MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iseupth Structured version   Visualization version   GIF version

Theorem iseupth 30126
Description: The property "𝐹, 𝑃 is an Eulerian path on the graph 𝐺". An Eulerian path is defined as bijection 𝐹 from the edges to a set 0...(𝑁 − 1) and a function 𝑃:(0...𝑁)⟶𝑉 into the vertices such that for each 0 ≤ 𝑘 < 𝑁, 𝐹(𝑘) is an edge from 𝑃(𝑘) to 𝑃(𝑘 + 1). (Since the edges are undirected and there are possibly many edges between any two given vertices, we need to list both the edges and the vertices of the path separately.) (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 3-May-2015.) (Revised by AV, 18-Feb-2021.) (Revised by AV, 30-Oct-2021.)
Hypothesis
Ref Expression
eupths.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
iseupth (𝐹(EulerPaths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼))

Proof of Theorem iseupth
Dummy variables 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eupths.i . . 3 𝐼 = (iEdg‘𝐺)
21eupths 30125 . 2 (EulerPaths‘𝐺) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(Trails‘𝐺)𝑝𝑓:(0..^(♯‘𝑓))–onto→dom 𝐼)}
3 simpl 481 . . 3 ((𝑓 = 𝐹𝑝 = 𝑃) → 𝑓 = 𝐹)
4 fveq2 6900 . . . . 5 (𝑓 = 𝐹 → (♯‘𝑓) = (♯‘𝐹))
54oveq2d 7439 . . . 4 (𝑓 = 𝐹 → (0..^(♯‘𝑓)) = (0..^(♯‘𝐹)))
65adantr 479 . . 3 ((𝑓 = 𝐹𝑝 = 𝑃) → (0..^(♯‘𝑓)) = (0..^(♯‘𝐹)))
7 eqidd 2726 . . 3 ((𝑓 = 𝐹𝑝 = 𝑃) → dom 𝐼 = dom 𝐼)
83, 6, 7foeq123d 6835 . 2 ((𝑓 = 𝐹𝑝 = 𝑃) → (𝑓:(0..^(♯‘𝑓))–onto→dom 𝐼𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼))
9 reltrls 29623 . 2 Rel (Trails‘𝐺)
102, 8, 9brfvopabrbr 7005 1 (𝐹(EulerPaths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 394   = wceq 1533   class class class wbr 5152  dom cdm 5681  ontowfo 6551  cfv 6553  (class class class)co 7423  0cc0 11154  ..^cfzo 13676  chash 14342  iEdgciedg 28925  Trailsctrls 29619  EulerPathsceupth 30122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5303  ax-nul 5310  ax-pr 5432
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4325  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5579  df-xp 5687  df-rel 5688  df-cnv 5689  df-co 5690  df-dm 5691  df-rn 5692  df-res 5693  df-ima 5694  df-iota 6505  df-fun 6555  df-fn 6556  df-fo 6559  df-fv 6561  df-ov 7426  df-trls 29621  df-eupth 30123
This theorem is referenced by:  iseupthf1o  30127  eupthistrl  30136  eucrctshift  30168
  Copyright terms: Public domain W3C validator