MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iseupth Structured version   Visualization version   GIF version

Theorem iseupth 30137
Description: The property "𝐹, 𝑃 is an Eulerian path on the graph 𝐺". An Eulerian path is defined as bijection 𝐹 from the edges to a set 0...(𝑁 − 1) and a function 𝑃:(0...𝑁)⟶𝑉 into the vertices such that for each 0 ≤ 𝑘 < 𝑁, 𝐹(𝑘) is an edge from 𝑃(𝑘) to 𝑃(𝑘 + 1). (Since the edges are undirected and there are possibly many edges between any two given vertices, we need to list both the edges and the vertices of the path separately.) (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 3-May-2015.) (Revised by AV, 18-Feb-2021.) (Revised by AV, 30-Oct-2021.)
Hypothesis
Ref Expression
eupths.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
iseupth (𝐹(EulerPaths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼))

Proof of Theorem iseupth
Dummy variables 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eupths.i . . 3 𝐼 = (iEdg‘𝐺)
21eupths 30136 . 2 (EulerPaths‘𝐺) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(Trails‘𝐺)𝑝𝑓:(0..^(♯‘𝑓))–onto→dom 𝐼)}
3 simpl 482 . . 3 ((𝑓 = 𝐹𝑝 = 𝑃) → 𝑓 = 𝐹)
4 fveq2 6861 . . . . 5 (𝑓 = 𝐹 → (♯‘𝑓) = (♯‘𝐹))
54oveq2d 7406 . . . 4 (𝑓 = 𝐹 → (0..^(♯‘𝑓)) = (0..^(♯‘𝐹)))
65adantr 480 . . 3 ((𝑓 = 𝐹𝑝 = 𝑃) → (0..^(♯‘𝑓)) = (0..^(♯‘𝐹)))
7 eqidd 2731 . . 3 ((𝑓 = 𝐹𝑝 = 𝑃) → dom 𝐼 = dom 𝐼)
83, 6, 7foeq123d 6796 . 2 ((𝑓 = 𝐹𝑝 = 𝑃) → (𝑓:(0..^(♯‘𝑓))–onto→dom 𝐼𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼))
9 reltrls 29629 . 2 Rel (Trails‘𝐺)
102, 8, 9brfvopabrbr 6968 1 (𝐹(EulerPaths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540   class class class wbr 5110  dom cdm 5641  ontowfo 6512  cfv 6514  (class class class)co 7390  0cc0 11075  ..^cfzo 13622  chash 14302  iEdgciedg 28931  Trailsctrls 29625  EulerPathsceupth 30133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-fo 6520  df-fv 6522  df-ov 7393  df-trls 29627  df-eupth 30134
This theorem is referenced by:  iseupthf1o  30138  eupthistrl  30147  eucrctshift  30179
  Copyright terms: Public domain W3C validator