![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iseupth | Structured version Visualization version GIF version |
Description: The property "β¨πΉ, πβ© is an Eulerian path on the graph πΊ". An Eulerian path is defined as bijection πΉ from the edges to a set 0...(π β 1) and a function π:(0...π)βΆπ into the vertices such that for each 0 β€ π < π, πΉ(π) is an edge from π(π) to π(π + 1). (Since the edges are undirected and there are possibly many edges between any two given vertices, we need to list both the edges and the vertices of the path separately.) (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 3-May-2015.) (Revised by AV, 18-Feb-2021.) (Revised by AV, 30-Oct-2021.) |
Ref | Expression |
---|---|
eupths.i | β’ πΌ = (iEdgβπΊ) |
Ref | Expression |
---|---|
iseupth | β’ (πΉ(EulerPathsβπΊ)π β (πΉ(TrailsβπΊ)π β§ πΉ:(0..^(β―βπΉ))βontoβdom πΌ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eupths.i | . . 3 β’ πΌ = (iEdgβπΊ) | |
2 | 1 | eupths 29442 | . 2 β’ (EulerPathsβπΊ) = {β¨π, πβ© β£ (π(TrailsβπΊ)π β§ π:(0..^(β―βπ))βontoβdom πΌ)} |
3 | simpl 483 | . . 3 β’ ((π = πΉ β§ π = π) β π = πΉ) | |
4 | fveq2 6888 | . . . . 5 β’ (π = πΉ β (β―βπ) = (β―βπΉ)) | |
5 | 4 | oveq2d 7421 | . . . 4 β’ (π = πΉ β (0..^(β―βπ)) = (0..^(β―βπΉ))) |
6 | 5 | adantr 481 | . . 3 β’ ((π = πΉ β§ π = π) β (0..^(β―βπ)) = (0..^(β―βπΉ))) |
7 | eqidd 2733 | . . 3 β’ ((π = πΉ β§ π = π) β dom πΌ = dom πΌ) | |
8 | 3, 6, 7 | foeq123d 6823 | . 2 β’ ((π = πΉ β§ π = π) β (π:(0..^(β―βπ))βontoβdom πΌ β πΉ:(0..^(β―βπΉ))βontoβdom πΌ)) |
9 | reltrls 28940 | . 2 β’ Rel (TrailsβπΊ) | |
10 | 2, 8, 9 | brfvopabrbr 6992 | 1 β’ (πΉ(EulerPathsβπΊ)π β (πΉ(TrailsβπΊ)π β§ πΉ:(0..^(β―βπΉ))βontoβdom πΌ)) |
Colors of variables: wff setvar class |
Syntax hints: β wb 205 β§ wa 396 = wceq 1541 class class class wbr 5147 dom cdm 5675 βontoβwfo 6538 βcfv 6540 (class class class)co 7405 0cc0 11106 ..^cfzo 13623 β―chash 14286 iEdgciedg 28246 Trailsctrls 28936 EulerPathsceupth 29439 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-fo 6546 df-fv 6548 df-ov 7408 df-trls 28938 df-eupth 29440 |
This theorem is referenced by: iseupthf1o 29444 eupthistrl 29453 eucrctshift 29485 |
Copyright terms: Public domain | W3C validator |