MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iseupth Structured version   Visualization version   GIF version

Theorem iseupth 30029
Description: The property "⟨𝐹, π‘ƒβŸ© is an Eulerian path on the graph 𝐺". An Eulerian path is defined as bijection 𝐹 from the edges to a set 0...(𝑁 βˆ’ 1) and a function 𝑃:(0...𝑁)βŸΆπ‘‰ into the vertices such that for each 0 ≀ π‘˜ < 𝑁, 𝐹(π‘˜) is an edge from 𝑃(π‘˜) to 𝑃(π‘˜ + 1). (Since the edges are undirected and there are possibly many edges between any two given vertices, we need to list both the edges and the vertices of the path separately.) (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 3-May-2015.) (Revised by AV, 18-Feb-2021.) (Revised by AV, 30-Oct-2021.)
Hypothesis
Ref Expression
eupths.i 𝐼 = (iEdgβ€˜πΊ)
Assertion
Ref Expression
iseupth (𝐹(EulerPathsβ€˜πΊ)𝑃 ↔ (𝐹(Trailsβ€˜πΊ)𝑃 ∧ 𝐹:(0..^(β™―β€˜πΉ))–ontoβ†’dom 𝐼))

Proof of Theorem iseupth
Dummy variables 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eupths.i . . 3 𝐼 = (iEdgβ€˜πΊ)
21eupths 30028 . 2 (EulerPathsβ€˜πΊ) = {βŸ¨π‘“, π‘βŸ© ∣ (𝑓(Trailsβ€˜πΊ)𝑝 ∧ 𝑓:(0..^(β™―β€˜π‘“))–ontoβ†’dom 𝐼)}
3 simpl 481 . . 3 ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) β†’ 𝑓 = 𝐹)
4 fveq2 6900 . . . . 5 (𝑓 = 𝐹 β†’ (β™―β€˜π‘“) = (β™―β€˜πΉ))
54oveq2d 7440 . . . 4 (𝑓 = 𝐹 β†’ (0..^(β™―β€˜π‘“)) = (0..^(β™―β€˜πΉ)))
65adantr 479 . . 3 ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) β†’ (0..^(β™―β€˜π‘“)) = (0..^(β™―β€˜πΉ)))
7 eqidd 2728 . . 3 ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) β†’ dom 𝐼 = dom 𝐼)
83, 6, 7foeq123d 6835 . 2 ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) β†’ (𝑓:(0..^(β™―β€˜π‘“))–ontoβ†’dom 𝐼 ↔ 𝐹:(0..^(β™―β€˜πΉ))–ontoβ†’dom 𝐼))
9 reltrls 29526 . 2 Rel (Trailsβ€˜πΊ)
102, 8, 9brfvopabrbr 7005 1 (𝐹(EulerPathsβ€˜πΊ)𝑃 ↔ (𝐹(Trailsβ€˜πΊ)𝑃 ∧ 𝐹:(0..^(β™―β€˜πΉ))–ontoβ†’dom 𝐼))
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205   ∧ wa 394   = wceq 1533   class class class wbr 5150  dom cdm 5680  β€“ontoβ†’wfo 6549  β€˜cfv 6551  (class class class)co 7424  0cc0 11144  ..^cfzo 13665  β™―chash 14327  iEdgciedg 28828  Trailsctrls 29522  EulerPathsceupth 30025
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-sep 5301  ax-nul 5308  ax-pr 5431
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4325  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-br 5151  df-opab 5213  df-mpt 5234  df-id 5578  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-iota 6503  df-fun 6553  df-fn 6554  df-fo 6557  df-fv 6559  df-ov 7427  df-trls 29524  df-eupth 30026
This theorem is referenced by:  iseupthf1o  30030  eupthistrl  30039  eucrctshift  30071
  Copyright terms: Public domain W3C validator