Step | Hyp | Ref
| Expression |
1 | | eqid 2740 |
. 2
⊢
(Base‘(ℂfld ↾s 𝑋)) = (Base‘(ℂfld
↾s 𝑋)) |
2 | | eqid 2740 |
. 2
⊢
(Base‘𝐺) =
(Base‘𝐺) |
3 | | eqid 2740 |
. 2
⊢
(+g‘(ℂfld ↾s 𝑋)) =
(+g‘(ℂfld ↾s 𝑋)) |
4 | | eqid 2740 |
. 2
⊢
(+g‘𝐺) = (+g‘𝐺) |
5 | | simp1 1136 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘(ℂfld
↾s 𝑋))
∧ 𝑦 ∈
(Base‘(ℂfld ↾s 𝑋))) → 𝜑) |
6 | | simp2 1137 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘(ℂfld
↾s 𝑋))
∧ 𝑦 ∈
(Base‘(ℂfld ↾s 𝑋))) → 𝑥 ∈ (Base‘(ℂfld
↾s 𝑋))) |
7 | | efabl.4 |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈
(SubGrp‘ℂfld)) |
8 | | eqid 2740 |
. . . . . . 7
⊢
(ℂfld ↾s 𝑋) = (ℂfld
↾s 𝑋) |
9 | 8 | subgbas 19170 |
. . . . . 6
⊢ (𝑋 ∈
(SubGrp‘ℂfld) → 𝑋 = (Base‘(ℂfld
↾s 𝑋))) |
10 | 7, 9 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑋 = (Base‘(ℂfld
↾s 𝑋))) |
11 | 10 | 3ad2ant1 1133 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘(ℂfld
↾s 𝑋))
∧ 𝑦 ∈
(Base‘(ℂfld ↾s 𝑋))) → 𝑋 = (Base‘(ℂfld
↾s 𝑋))) |
12 | 6, 11 | eleqtrrd 2847 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘(ℂfld
↾s 𝑋))
∧ 𝑦 ∈
(Base‘(ℂfld ↾s 𝑋))) → 𝑥 ∈ 𝑋) |
13 | | simp3 1138 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘(ℂfld
↾s 𝑋))
∧ 𝑦 ∈
(Base‘(ℂfld ↾s 𝑋))) → 𝑦 ∈ (Base‘(ℂfld
↾s 𝑋))) |
14 | 13, 11 | eleqtrrd 2847 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘(ℂfld
↾s 𝑋))
∧ 𝑦 ∈
(Base‘(ℂfld ↾s 𝑋))) → 𝑦 ∈ 𝑋) |
15 | | efabl.3 |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ ℂ) |
16 | 15, 7 | jca 511 |
. . . . 5
⊢ (𝜑 → (𝐴 ∈ ℂ ∧ 𝑋 ∈
(SubGrp‘ℂfld))) |
17 | | efabl.1 |
. . . . . 6
⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ (exp‘(𝐴 · 𝑥))) |
18 | 17 | efgh 26601 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈
(SubGrp‘ℂfld)) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) · (𝐹‘𝑦))) |
19 | 16, 18 | syl3an1 1163 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) · (𝐹‘𝑦))) |
20 | | cnfldadd 21393 |
. . . . . . . . 9
⊢ + =
(+g‘ℂfld) |
21 | 8, 20 | ressplusg 17349 |
. . . . . . . 8
⊢ (𝑋 ∈
(SubGrp‘ℂfld) → + =
(+g‘(ℂfld ↾s 𝑋))) |
22 | 7, 21 | syl 17 |
. . . . . . 7
⊢ (𝜑 → + =
(+g‘(ℂfld ↾s 𝑋))) |
23 | 22 | 3ad2ant1 1133 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → + =
(+g‘(ℂfld ↾s 𝑋))) |
24 | 23 | oveqd 7465 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑥 + 𝑦) = (𝑥(+g‘(ℂfld
↾s 𝑋))𝑦)) |
25 | 24 | fveq2d 6924 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹‘(𝑥 + 𝑦)) = (𝐹‘(𝑥(+g‘(ℂfld
↾s 𝑋))𝑦))) |
26 | | mptexg 7258 |
. . . . . . . 8
⊢ (𝑋 ∈
(SubGrp‘ℂfld) → (𝑥 ∈ 𝑋 ↦ (exp‘(𝐴 · 𝑥))) ∈ V) |
27 | 17, 26 | eqeltrid 2848 |
. . . . . . 7
⊢ (𝑋 ∈
(SubGrp‘ℂfld) → 𝐹 ∈ V) |
28 | | rnexg 7942 |
. . . . . . 7
⊢ (𝐹 ∈ V → ran 𝐹 ∈ V) |
29 | | efabl.2 |
. . . . . . . 8
⊢ 𝐺 =
((mulGrp‘ℂfld) ↾s ran 𝐹) |
30 | | eqid 2740 |
. . . . . . . . 9
⊢
(mulGrp‘ℂfld) =
(mulGrp‘ℂfld) |
31 | | cnfldmul 21395 |
. . . . . . . . 9
⊢ ·
= (.r‘ℂfld) |
32 | 30, 31 | mgpplusg 20165 |
. . . . . . . 8
⊢ ·
= (+g‘(mulGrp‘ℂfld)) |
33 | 29, 32 | ressplusg 17349 |
. . . . . . 7
⊢ (ran
𝐹 ∈ V → ·
= (+g‘𝐺)) |
34 | 7, 27, 28, 33 | 4syl 19 |
. . . . . 6
⊢ (𝜑 → · =
(+g‘𝐺)) |
35 | 34 | 3ad2ant1 1133 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → · =
(+g‘𝐺)) |
36 | 35 | oveqd 7465 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → ((𝐹‘𝑥) · (𝐹‘𝑦)) = ((𝐹‘𝑥)(+g‘𝐺)(𝐹‘𝑦))) |
37 | 19, 25, 36 | 3eqtr3d 2788 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹‘(𝑥(+g‘(ℂfld
↾s 𝑋))𝑦)) = ((𝐹‘𝑥)(+g‘𝐺)(𝐹‘𝑦))) |
38 | 5, 12, 14, 37 | syl3anc 1371 |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘(ℂfld
↾s 𝑋))
∧ 𝑦 ∈
(Base‘(ℂfld ↾s 𝑋))) → (𝐹‘(𝑥(+g‘(ℂfld
↾s 𝑋))𝑦)) = ((𝐹‘𝑥)(+g‘𝐺)(𝐹‘𝑦))) |
39 | | fvex 6933 |
. . . . 5
⊢
(exp‘(𝐴
· 𝑥)) ∈
V |
40 | 39, 17 | fnmpti 6723 |
. . . 4
⊢ 𝐹 Fn 𝑋 |
41 | | dffn4 6840 |
. . . 4
⊢ (𝐹 Fn 𝑋 ↔ 𝐹:𝑋–onto→ran 𝐹) |
42 | 40, 41 | mpbi 230 |
. . 3
⊢ 𝐹:𝑋–onto→ran 𝐹 |
43 | | eqidd 2741 |
. . . 4
⊢ (𝜑 → 𝐹 = 𝐹) |
44 | | eff 16129 |
. . . . . . . 8
⊢
exp:ℂ⟶ℂ |
45 | 44 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) →
exp:ℂ⟶ℂ) |
46 | 15 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) |
47 | | cnfldbas 21391 |
. . . . . . . . . . 11
⊢ ℂ =
(Base‘ℂfld) |
48 | 47 | subgss 19167 |
. . . . . . . . . 10
⊢ (𝑋 ∈
(SubGrp‘ℂfld) → 𝑋 ⊆ ℂ) |
49 | 7, 48 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑋 ⊆ ℂ) |
50 | 49 | sselda 4008 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ ℂ) |
51 | 46, 50 | mulcld 11310 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐴 · 𝑥) ∈ ℂ) |
52 | 45, 51 | ffvelcdmd 7119 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (exp‘(𝐴 · 𝑥)) ∈ ℂ) |
53 | 52 | ralrimiva 3152 |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 (exp‘(𝐴 · 𝑥)) ∈ ℂ) |
54 | 17 | rnmptss 7157 |
. . . . 5
⊢
(∀𝑥 ∈
𝑋 (exp‘(𝐴 · 𝑥)) ∈ ℂ → ran 𝐹 ⊆
ℂ) |
55 | 30, 47 | mgpbas 20167 |
. . . . . 6
⊢ ℂ =
(Base‘(mulGrp‘ℂfld)) |
56 | 29, 55 | ressbas2 17296 |
. . . . 5
⊢ (ran
𝐹 ⊆ ℂ →
ran 𝐹 = (Base‘𝐺)) |
57 | 53, 54, 56 | 3syl 18 |
. . . 4
⊢ (𝜑 → ran 𝐹 = (Base‘𝐺)) |
58 | 43, 10, 57 | foeq123d 6855 |
. . 3
⊢ (𝜑 → (𝐹:𝑋–onto→ran 𝐹 ↔ 𝐹:(Base‘(ℂfld
↾s 𝑋))–onto→(Base‘𝐺))) |
59 | 42, 58 | mpbii 233 |
. 2
⊢ (𝜑 → 𝐹:(Base‘(ℂfld
↾s 𝑋))–onto→(Base‘𝐺)) |
60 | | cnring 21426 |
. . . 4
⊢
ℂfld ∈ Ring |
61 | | ringabl 20304 |
. . . 4
⊢
(ℂfld ∈ Ring → ℂfld ∈
Abel) |
62 | 60, 61 | ax-mp 5 |
. . 3
⊢
ℂfld ∈ Abel |
63 | 8 | subgabl 19878 |
. . 3
⊢
((ℂfld ∈ Abel ∧ 𝑋 ∈
(SubGrp‘ℂfld)) → (ℂfld
↾s 𝑋)
∈ Abel) |
64 | 62, 7, 63 | sylancr 586 |
. 2
⊢ (𝜑 → (ℂfld
↾s 𝑋)
∈ Abel) |
65 | 1, 2, 3, 4, 38, 59, 64 | ghmabl 19874 |
1
⊢ (𝜑 → 𝐺 ∈ Abel) |