| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iseupth | Structured version Visualization version GIF version | ||
| Description: The property "〈𝐹, 𝑃〉 is an Eulerian path on the graph 𝐺". An Eulerian path is defined as bijection 𝐹 from the edges to a set 0...(𝑁 − 1) and a function 𝑃:(0...𝑁)⟶𝑉 into the vertices such that for each 0 ≤ 𝑘 < 𝑁, 𝐹(𝑘) is an edge from 𝑃(𝑘) to 𝑃(𝑘 + 1). (Since the edges are undirected and there are possibly many edges between any two given vertices, we need to list both the edges and the vertices of the path separately.) (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 3-May-2015.) (Revised by AV, 18-Feb-2021.) (Revised by AV, 30-Oct-2021.) |
| Ref | Expression |
|---|---|
| eupths.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| Ref | Expression |
|---|---|
| iseupth | ⊢ (𝐹(EulerPaths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ 𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eupths.i | . . 3 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 2 | 1 | eupths 30186 | . 2 ⊢ (EulerPaths‘𝐺) = {〈𝑓, 𝑝〉 ∣ (𝑓(Trails‘𝐺)𝑝 ∧ 𝑓:(0..^(♯‘𝑓))–onto→dom 𝐼)} |
| 3 | simpl 482 | . . 3 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → 𝑓 = 𝐹) | |
| 4 | fveq2 6881 | . . . . 5 ⊢ (𝑓 = 𝐹 → (♯‘𝑓) = (♯‘𝐹)) | |
| 5 | 4 | oveq2d 7426 | . . . 4 ⊢ (𝑓 = 𝐹 → (0..^(♯‘𝑓)) = (0..^(♯‘𝐹))) |
| 6 | 5 | adantr 480 | . . 3 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (0..^(♯‘𝑓)) = (0..^(♯‘𝐹))) |
| 7 | eqidd 2737 | . . 3 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → dom 𝐼 = dom 𝐼) | |
| 8 | 3, 6, 7 | foeq123d 6816 | . 2 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (𝑓:(0..^(♯‘𝑓))–onto→dom 𝐼 ↔ 𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼)) |
| 9 | reltrls 29679 | . 2 ⊢ Rel (Trails‘𝐺) | |
| 10 | 2, 8, 9 | brfvopabrbr 6988 | 1 ⊢ (𝐹(EulerPaths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ 𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 class class class wbr 5124 dom cdm 5659 –onto→wfo 6534 ‘cfv 6536 (class class class)co 7410 0cc0 11134 ..^cfzo 13676 ♯chash 14353 iEdgciedg 28981 Trailsctrls 29675 EulerPathsceupth 30183 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-fo 6542 df-fv 6544 df-ov 7413 df-trls 29677 df-eupth 30184 |
| This theorem is referenced by: iseupthf1o 30188 eupthistrl 30197 eucrctshift 30229 |
| Copyright terms: Public domain | W3C validator |