Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iseupth | Structured version Visualization version GIF version |
Description: The property "〈𝐹, 𝑃〉 is an Eulerian path on the graph 𝐺". An Eulerian path is defined as bijection 𝐹 from the edges to a set 0...(𝑁 − 1) and a function 𝑃:(0...𝑁)⟶𝑉 into the vertices such that for each 0 ≤ 𝑘 < 𝑁, 𝐹(𝑘) is an edge from 𝑃(𝑘) to 𝑃(𝑘 + 1). (Since the edges are undirected and there are possibly many edges between any two given vertices, we need to list both the edges and the vertices of the path separately.) (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 3-May-2015.) (Revised by AV, 18-Feb-2021.) (Revised by AV, 30-Oct-2021.) |
Ref | Expression |
---|---|
eupths.i | ⊢ 𝐼 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
iseupth | ⊢ (𝐹(EulerPaths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ 𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eupths.i | . . 3 ⊢ 𝐼 = (iEdg‘𝐺) | |
2 | 1 | eupths 28560 | . 2 ⊢ (EulerPaths‘𝐺) = {〈𝑓, 𝑝〉 ∣ (𝑓(Trails‘𝐺)𝑝 ∧ 𝑓:(0..^(♯‘𝑓))–onto→dom 𝐼)} |
3 | simpl 483 | . . 3 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → 𝑓 = 𝐹) | |
4 | fveq2 6771 | . . . . 5 ⊢ (𝑓 = 𝐹 → (♯‘𝑓) = (♯‘𝐹)) | |
5 | 4 | oveq2d 7287 | . . . 4 ⊢ (𝑓 = 𝐹 → (0..^(♯‘𝑓)) = (0..^(♯‘𝐹))) |
6 | 5 | adantr 481 | . . 3 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (0..^(♯‘𝑓)) = (0..^(♯‘𝐹))) |
7 | eqidd 2741 | . . 3 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → dom 𝐼 = dom 𝐼) | |
8 | 3, 6, 7 | foeq123d 6707 | . 2 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (𝑓:(0..^(♯‘𝑓))–onto→dom 𝐼 ↔ 𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼)) |
9 | reltrls 28059 | . 2 ⊢ Rel (Trails‘𝐺) | |
10 | 2, 8, 9 | brfvopabrbr 6869 | 1 ⊢ (𝐹(EulerPaths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ 𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1542 class class class wbr 5079 dom cdm 5590 –onto→wfo 6430 ‘cfv 6432 (class class class)co 7271 0cc0 10872 ..^cfzo 13381 ♯chash 14042 iEdgciedg 27365 Trailsctrls 28055 EulerPathsceupth 28557 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ifp 1061 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-om 7707 df-1st 7824 df-2nd 7825 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-1o 8288 df-er 8481 df-map 8600 df-en 8717 df-dom 8718 df-sdom 8719 df-fin 8720 df-card 9698 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12582 df-fz 13239 df-fzo 13382 df-hash 14043 df-word 14216 df-wlks 27964 df-trls 28057 df-eupth 28558 |
This theorem is referenced by: iseupthf1o 28562 eupthistrl 28571 eucrctshift 28603 |
Copyright terms: Public domain | W3C validator |