Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. 2
⊢
(Base‘(ℂfld ↾s 𝑋)) = (Base‘(ℂfld
↾s 𝑋)) |
2 | | eqid 2738 |
. 2
⊢
(Base‘𝐺) =
(Base‘𝐺) |
3 | | eqid 2738 |
. 2
⊢
(+g‘(ℂfld ↾s 𝑋)) =
(+g‘(ℂfld ↾s 𝑋)) |
4 | | eqid 2738 |
. 2
⊢
(+g‘𝐺) = (+g‘𝐺) |
5 | | simp1 1134 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘(ℂfld
↾s 𝑋))
∧ 𝑦 ∈
(Base‘(ℂfld ↾s 𝑋))) → 𝜑) |
6 | | simp2 1135 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘(ℂfld
↾s 𝑋))
∧ 𝑦 ∈
(Base‘(ℂfld ↾s 𝑋))) → 𝑥 ∈ (Base‘(ℂfld
↾s 𝑋))) |
7 | | efabl.4 |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈
(SubGrp‘ℂfld)) |
8 | | eqid 2738 |
. . . . . . 7
⊢
(ℂfld ↾s 𝑋) = (ℂfld
↾s 𝑋) |
9 | 8 | subgbas 18674 |
. . . . . 6
⊢ (𝑋 ∈
(SubGrp‘ℂfld) → 𝑋 = (Base‘(ℂfld
↾s 𝑋))) |
10 | 7, 9 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑋 = (Base‘(ℂfld
↾s 𝑋))) |
11 | 10 | 3ad2ant1 1131 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘(ℂfld
↾s 𝑋))
∧ 𝑦 ∈
(Base‘(ℂfld ↾s 𝑋))) → 𝑋 = (Base‘(ℂfld
↾s 𝑋))) |
12 | 6, 11 | eleqtrrd 2842 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘(ℂfld
↾s 𝑋))
∧ 𝑦 ∈
(Base‘(ℂfld ↾s 𝑋))) → 𝑥 ∈ 𝑋) |
13 | | simp3 1136 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘(ℂfld
↾s 𝑋))
∧ 𝑦 ∈
(Base‘(ℂfld ↾s 𝑋))) → 𝑦 ∈ (Base‘(ℂfld
↾s 𝑋))) |
14 | 13, 11 | eleqtrrd 2842 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘(ℂfld
↾s 𝑋))
∧ 𝑦 ∈
(Base‘(ℂfld ↾s 𝑋))) → 𝑦 ∈ 𝑋) |
15 | | efabl.3 |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ ℂ) |
16 | 15, 7 | jca 511 |
. . . . 5
⊢ (𝜑 → (𝐴 ∈ ℂ ∧ 𝑋 ∈
(SubGrp‘ℂfld))) |
17 | | efabl.1 |
. . . . . 6
⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ (exp‘(𝐴 · 𝑥))) |
18 | 17 | efgh 25602 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈
(SubGrp‘ℂfld)) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) · (𝐹‘𝑦))) |
19 | 16, 18 | syl3an1 1161 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) · (𝐹‘𝑦))) |
20 | | cnfldadd 20515 |
. . . . . . . . 9
⊢ + =
(+g‘ℂfld) |
21 | 8, 20 | ressplusg 16926 |
. . . . . . . 8
⊢ (𝑋 ∈
(SubGrp‘ℂfld) → + =
(+g‘(ℂfld ↾s 𝑋))) |
22 | 7, 21 | syl 17 |
. . . . . . 7
⊢ (𝜑 → + =
(+g‘(ℂfld ↾s 𝑋))) |
23 | 22 | 3ad2ant1 1131 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → + =
(+g‘(ℂfld ↾s 𝑋))) |
24 | 23 | oveqd 7272 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑥 + 𝑦) = (𝑥(+g‘(ℂfld
↾s 𝑋))𝑦)) |
25 | 24 | fveq2d 6760 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹‘(𝑥 + 𝑦)) = (𝐹‘(𝑥(+g‘(ℂfld
↾s 𝑋))𝑦))) |
26 | | mptexg 7079 |
. . . . . . . . 9
⊢ (𝑋 ∈
(SubGrp‘ℂfld) → (𝑥 ∈ 𝑋 ↦ (exp‘(𝐴 · 𝑥))) ∈ V) |
27 | 17, 26 | eqeltrid 2843 |
. . . . . . . 8
⊢ (𝑋 ∈
(SubGrp‘ℂfld) → 𝐹 ∈ V) |
28 | | rnexg 7725 |
. . . . . . . 8
⊢ (𝐹 ∈ V → ran 𝐹 ∈ V) |
29 | 7, 27, 28 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → ran 𝐹 ∈ V) |
30 | | efabl.2 |
. . . . . . . 8
⊢ 𝐺 =
((mulGrp‘ℂfld) ↾s ran 𝐹) |
31 | | eqid 2738 |
. . . . . . . . 9
⊢
(mulGrp‘ℂfld) =
(mulGrp‘ℂfld) |
32 | | cnfldmul 20516 |
. . . . . . . . 9
⊢ ·
= (.r‘ℂfld) |
33 | 31, 32 | mgpplusg 19639 |
. . . . . . . 8
⊢ ·
= (+g‘(mulGrp‘ℂfld)) |
34 | 30, 33 | ressplusg 16926 |
. . . . . . 7
⊢ (ran
𝐹 ∈ V → ·
= (+g‘𝐺)) |
35 | 29, 34 | syl 17 |
. . . . . 6
⊢ (𝜑 → · =
(+g‘𝐺)) |
36 | 35 | 3ad2ant1 1131 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → · =
(+g‘𝐺)) |
37 | 36 | oveqd 7272 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → ((𝐹‘𝑥) · (𝐹‘𝑦)) = ((𝐹‘𝑥)(+g‘𝐺)(𝐹‘𝑦))) |
38 | 19, 25, 37 | 3eqtr3d 2786 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹‘(𝑥(+g‘(ℂfld
↾s 𝑋))𝑦)) = ((𝐹‘𝑥)(+g‘𝐺)(𝐹‘𝑦))) |
39 | 5, 12, 14, 38 | syl3anc 1369 |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘(ℂfld
↾s 𝑋))
∧ 𝑦 ∈
(Base‘(ℂfld ↾s 𝑋))) → (𝐹‘(𝑥(+g‘(ℂfld
↾s 𝑋))𝑦)) = ((𝐹‘𝑥)(+g‘𝐺)(𝐹‘𝑦))) |
40 | | fvex 6769 |
. . . . 5
⊢
(exp‘(𝐴
· 𝑥)) ∈
V |
41 | 40, 17 | fnmpti 6560 |
. . . 4
⊢ 𝐹 Fn 𝑋 |
42 | | dffn4 6678 |
. . . 4
⊢ (𝐹 Fn 𝑋 ↔ 𝐹:𝑋–onto→ran 𝐹) |
43 | 41, 42 | mpbi 229 |
. . 3
⊢ 𝐹:𝑋–onto→ran 𝐹 |
44 | | eqidd 2739 |
. . . 4
⊢ (𝜑 → 𝐹 = 𝐹) |
45 | | eff 15719 |
. . . . . . . 8
⊢
exp:ℂ⟶ℂ |
46 | 45 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) →
exp:ℂ⟶ℂ) |
47 | 15 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) |
48 | | cnfldbas 20514 |
. . . . . . . . . . 11
⊢ ℂ =
(Base‘ℂfld) |
49 | 48 | subgss 18671 |
. . . . . . . . . 10
⊢ (𝑋 ∈
(SubGrp‘ℂfld) → 𝑋 ⊆ ℂ) |
50 | 7, 49 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑋 ⊆ ℂ) |
51 | 50 | sselda 3917 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ ℂ) |
52 | 47, 51 | mulcld 10926 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐴 · 𝑥) ∈ ℂ) |
53 | 46, 52 | ffvelrnd 6944 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (exp‘(𝐴 · 𝑥)) ∈ ℂ) |
54 | 53 | ralrimiva 3107 |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 (exp‘(𝐴 · 𝑥)) ∈ ℂ) |
55 | 17 | rnmptss 6978 |
. . . . 5
⊢
(∀𝑥 ∈
𝑋 (exp‘(𝐴 · 𝑥)) ∈ ℂ → ran 𝐹 ⊆
ℂ) |
56 | 31, 48 | mgpbas 19641 |
. . . . . 6
⊢ ℂ =
(Base‘(mulGrp‘ℂfld)) |
57 | 30, 56 | ressbas2 16875 |
. . . . 5
⊢ (ran
𝐹 ⊆ ℂ →
ran 𝐹 = (Base‘𝐺)) |
58 | 54, 55, 57 | 3syl 18 |
. . . 4
⊢ (𝜑 → ran 𝐹 = (Base‘𝐺)) |
59 | 44, 10, 58 | foeq123d 6693 |
. . 3
⊢ (𝜑 → (𝐹:𝑋–onto→ran 𝐹 ↔ 𝐹:(Base‘(ℂfld
↾s 𝑋))–onto→(Base‘𝐺))) |
60 | 43, 59 | mpbii 232 |
. 2
⊢ (𝜑 → 𝐹:(Base‘(ℂfld
↾s 𝑋))–onto→(Base‘𝐺)) |
61 | | cnring 20532 |
. . . 4
⊢
ℂfld ∈ Ring |
62 | | ringabl 19734 |
. . . 4
⊢
(ℂfld ∈ Ring → ℂfld ∈
Abel) |
63 | 61, 62 | ax-mp 5 |
. . 3
⊢
ℂfld ∈ Abel |
64 | 8 | subgabl 19352 |
. . 3
⊢
((ℂfld ∈ Abel ∧ 𝑋 ∈
(SubGrp‘ℂfld)) → (ℂfld
↾s 𝑋)
∈ Abel) |
65 | 63, 7, 64 | sylancr 586 |
. 2
⊢ (𝜑 → (ℂfld
↾s 𝑋)
∈ Abel) |
66 | 1, 2, 3, 4, 39, 60, 65 | ghmabl 19349 |
1
⊢ (𝜑 → 𝐺 ∈ Abel) |