MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iseupth Structured version   Visualization version   GIF version

Theorem iseupth 29959
Description: The property "⟨𝐹, π‘ƒβŸ© is an Eulerian path on the graph 𝐺". An Eulerian path is defined as bijection 𝐹 from the edges to a set 0...(𝑁 βˆ’ 1) and a function 𝑃:(0...𝑁)βŸΆπ‘‰ into the vertices such that for each 0 ≀ π‘˜ < 𝑁, 𝐹(π‘˜) is an edge from 𝑃(π‘˜) to 𝑃(π‘˜ + 1). (Since the edges are undirected and there are possibly many edges between any two given vertices, we need to list both the edges and the vertices of the path separately.) (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 3-May-2015.) (Revised by AV, 18-Feb-2021.) (Revised by AV, 30-Oct-2021.)
Hypothesis
Ref Expression
eupths.i 𝐼 = (iEdgβ€˜πΊ)
Assertion
Ref Expression
iseupth (𝐹(EulerPathsβ€˜πΊ)𝑃 ↔ (𝐹(Trailsβ€˜πΊ)𝑃 ∧ 𝐹:(0..^(β™―β€˜πΉ))–ontoβ†’dom 𝐼))

Proof of Theorem iseupth
Dummy variables 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eupths.i . . 3 𝐼 = (iEdgβ€˜πΊ)
21eupths 29958 . 2 (EulerPathsβ€˜πΊ) = {βŸ¨π‘“, π‘βŸ© ∣ (𝑓(Trailsβ€˜πΊ)𝑝 ∧ 𝑓:(0..^(β™―β€˜π‘“))–ontoβ†’dom 𝐼)}
3 simpl 482 . . 3 ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) β†’ 𝑓 = 𝐹)
4 fveq2 6884 . . . . 5 (𝑓 = 𝐹 β†’ (β™―β€˜π‘“) = (β™―β€˜πΉ))
54oveq2d 7420 . . . 4 (𝑓 = 𝐹 β†’ (0..^(β™―β€˜π‘“)) = (0..^(β™―β€˜πΉ)))
65adantr 480 . . 3 ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) β†’ (0..^(β™―β€˜π‘“)) = (0..^(β™―β€˜πΉ)))
7 eqidd 2727 . . 3 ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) β†’ dom 𝐼 = dom 𝐼)
83, 6, 7foeq123d 6819 . 2 ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) β†’ (𝑓:(0..^(β™―β€˜π‘“))–ontoβ†’dom 𝐼 ↔ 𝐹:(0..^(β™―β€˜πΉ))–ontoβ†’dom 𝐼))
9 reltrls 29456 . 2 Rel (Trailsβ€˜πΊ)
102, 8, 9brfvopabrbr 6988 1 (𝐹(EulerPathsβ€˜πΊ)𝑃 ↔ (𝐹(Trailsβ€˜πΊ)𝑃 ∧ 𝐹:(0..^(β™―β€˜πΉ))–ontoβ†’dom 𝐼))
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205   ∧ wa 395   = wceq 1533   class class class wbr 5141  dom cdm 5669  β€“ontoβ†’wfo 6534  β€˜cfv 6536  (class class class)co 7404  0cc0 11109  ..^cfzo 13630  β™―chash 14293  iEdgciedg 28761  Trailsctrls 29452  EulerPathsceupth 29955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6488  df-fun 6538  df-fn 6539  df-fo 6542  df-fv 6544  df-ov 7407  df-trls 29454  df-eupth 29956
This theorem is referenced by:  iseupthf1o  29960  eupthistrl  29969  eucrctshift  30001
  Copyright terms: Public domain W3C validator