Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iseupth | Structured version Visualization version GIF version |
Description: The property "〈𝐹, 𝑃〉 is an Eulerian path on the graph 𝐺". An Eulerian path is defined as bijection 𝐹 from the edges to a set 0...(𝑁 − 1) and a function 𝑃:(0...𝑁)⟶𝑉 into the vertices such that for each 0 ≤ 𝑘 < 𝑁, 𝐹(𝑘) is an edge from 𝑃(𝑘) to 𝑃(𝑘 + 1). (Since the edges are undirected and there are possibly many edges between any two given vertices, we need to list both the edges and the vertices of the path separately.) (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 3-May-2015.) (Revised by AV, 18-Feb-2021.) (Revised by AV, 30-Oct-2021.) |
Ref | Expression |
---|---|
eupths.i | ⊢ 𝐼 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
iseupth | ⊢ (𝐹(EulerPaths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ 𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eupths.i | . . 3 ⊢ 𝐼 = (iEdg‘𝐺) | |
2 | 1 | eupths 28564 | . 2 ⊢ (EulerPaths‘𝐺) = {〈𝑓, 𝑝〉 ∣ (𝑓(Trails‘𝐺)𝑝 ∧ 𝑓:(0..^(♯‘𝑓))–onto→dom 𝐼)} |
3 | simpl 483 | . . 3 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → 𝑓 = 𝐹) | |
4 | fveq2 6774 | . . . . 5 ⊢ (𝑓 = 𝐹 → (♯‘𝑓) = (♯‘𝐹)) | |
5 | 4 | oveq2d 7291 | . . . 4 ⊢ (𝑓 = 𝐹 → (0..^(♯‘𝑓)) = (0..^(♯‘𝐹))) |
6 | 5 | adantr 481 | . . 3 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (0..^(♯‘𝑓)) = (0..^(♯‘𝐹))) |
7 | eqidd 2739 | . . 3 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → dom 𝐼 = dom 𝐼) | |
8 | 3, 6, 7 | foeq123d 6709 | . 2 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (𝑓:(0..^(♯‘𝑓))–onto→dom 𝐼 ↔ 𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼)) |
9 | reltrls 28062 | . 2 ⊢ Rel (Trails‘𝐺) | |
10 | 2, 8, 9 | brfvopabrbr 6872 | 1 ⊢ (𝐹(EulerPaths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ 𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1539 class class class wbr 5074 dom cdm 5589 –onto→wfo 6431 ‘cfv 6433 (class class class)co 7275 0cc0 10871 ..^cfzo 13382 ♯chash 14044 iEdgciedg 27367 Trailsctrls 28058 EulerPathsceupth 28561 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-fo 6439 df-fv 6441 df-ov 7278 df-trls 28060 df-eupth 28562 |
This theorem is referenced by: iseupthf1o 28566 eupthistrl 28575 eucrctshift 28607 |
Copyright terms: Public domain | W3C validator |