MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iseupth Structured version   Visualization version   GIF version

Theorem iseupth 30145
Description: The property "𝐹, 𝑃 is an Eulerian path on the graph 𝐺". An Eulerian path is defined as bijection 𝐹 from the edges to a set 0...(𝑁 − 1) and a function 𝑃:(0...𝑁)⟶𝑉 into the vertices such that for each 0 ≤ 𝑘 < 𝑁, 𝐹(𝑘) is an edge from 𝑃(𝑘) to 𝑃(𝑘 + 1). (Since the edges are undirected and there are possibly many edges between any two given vertices, we need to list both the edges and the vertices of the path separately.) (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 3-May-2015.) (Revised by AV, 18-Feb-2021.) (Revised by AV, 30-Oct-2021.)
Hypothesis
Ref Expression
eupths.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
iseupth (𝐹(EulerPaths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼))

Proof of Theorem iseupth
Dummy variables 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eupths.i . . 3 𝐼 = (iEdg‘𝐺)
21eupths 30144 . 2 (EulerPaths‘𝐺) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(Trails‘𝐺)𝑝𝑓:(0..^(♯‘𝑓))–onto→dom 𝐼)}
3 simpl 482 . . 3 ((𝑓 = 𝐹𝑝 = 𝑃) → 𝑓 = 𝐹)
4 fveq2 6822 . . . . 5 (𝑓 = 𝐹 → (♯‘𝑓) = (♯‘𝐹))
54oveq2d 7365 . . . 4 (𝑓 = 𝐹 → (0..^(♯‘𝑓)) = (0..^(♯‘𝐹)))
65adantr 480 . . 3 ((𝑓 = 𝐹𝑝 = 𝑃) → (0..^(♯‘𝑓)) = (0..^(♯‘𝐹)))
7 eqidd 2730 . . 3 ((𝑓 = 𝐹𝑝 = 𝑃) → dom 𝐼 = dom 𝐼)
83, 6, 7foeq123d 6757 . 2 ((𝑓 = 𝐹𝑝 = 𝑃) → (𝑓:(0..^(♯‘𝑓))–onto→dom 𝐼𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼))
9 reltrls 29638 . 2 Rel (Trails‘𝐺)
102, 8, 9brfvopabrbr 6927 1 (𝐹(EulerPaths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540   class class class wbr 5092  dom cdm 5619  ontowfo 6480  cfv 6482  (class class class)co 7349  0cc0 11009  ..^cfzo 13557  chash 14237  iEdgciedg 28942  Trailsctrls 29634  EulerPathsceupth 30141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-fo 6488  df-fv 6490  df-ov 7352  df-trls 29636  df-eupth 30142
This theorem is referenced by:  iseupthf1o  30146  eupthistrl  30155  eucrctshift  30187
  Copyright terms: Public domain W3C validator