Mathbox for Stefan O'Rear < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dnwech Structured version   Visualization version   GIF version

Theorem dnwech 39532
 Description: Define a well-ordering from a choice function. (Contributed by Stefan O'Rear, 18-Jan-2015.)
Hypotheses
Ref Expression
dnnumch.f 𝐹 = recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧))))
dnnumch.a (𝜑𝐴𝑉)
dnnumch.g (𝜑 → ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝐺𝑦) ∈ 𝑦))
dnwech.h 𝐻 = {⟨𝑣, 𝑤⟩ ∣ (𝐹 “ {𝑣}) ∈ (𝐹 “ {𝑤})}
Assertion
Ref Expression
dnwech (𝜑𝐻 We 𝐴)
Distinct variable groups:   𝑣,𝐹,𝑤,𝑦   𝑣,𝐺,𝑤,𝑦,𝑧   𝑣,𝐴,𝑤,𝑦,𝑧   𝜑,𝑣,𝑤
Allowed substitution hints:   𝜑(𝑦,𝑧)   𝐹(𝑧)   𝐻(𝑦,𝑧,𝑤,𝑣)   𝑉(𝑦,𝑧,𝑤,𝑣)

Proof of Theorem dnwech
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dnnumch.f . . . . 5 𝐹 = recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧))))
2 dnnumch.a . . . . 5 (𝜑𝐴𝑉)
3 dnnumch.g . . . . 5 (𝜑 → ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝐺𝑦) ∈ 𝑦))
41, 2, 3dnnumch3 39531 . . . 4 (𝜑 → (𝑥𝐴 (𝐹 “ {𝑥})):𝐴1-1→On)
5 f1f1orn 6625 . . . 4 ((𝑥𝐴 (𝐹 “ {𝑥})):𝐴1-1→On → (𝑥𝐴 (𝐹 “ {𝑥})):𝐴1-1-onto→ran (𝑥𝐴 (𝐹 “ {𝑥})))
64, 5syl 17 . . 3 (𝜑 → (𝑥𝐴 (𝐹 “ {𝑥})):𝐴1-1-onto→ran (𝑥𝐴 (𝐹 “ {𝑥})))
7 f1f 6574 . . . . 5 ((𝑥𝐴 (𝐹 “ {𝑥})):𝐴1-1→On → (𝑥𝐴 (𝐹 “ {𝑥})):𝐴⟶On)
8 frn 6519 . . . . 5 ((𝑥𝐴 (𝐹 “ {𝑥})):𝐴⟶On → ran (𝑥𝐴 (𝐹 “ {𝑥})) ⊆ On)
94, 7, 83syl 18 . . . 4 (𝜑 → ran (𝑥𝐴 (𝐹 “ {𝑥})) ⊆ On)
10 epweon 7490 . . . 4 E We On
11 wess 5541 . . . 4 (ran (𝑥𝐴 (𝐹 “ {𝑥})) ⊆ On → ( E We On → E We ran (𝑥𝐴 (𝐹 “ {𝑥}))))
129, 10, 11mpisyl 21 . . 3 (𝜑 → E We ran (𝑥𝐴 (𝐹 “ {𝑥})))
13 eqid 2826 . . . 4 {⟨𝑣, 𝑤⟩ ∣ ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) E ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤)} = {⟨𝑣, 𝑤⟩ ∣ ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) E ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤)}
1413f1owe 7100 . . 3 ((𝑥𝐴 (𝐹 “ {𝑥})):𝐴1-1-onto→ran (𝑥𝐴 (𝐹 “ {𝑥})) → ( E We ran (𝑥𝐴 (𝐹 “ {𝑥})) → {⟨𝑣, 𝑤⟩ ∣ ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) E ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤)} We 𝐴))
156, 12, 14sylc 65 . 2 (𝜑 → {⟨𝑣, 𝑤⟩ ∣ ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) E ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤)} We 𝐴)
16 fvex 6682 . . . . . . . . 9 ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤) ∈ V
1716epeli 5467 . . . . . . . 8 (((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) E ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤) ↔ ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) ∈ ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤))
181, 2, 3dnnumch3lem 39530 . . . . . . . . . 10 ((𝜑𝑣𝐴) → ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) = (𝐹 “ {𝑣}))
1918adantrr 713 . . . . . . . . 9 ((𝜑 ∧ (𝑣𝐴𝑤𝐴)) → ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) = (𝐹 “ {𝑣}))
201, 2, 3dnnumch3lem 39530 . . . . . . . . . 10 ((𝜑𝑤𝐴) → ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤) = (𝐹 “ {𝑤}))
2120adantrl 712 . . . . . . . . 9 ((𝜑 ∧ (𝑣𝐴𝑤𝐴)) → ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤) = (𝐹 “ {𝑤}))
2219, 21eleq12d 2912 . . . . . . . 8 ((𝜑 ∧ (𝑣𝐴𝑤𝐴)) → (((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) ∈ ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤) ↔ (𝐹 “ {𝑣}) ∈ (𝐹 “ {𝑤})))
2317, 22syl5rbb 285 . . . . . . 7 ((𝜑 ∧ (𝑣𝐴𝑤𝐴)) → ( (𝐹 “ {𝑣}) ∈ (𝐹 “ {𝑤}) ↔ ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) E ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤)))
2423pm5.32da 579 . . . . . 6 (𝜑 → (((𝑣𝐴𝑤𝐴) ∧ (𝐹 “ {𝑣}) ∈ (𝐹 “ {𝑤})) ↔ ((𝑣𝐴𝑤𝐴) ∧ ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) E ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤))))
2524opabbidv 5129 . . . . 5 (𝜑 → {⟨𝑣, 𝑤⟩ ∣ ((𝑣𝐴𝑤𝐴) ∧ (𝐹 “ {𝑣}) ∈ (𝐹 “ {𝑤}))} = {⟨𝑣, 𝑤⟩ ∣ ((𝑣𝐴𝑤𝐴) ∧ ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) E ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤))})
26 incom 4182 . . . . . 6 (𝐻 ∩ (𝐴 × 𝐴)) = ((𝐴 × 𝐴) ∩ 𝐻)
27 df-xp 5560 . . . . . . 7 (𝐴 × 𝐴) = {⟨𝑣, 𝑤⟩ ∣ (𝑣𝐴𝑤𝐴)}
28 dnwech.h . . . . . . 7 𝐻 = {⟨𝑣, 𝑤⟩ ∣ (𝐹 “ {𝑣}) ∈ (𝐹 “ {𝑤})}
2927, 28ineq12i 4191 . . . . . 6 ((𝐴 × 𝐴) ∩ 𝐻) = ({⟨𝑣, 𝑤⟩ ∣ (𝑣𝐴𝑤𝐴)} ∩ {⟨𝑣, 𝑤⟩ ∣ (𝐹 “ {𝑣}) ∈ (𝐹 “ {𝑤})})
30 inopab 5700 . . . . . 6 ({⟨𝑣, 𝑤⟩ ∣ (𝑣𝐴𝑤𝐴)} ∩ {⟨𝑣, 𝑤⟩ ∣ (𝐹 “ {𝑣}) ∈ (𝐹 “ {𝑤})}) = {⟨𝑣, 𝑤⟩ ∣ ((𝑣𝐴𝑤𝐴) ∧ (𝐹 “ {𝑣}) ∈ (𝐹 “ {𝑤}))}
3126, 29, 303eqtri 2853 . . . . 5 (𝐻 ∩ (𝐴 × 𝐴)) = {⟨𝑣, 𝑤⟩ ∣ ((𝑣𝐴𝑤𝐴) ∧ (𝐹 “ {𝑣}) ∈ (𝐹 “ {𝑤}))}
32 incom 4182 . . . . . 6 ({⟨𝑣, 𝑤⟩ ∣ ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) E ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤)} ∩ (𝐴 × 𝐴)) = ((𝐴 × 𝐴) ∩ {⟨𝑣, 𝑤⟩ ∣ ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) E ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤)})
3327ineq1i 4189 . . . . . 6 ((𝐴 × 𝐴) ∩ {⟨𝑣, 𝑤⟩ ∣ ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) E ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤)}) = ({⟨𝑣, 𝑤⟩ ∣ (𝑣𝐴𝑤𝐴)} ∩ {⟨𝑣, 𝑤⟩ ∣ ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) E ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤)})
34 inopab 5700 . . . . . 6 ({⟨𝑣, 𝑤⟩ ∣ (𝑣𝐴𝑤𝐴)} ∩ {⟨𝑣, 𝑤⟩ ∣ ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) E ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤)}) = {⟨𝑣, 𝑤⟩ ∣ ((𝑣𝐴𝑤𝐴) ∧ ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) E ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤))}
3532, 33, 343eqtri 2853 . . . . 5 ({⟨𝑣, 𝑤⟩ ∣ ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) E ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤)} ∩ (𝐴 × 𝐴)) = {⟨𝑣, 𝑤⟩ ∣ ((𝑣𝐴𝑤𝐴) ∧ ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) E ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤))}
3625, 31, 353eqtr4g 2886 . . . 4 (𝜑 → (𝐻 ∩ (𝐴 × 𝐴)) = ({⟨𝑣, 𝑤⟩ ∣ ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) E ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤)} ∩ (𝐴 × 𝐴)))
37 weeq1 5542 . . . 4 ((𝐻 ∩ (𝐴 × 𝐴)) = ({⟨𝑣, 𝑤⟩ ∣ ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) E ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤)} ∩ (𝐴 × 𝐴)) → ((𝐻 ∩ (𝐴 × 𝐴)) We 𝐴 ↔ ({⟨𝑣, 𝑤⟩ ∣ ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) E ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤)} ∩ (𝐴 × 𝐴)) We 𝐴))
3836, 37syl 17 . . 3 (𝜑 → ((𝐻 ∩ (𝐴 × 𝐴)) We 𝐴 ↔ ({⟨𝑣, 𝑤⟩ ∣ ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) E ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤)} ∩ (𝐴 × 𝐴)) We 𝐴))
39 weinxp 5635 . . 3 (𝐻 We 𝐴 ↔ (𝐻 ∩ (𝐴 × 𝐴)) We 𝐴)
40 weinxp 5635 . . 3 ({⟨𝑣, 𝑤⟩ ∣ ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) E ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤)} We 𝐴 ↔ ({⟨𝑣, 𝑤⟩ ∣ ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) E ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤)} ∩ (𝐴 × 𝐴)) We 𝐴)
4138, 39, 403bitr4g 315 . 2 (𝜑 → (𝐻 We 𝐴 ↔ {⟨𝑣, 𝑤⟩ ∣ ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) E ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤)} We 𝐴))
4215, 41mpbird 258 1 (𝜑𝐻 We 𝐴)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 207   ∧ wa 396   = wceq 1530   ∈ wcel 2107   ≠ wne 3021  ∀wral 3143  Vcvv 3500   ∖ cdif 3937   ∩ cin 3939   ⊆ wss 3940  ∅c0 4295  𝒫 cpw 4542  {csn 4564  ∩ cint 4874   class class class wbr 5063  {copab 5125   ↦ cmpt 5143   E cep 5463   We wwe 5512   × cxp 5552  ◡ccnv 5553  ran crn 5555   “ cima 5557  Oncon0 6190  ⟶wf 6350  –1-1→wf1 6351  –1-1-onto→wf1o 6353  ‘cfv 6354  recscrecs 8003 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-ral 3148  df-rex 3149  df-reu 3150  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-wrecs 7943  df-recs 8004 This theorem is referenced by:  aomclem3  39540
 Copyright terms: Public domain W3C validator