MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iseupth Structured version   Visualization version   GIF version

Theorem iseupth 29443
Description: The property "⟨𝐹, π‘ƒβŸ© is an Eulerian path on the graph 𝐺". An Eulerian path is defined as bijection 𝐹 from the edges to a set 0...(𝑁 βˆ’ 1) and a function 𝑃:(0...𝑁)βŸΆπ‘‰ into the vertices such that for each 0 ≀ π‘˜ < 𝑁, 𝐹(π‘˜) is an edge from 𝑃(π‘˜) to 𝑃(π‘˜ + 1). (Since the edges are undirected and there are possibly many edges between any two given vertices, we need to list both the edges and the vertices of the path separately.) (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 3-May-2015.) (Revised by AV, 18-Feb-2021.) (Revised by AV, 30-Oct-2021.)
Hypothesis
Ref Expression
eupths.i 𝐼 = (iEdgβ€˜πΊ)
Assertion
Ref Expression
iseupth (𝐹(EulerPathsβ€˜πΊ)𝑃 ↔ (𝐹(Trailsβ€˜πΊ)𝑃 ∧ 𝐹:(0..^(β™―β€˜πΉ))–ontoβ†’dom 𝐼))

Proof of Theorem iseupth
Dummy variables 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eupths.i . . 3 𝐼 = (iEdgβ€˜πΊ)
21eupths 29442 . 2 (EulerPathsβ€˜πΊ) = {βŸ¨π‘“, π‘βŸ© ∣ (𝑓(Trailsβ€˜πΊ)𝑝 ∧ 𝑓:(0..^(β™―β€˜π‘“))–ontoβ†’dom 𝐼)}
3 simpl 483 . . 3 ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) β†’ 𝑓 = 𝐹)
4 fveq2 6888 . . . . 5 (𝑓 = 𝐹 β†’ (β™―β€˜π‘“) = (β™―β€˜πΉ))
54oveq2d 7421 . . . 4 (𝑓 = 𝐹 β†’ (0..^(β™―β€˜π‘“)) = (0..^(β™―β€˜πΉ)))
65adantr 481 . . 3 ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) β†’ (0..^(β™―β€˜π‘“)) = (0..^(β™―β€˜πΉ)))
7 eqidd 2733 . . 3 ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) β†’ dom 𝐼 = dom 𝐼)
83, 6, 7foeq123d 6823 . 2 ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) β†’ (𝑓:(0..^(β™―β€˜π‘“))–ontoβ†’dom 𝐼 ↔ 𝐹:(0..^(β™―β€˜πΉ))–ontoβ†’dom 𝐼))
9 reltrls 28940 . 2 Rel (Trailsβ€˜πΊ)
102, 8, 9brfvopabrbr 6992 1 (𝐹(EulerPathsβ€˜πΊ)𝑃 ↔ (𝐹(Trailsβ€˜πΊ)𝑃 ∧ 𝐹:(0..^(β™―β€˜πΉ))–ontoβ†’dom 𝐼))
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205   ∧ wa 396   = wceq 1541   class class class wbr 5147  dom cdm 5675  β€“ontoβ†’wfo 6538  β€˜cfv 6540  (class class class)co 7405  0cc0 11106  ..^cfzo 13623  β™―chash 14286  iEdgciedg 28246  Trailsctrls 28936  EulerPathsceupth 29439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-fo 6546  df-fv 6548  df-ov 7408  df-trls 28938  df-eupth 29440
This theorem is referenced by:  iseupthf1o  29444  eupthistrl  29453  eucrctshift  29485
  Copyright terms: Public domain W3C validator