f1orn 6811 . . . 4 ((𝑥𝐴 (𝐹 “ {𝑥})):𝐴1-1→On → (𝑥𝐴 (𝐹 “ {𝑥})):𝐴1-1-onto→ran (𝑥𝐴 (𝐹 “ {𝑥})))
64, 5syl 17 . . 3 (𝜑 → (𝑥𝐴 (𝐹 “ {𝑥})):𝐴1-1-onto→ran (𝑥𝐴 (𝐹 “ {𝑥})))
7 f1f 6756 . . . . 5 ((𝑥𝐴 (𝐹 “ {𝑥})):𝐴1-1→On → (𝑥𝐴 (𝐹 “ {𝑥})):𝐴⟶On)
8 frn 6695 . . . . 5 ((𝑥𝐴 (𝐹 “ {𝑥})):𝐴⟶On → ran (𝑥𝐴 (𝐹 “ {𝑥})) ⊆ On)
94, 7, 83syl 18 . . . 4 (𝜑 → ran (𝑥𝐴 (𝐹 “ {𝑥})) ⊆ On)
10 epweon 7751 . . . 4 E We On
11 wess 5624 . . . 4 (ran (𝑥𝐴 (𝐹 “ {𝑥})) ⊆ On → ( E We On → E We ran (𝑥𝐴 (𝐹 “ {𝑥}))))
129, 10, 11mpisyl 21 . . 3 (𝜑 → E We ran (𝑥𝐴 (𝐹 “ {𝑥})))
13 eqid 2729 . . . 4 {⟨𝑣, 𝑤⟩ ∣ ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) E ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤)} = {⟨𝑣, 𝑤⟩ ∣ ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) E ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤)}
1413f1owe 7328 . . 3 ((𝑥𝐴 (𝐹 “ {𝑥})):𝐴1-1-onto→ran (𝑥𝐴 (𝐹 “ {𝑥})) → ( E We ran (𝑥𝐴 (𝐹 “ {𝑥})) → {⟨𝑣, 𝑤⟩ ∣ ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) E ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤)} We 𝐴))
156, 12, 14sylc 65 . 2 (𝜑 → {⟨𝑣, 𝑤⟩ ∣ ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) E ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤)} We 𝐴)
16 fvex 6871 . . . . . . . . 9 ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤) ∈ V
1716epeli 5540 . . . . . . . 8 (((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) E ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤) ↔ ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) ∈ ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤))
181, 2, 3dnnumch3lem 43035 . . . . . . . . . 10 ((𝜑𝑣𝐴) → ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) = (𝐹 “ {𝑣}))
1918adantrr 717 . . . . . . . . 9 ((𝜑 ∧ (𝑣𝐴𝑤𝐴)) → ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) = (𝐹 “ {𝑣}))
201, 2, 3dnnumch3lem 43035 . . . . . . . . . 10 ((𝜑𝑤𝐴) → ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤) = (𝐹 “ {𝑤}))
2120adantrl 716 . . . . . . . . 9 ((𝜑 ∧ (𝑣𝐴𝑤𝐴)) → ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤) = (𝐹 “ {𝑤}))
2219, 21eleq12d 2822 . . . . . . . 8 ((𝜑 ∧ (𝑣𝐴𝑤𝐴)) → (((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) ∈ ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤) ↔ (𝐹 “ {𝑣}) ∈ (𝐹 “ {𝑤})))
2317, 22bitr2id 284 . . . . . . 7 ((𝜑 ∧ (𝑣𝐴𝑤𝐴)) → ( (𝐹 “ {𝑣}) ∈ (𝐹 “ {𝑤}) ↔ ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) E ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤)))
2423pm5.32da 579 . . . . . 6 (𝜑 → (((𝑣𝐴𝑤𝐴) ∧ (𝐹 “ {𝑣}) ∈ (𝐹 “ {𝑤})) ↔ ((𝑣𝐴𝑤𝐴) ∧ ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) E ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤))))
2524opabbidv 5173 . . . . 5 (𝜑 → {⟨𝑣, 𝑤⟩ ∣ ((𝑣𝐴𝑤𝐴) ∧ (𝐹 “ {𝑣}) ∈ (𝐹 “ {𝑤}))} = {⟨𝑣, 𝑤⟩ ∣ ((𝑣𝐴𝑤𝐴) ∧ ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) E ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤))})
26 incom 4172 . . . . . 6 (𝐻 ∩ (𝐴 × 𝐴)) = ((𝐴 × 𝐴) ∩ 𝐻)
27 df-xp 5644 . . . . . . 7 (𝐴 × 𝐴) = {⟨𝑣, 𝑤⟩ ∣ (𝑣𝐴𝑤𝐴)}
28 dnwech.h . . . . . . 7 𝐻 = {⟨𝑣, 𝑤⟩ ∣ (𝐹 “ {𝑣}) ∈ (𝐹 “ {𝑤})}
2927, 28ineq12i 4181 . . . . . 6 ((𝐴 × 𝐴) ∩ 𝐻) = ({⟨𝑣, 𝑤⟩ ∣ (𝑣𝐴𝑤𝐴)} ∩ {⟨𝑣, 𝑤⟩ ∣ (𝐹 “ {𝑣}) ∈ (𝐹 “ {𝑤})})
30 inopab 5792 . . . . . 6 ({⟨𝑣, 𝑤⟩ ∣ (𝑣𝐴𝑤𝐴)} ∩ {⟨𝑣, 𝑤⟩ ∣ (𝐹 “ {𝑣}) ∈ (𝐹 “ {𝑤})}) = {⟨𝑣, 𝑤⟩ ∣ ((𝑣𝐴𝑤𝐴) ∧ (𝐹 “ {𝑣}) ∈ (𝐹 “ {𝑤}))}
3126, 29, 303eqtri 2756 . . . . 5 (𝐻 ∩ (𝐴 × 𝐴)) = {⟨𝑣, 𝑤⟩ ∣ ((𝑣𝐴𝑤𝐴) ∧ (𝐹 “ {𝑣}) ∈ (𝐹 “ {𝑤}))}
32 incom 4172 . . . . . 6 ({⟨𝑣, 𝑤⟩ ∣ ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) E ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤)} ∩ (𝐴 × 𝐴)) = ((𝐴 × 𝐴) ∩ {⟨𝑣, 𝑤⟩ ∣ ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) E ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤)})
3327ineq1i 4179 . . . . . 6 ((𝐴 × 𝐴) ∩ {⟨𝑣, 𝑤⟩ ∣ ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) E ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤)}) = ({⟨𝑣, 𝑤⟩ ∣ (𝑣𝐴𝑤𝐴)} ∩ {⟨𝑣, 𝑤⟩ ∣ ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) E ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤)})
34 inopab 5792 . . . . . 6 ({⟨𝑣, 𝑤⟩ ∣ (𝑣𝐴𝑤𝐴)} ∩ {⟨𝑣, 𝑤⟩ ∣ ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) E ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤)}) = {⟨𝑣, 𝑤⟩ ∣ ((𝑣𝐴𝑤𝐴) ∧ ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) E ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤))}
3532, 33, 343eqtri 2756 . . . . 5 ({⟨𝑣, 𝑤⟩ ∣ ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) E ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤)} ∩ (𝐴 × 𝐴)) = {⟨𝑣, 𝑤⟩ ∣ ((𝑣𝐴𝑤𝐴) ∧ ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) E ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤))}
3625, 31, 353eqtr4g 2789 . . . 4 (𝜑 → (𝐻 ∩ (𝐴 × 𝐴)) = ({⟨𝑣, 𝑤⟩ ∣ ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) E ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤)} ∩ (𝐴 × 𝐴)))
37 weeq1 5625 . . . 4 ((𝐻 ∩ (𝐴 × 𝐴)) = ({⟨𝑣, 𝑤⟩ ∣ ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) E ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤)} ∩ (𝐴 × 𝐴)) → ((𝐻 ∩ (𝐴 × 𝐴)) We 𝐴 ↔ ({⟨𝑣, 𝑤⟩ ∣ ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) E ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤)} ∩ (𝐴 × 𝐴)) We 𝐴))
3836, 37syl 17 . . 3 (𝜑 → ((𝐻 ∩ (𝐴 × 𝐴)) We 𝐴 ↔ ({⟨𝑣, 𝑤⟩ ∣ ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) E ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤)} ∩ (𝐴 × 𝐴)) We 𝐴))
39 weinxp 5723 . . 3 (𝐻 We 𝐴 ↔ (𝐻 ∩ (𝐴 × 𝐴)) We 𝐴)
40 weinxp 5723 . . 3 ({⟨𝑣, 𝑤⟩ ∣ ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) E ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤)} We 𝐴 ↔ ({⟨𝑣, 𝑤⟩ ∣ ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) E ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤)} ∩ (𝐴 × 𝐴)) We 𝐴)
4138, 39, 403bitr4g 314 . 2 (𝜑 → (𝐻 We 𝐴 ↔ {⟨𝑣, 𝑤⟩ ∣ ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) E ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤)} We 𝐴))
4215, 41mpbird 257 1 (𝜑𝐻 We 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  Vcvv 3447  cdif 3911  cin 3913  wss 3914  c0 4296  𝒫 cpw 4563  {csn 4589   cint 4910   class class class wbr 5107  {copab 5169  cmpt 5188   E cep 5537   We wwe 5590   × cxp 5636  ccnv 5637  ran crn 5639  cima 5641  Oncon0 6332  wf 6507  1-1wf1 6508  1-1-ontowf1o 6510  cfv 6511  recscrecs 8339
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-ov 7390  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340
This theorem is referenced by:  aomclem3  43045
  Copyright terms: Public domain W3C validator