MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efabl Structured version   Visualization version   GIF version

Theorem efabl 26607
Description: The image of a subgroup of the group +, under the exponential function of a scaled complex number, is an Abelian group. (Contributed by Paul Chapman, 25-Apr-2008.) (Revised by Mario Carneiro, 12-May-2014.) (Revised by Thierry Arnoux, 26-Jan-2020.)
Hypotheses
Ref Expression
efabl.1 𝐹 = (𝑥𝑋 ↦ (exp‘(𝐴 · 𝑥)))
efabl.2 𝐺 = ((mulGrp‘ℂfld) ↾s ran 𝐹)
efabl.3 (𝜑𝐴 ∈ ℂ)
efabl.4 (𝜑𝑋 ∈ (SubGrp‘ℂfld))
Assertion
Ref Expression
efabl (𝜑𝐺 ∈ Abel)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐺   𝑥,𝑋   𝜑,𝑥

Proof of Theorem efabl
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . 2 (Base‘(ℂflds 𝑋)) = (Base‘(ℂflds 𝑋))
2 eqid 2735 . 2 (Base‘𝐺) = (Base‘𝐺)
3 eqid 2735 . 2 (+g‘(ℂflds 𝑋)) = (+g‘(ℂflds 𝑋))
4 eqid 2735 . 2 (+g𝐺) = (+g𝐺)
5 simp1 1135 . . 3 ((𝜑𝑥 ∈ (Base‘(ℂflds 𝑋)) ∧ 𝑦 ∈ (Base‘(ℂflds 𝑋))) → 𝜑)
6 simp2 1136 . . . 4 ((𝜑𝑥 ∈ (Base‘(ℂflds 𝑋)) ∧ 𝑦 ∈ (Base‘(ℂflds 𝑋))) → 𝑥 ∈ (Base‘(ℂflds 𝑋)))
7 efabl.4 . . . . . 6 (𝜑𝑋 ∈ (SubGrp‘ℂfld))
8 eqid 2735 . . . . . . 7 (ℂflds 𝑋) = (ℂflds 𝑋)
98subgbas 19161 . . . . . 6 (𝑋 ∈ (SubGrp‘ℂfld) → 𝑋 = (Base‘(ℂflds 𝑋)))
107, 9syl 17 . . . . 5 (𝜑𝑋 = (Base‘(ℂflds 𝑋)))
11103ad2ant1 1132 . . . 4 ((𝜑𝑥 ∈ (Base‘(ℂflds 𝑋)) ∧ 𝑦 ∈ (Base‘(ℂflds 𝑋))) → 𝑋 = (Base‘(ℂflds 𝑋)))
126, 11eleqtrrd 2842 . . 3 ((𝜑𝑥 ∈ (Base‘(ℂflds 𝑋)) ∧ 𝑦 ∈ (Base‘(ℂflds 𝑋))) → 𝑥𝑋)
13 simp3 1137 . . . 4 ((𝜑𝑥 ∈ (Base‘(ℂflds 𝑋)) ∧ 𝑦 ∈ (Base‘(ℂflds 𝑋))) → 𝑦 ∈ (Base‘(ℂflds 𝑋)))
1413, 11eleqtrrd 2842 . . 3 ((𝜑𝑥 ∈ (Base‘(ℂflds 𝑋)) ∧ 𝑦 ∈ (Base‘(ℂflds 𝑋))) → 𝑦𝑋)
15 efabl.3 . . . . . 6 (𝜑𝐴 ∈ ℂ)
1615, 7jca 511 . . . . 5 (𝜑 → (𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)))
17 efabl.1 . . . . . 6 𝐹 = (𝑥𝑋 ↦ (exp‘(𝐴 · 𝑥)))
1817efgh 26598 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) · (𝐹𝑦)))
1916, 18syl3an1 1162 . . . 4 ((𝜑𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) · (𝐹𝑦)))
20 cnfldadd 21388 . . . . . . . . 9 + = (+g‘ℂfld)
218, 20ressplusg 17336 . . . . . . . 8 (𝑋 ∈ (SubGrp‘ℂfld) → + = (+g‘(ℂflds 𝑋)))
227, 21syl 17 . . . . . . 7 (𝜑 → + = (+g‘(ℂflds 𝑋)))
23223ad2ant1 1132 . . . . . 6 ((𝜑𝑥𝑋𝑦𝑋) → + = (+g‘(ℂflds 𝑋)))
2423oveqd 7448 . . . . 5 ((𝜑𝑥𝑋𝑦𝑋) → (𝑥 + 𝑦) = (𝑥(+g‘(ℂflds 𝑋))𝑦))
2524fveq2d 6911 . . . 4 ((𝜑𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥 + 𝑦)) = (𝐹‘(𝑥(+g‘(ℂflds 𝑋))𝑦)))
26 mptexg 7241 . . . . . . . 8 (𝑋 ∈ (SubGrp‘ℂfld) → (𝑥𝑋 ↦ (exp‘(𝐴 · 𝑥))) ∈ V)
2717, 26eqeltrid 2843 . . . . . . 7 (𝑋 ∈ (SubGrp‘ℂfld) → 𝐹 ∈ V)
28 rnexg 7925 . . . . . . 7 (𝐹 ∈ V → ran 𝐹 ∈ V)
29 efabl.2 . . . . . . . 8 𝐺 = ((mulGrp‘ℂfld) ↾s ran 𝐹)
30 eqid 2735 . . . . . . . . 9 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
31 cnfldmul 21390 . . . . . . . . 9 · = (.r‘ℂfld)
3230, 31mgpplusg 20156 . . . . . . . 8 · = (+g‘(mulGrp‘ℂfld))
3329, 32ressplusg 17336 . . . . . . 7 (ran 𝐹 ∈ V → · = (+g𝐺))
347, 27, 28, 334syl 19 . . . . . 6 (𝜑 → · = (+g𝐺))
35343ad2ant1 1132 . . . . 5 ((𝜑𝑥𝑋𝑦𝑋) → · = (+g𝐺))
3635oveqd 7448 . . . 4 ((𝜑𝑥𝑋𝑦𝑋) → ((𝐹𝑥) · (𝐹𝑦)) = ((𝐹𝑥)(+g𝐺)(𝐹𝑦)))
3719, 25, 363eqtr3d 2783 . . 3 ((𝜑𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥(+g‘(ℂflds 𝑋))𝑦)) = ((𝐹𝑥)(+g𝐺)(𝐹𝑦)))
385, 12, 14, 37syl3anc 1370 . 2 ((𝜑𝑥 ∈ (Base‘(ℂflds 𝑋)) ∧ 𝑦 ∈ (Base‘(ℂflds 𝑋))) → (𝐹‘(𝑥(+g‘(ℂflds 𝑋))𝑦)) = ((𝐹𝑥)(+g𝐺)(𝐹𝑦)))
39 fvex 6920 . . . . 5 (exp‘(𝐴 · 𝑥)) ∈ V
4039, 17fnmpti 6712 . . . 4 𝐹 Fn 𝑋
41 dffn4 6827 . . . 4 (𝐹 Fn 𝑋𝐹:𝑋onto→ran 𝐹)
4240, 41mpbi 230 . . 3 𝐹:𝑋onto→ran 𝐹
43 eqidd 2736 . . . 4 (𝜑𝐹 = 𝐹)
44 eff 16114 . . . . . . . 8 exp:ℂ⟶ℂ
4544a1i 11 . . . . . . 7 ((𝜑𝑥𝑋) → exp:ℂ⟶ℂ)
4615adantr 480 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
47 cnfldbas 21386 . . . . . . . . . . 11 ℂ = (Base‘ℂfld)
4847subgss 19158 . . . . . . . . . 10 (𝑋 ∈ (SubGrp‘ℂfld) → 𝑋 ⊆ ℂ)
497, 48syl 17 . . . . . . . . 9 (𝜑𝑋 ⊆ ℂ)
5049sselda 3995 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝑥 ∈ ℂ)
5146, 50mulcld 11279 . . . . . . 7 ((𝜑𝑥𝑋) → (𝐴 · 𝑥) ∈ ℂ)
5245, 51ffvelcdmd 7105 . . . . . 6 ((𝜑𝑥𝑋) → (exp‘(𝐴 · 𝑥)) ∈ ℂ)
5352ralrimiva 3144 . . . . 5 (𝜑 → ∀𝑥𝑋 (exp‘(𝐴 · 𝑥)) ∈ ℂ)
5417rnmptss 7143 . . . . 5 (∀𝑥𝑋 (exp‘(𝐴 · 𝑥)) ∈ ℂ → ran 𝐹 ⊆ ℂ)
5530, 47mgpbas 20158 . . . . . 6 ℂ = (Base‘(mulGrp‘ℂfld))
5629, 55ressbas2 17283 . . . . 5 (ran 𝐹 ⊆ ℂ → ran 𝐹 = (Base‘𝐺))
5753, 54, 563syl 18 . . . 4 (𝜑 → ran 𝐹 = (Base‘𝐺))
5843, 10, 57foeq123d 6842 . . 3 (𝜑 → (𝐹:𝑋onto→ran 𝐹𝐹:(Base‘(ℂflds 𝑋))–onto→(Base‘𝐺)))
5942, 58mpbii 233 . 2 (𝜑𝐹:(Base‘(ℂflds 𝑋))–onto→(Base‘𝐺))
60 cnring 21421 . . . 4 fld ∈ Ring
61 ringabl 20295 . . . 4 (ℂfld ∈ Ring → ℂfld ∈ Abel)
6260, 61ax-mp 5 . . 3 fld ∈ Abel
638subgabl 19869 . . 3 ((ℂfld ∈ Abel ∧ 𝑋 ∈ (SubGrp‘ℂfld)) → (ℂflds 𝑋) ∈ Abel)
6462, 7, 63sylancr 587 . 2 (𝜑 → (ℂflds 𝑋) ∈ Abel)
651, 2, 3, 4, 38, 59, 64ghmabl 19865 1 (𝜑𝐺 ∈ Abel)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  Vcvv 3478  wss 3963  cmpt 5231  ran crn 5690   Fn wfn 6558  wf 6559  ontowfo 6561  cfv 6563  (class class class)co 7431  cc 11151   + caddc 11156   · cmul 11158  expce 16094  Basecbs 17245  s cress 17274  +gcplusg 17298  SubGrpcsubg 19151  Abelcabl 19814  mulGrpcmgp 20152  Ringcrg 20251  fldccnfld 21382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232  ax-mulf 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-pm 8868  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-rp 13033  df-ico 13390  df-fz 13545  df-fzo 13692  df-fl 13829  df-seq 14040  df-exp 14100  df-fac 14310  df-bc 14339  df-hash 14367  df-shft 15103  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-limsup 15504  df-clim 15521  df-rlim 15522  df-sum 15720  df-ef 16100  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-minusg 18968  df-subg 19154  df-cmn 19815  df-abl 19816  df-mgp 20153  df-ur 20200  df-ring 20253  df-cring 20254  df-cnfld 21383
This theorem is referenced by:  efsubm  26608  circgrp  26609
  Copyright terms: Public domain W3C validator