MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efabl Structured version   Visualization version   GIF version

Theorem efabl 26466
Description: The image of a subgroup of the group +, under the exponential function of a scaled complex number, is an Abelian group. (Contributed by Paul Chapman, 25-Apr-2008.) (Revised by Mario Carneiro, 12-May-2014.) (Revised by Thierry Arnoux, 26-Jan-2020.)
Hypotheses
Ref Expression
efabl.1 𝐹 = (𝑥𝑋 ↦ (exp‘(𝐴 · 𝑥)))
efabl.2 𝐺 = ((mulGrp‘ℂfld) ↾s ran 𝐹)
efabl.3 (𝜑𝐴 ∈ ℂ)
efabl.4 (𝜑𝑋 ∈ (SubGrp‘ℂfld))
Assertion
Ref Expression
efabl (𝜑𝐺 ∈ Abel)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐺   𝑥,𝑋   𝜑,𝑥

Proof of Theorem efabl
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . 2 (Base‘(ℂflds 𝑋)) = (Base‘(ℂflds 𝑋))
2 eqid 2730 . 2 (Base‘𝐺) = (Base‘𝐺)
3 eqid 2730 . 2 (+g‘(ℂflds 𝑋)) = (+g‘(ℂflds 𝑋))
4 eqid 2730 . 2 (+g𝐺) = (+g𝐺)
5 simp1 1136 . . 3 ((𝜑𝑥 ∈ (Base‘(ℂflds 𝑋)) ∧ 𝑦 ∈ (Base‘(ℂflds 𝑋))) → 𝜑)
6 simp2 1137 . . . 4 ((𝜑𝑥 ∈ (Base‘(ℂflds 𝑋)) ∧ 𝑦 ∈ (Base‘(ℂflds 𝑋))) → 𝑥 ∈ (Base‘(ℂflds 𝑋)))
7 efabl.4 . . . . . 6 (𝜑𝑋 ∈ (SubGrp‘ℂfld))
8 eqid 2730 . . . . . . 7 (ℂflds 𝑋) = (ℂflds 𝑋)
98subgbas 19069 . . . . . 6 (𝑋 ∈ (SubGrp‘ℂfld) → 𝑋 = (Base‘(ℂflds 𝑋)))
107, 9syl 17 . . . . 5 (𝜑𝑋 = (Base‘(ℂflds 𝑋)))
11103ad2ant1 1133 . . . 4 ((𝜑𝑥 ∈ (Base‘(ℂflds 𝑋)) ∧ 𝑦 ∈ (Base‘(ℂflds 𝑋))) → 𝑋 = (Base‘(ℂflds 𝑋)))
126, 11eleqtrrd 2832 . . 3 ((𝜑𝑥 ∈ (Base‘(ℂflds 𝑋)) ∧ 𝑦 ∈ (Base‘(ℂflds 𝑋))) → 𝑥𝑋)
13 simp3 1138 . . . 4 ((𝜑𝑥 ∈ (Base‘(ℂflds 𝑋)) ∧ 𝑦 ∈ (Base‘(ℂflds 𝑋))) → 𝑦 ∈ (Base‘(ℂflds 𝑋)))
1413, 11eleqtrrd 2832 . . 3 ((𝜑𝑥 ∈ (Base‘(ℂflds 𝑋)) ∧ 𝑦 ∈ (Base‘(ℂflds 𝑋))) → 𝑦𝑋)
15 efabl.3 . . . . . 6 (𝜑𝐴 ∈ ℂ)
1615, 7jca 511 . . . . 5 (𝜑 → (𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)))
17 efabl.1 . . . . . 6 𝐹 = (𝑥𝑋 ↦ (exp‘(𝐴 · 𝑥)))
1817efgh 26457 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) · (𝐹𝑦)))
1916, 18syl3an1 1163 . . . 4 ((𝜑𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) · (𝐹𝑦)))
20 cnfldadd 21277 . . . . . . . . 9 + = (+g‘ℂfld)
218, 20ressplusg 17261 . . . . . . . 8 (𝑋 ∈ (SubGrp‘ℂfld) → + = (+g‘(ℂflds 𝑋)))
227, 21syl 17 . . . . . . 7 (𝜑 → + = (+g‘(ℂflds 𝑋)))
23223ad2ant1 1133 . . . . . 6 ((𝜑𝑥𝑋𝑦𝑋) → + = (+g‘(ℂflds 𝑋)))
2423oveqd 7407 . . . . 5 ((𝜑𝑥𝑋𝑦𝑋) → (𝑥 + 𝑦) = (𝑥(+g‘(ℂflds 𝑋))𝑦))
2524fveq2d 6865 . . . 4 ((𝜑𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥 + 𝑦)) = (𝐹‘(𝑥(+g‘(ℂflds 𝑋))𝑦)))
26 mptexg 7198 . . . . . . . 8 (𝑋 ∈ (SubGrp‘ℂfld) → (𝑥𝑋 ↦ (exp‘(𝐴 · 𝑥))) ∈ V)
2717, 26eqeltrid 2833 . . . . . . 7 (𝑋 ∈ (SubGrp‘ℂfld) → 𝐹 ∈ V)
28 rnexg 7881 . . . . . . 7 (𝐹 ∈ V → ran 𝐹 ∈ V)
29 efabl.2 . . . . . . . 8 𝐺 = ((mulGrp‘ℂfld) ↾s ran 𝐹)
30 eqid 2730 . . . . . . . . 9 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
31 cnfldmul 21279 . . . . . . . . 9 · = (.r‘ℂfld)
3230, 31mgpplusg 20060 . . . . . . . 8 · = (+g‘(mulGrp‘ℂfld))
3329, 32ressplusg 17261 . . . . . . 7 (ran 𝐹 ∈ V → · = (+g𝐺))
347, 27, 28, 334syl 19 . . . . . 6 (𝜑 → · = (+g𝐺))
35343ad2ant1 1133 . . . . 5 ((𝜑𝑥𝑋𝑦𝑋) → · = (+g𝐺))
3635oveqd 7407 . . . 4 ((𝜑𝑥𝑋𝑦𝑋) → ((𝐹𝑥) · (𝐹𝑦)) = ((𝐹𝑥)(+g𝐺)(𝐹𝑦)))
3719, 25, 363eqtr3d 2773 . . 3 ((𝜑𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥(+g‘(ℂflds 𝑋))𝑦)) = ((𝐹𝑥)(+g𝐺)(𝐹𝑦)))
385, 12, 14, 37syl3anc 1373 . 2 ((𝜑𝑥 ∈ (Base‘(ℂflds 𝑋)) ∧ 𝑦 ∈ (Base‘(ℂflds 𝑋))) → (𝐹‘(𝑥(+g‘(ℂflds 𝑋))𝑦)) = ((𝐹𝑥)(+g𝐺)(𝐹𝑦)))
39 fvex 6874 . . . . 5 (exp‘(𝐴 · 𝑥)) ∈ V
4039, 17fnmpti 6664 . . . 4 𝐹 Fn 𝑋
41 dffn4 6781 . . . 4 (𝐹 Fn 𝑋𝐹:𝑋onto→ran 𝐹)
4240, 41mpbi 230 . . 3 𝐹:𝑋onto→ran 𝐹
43 eqidd 2731 . . . 4 (𝜑𝐹 = 𝐹)
44 eff 16054 . . . . . . . 8 exp:ℂ⟶ℂ
4544a1i 11 . . . . . . 7 ((𝜑𝑥𝑋) → exp:ℂ⟶ℂ)
4615adantr 480 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
47 cnfldbas 21275 . . . . . . . . . . 11 ℂ = (Base‘ℂfld)
4847subgss 19066 . . . . . . . . . 10 (𝑋 ∈ (SubGrp‘ℂfld) → 𝑋 ⊆ ℂ)
497, 48syl 17 . . . . . . . . 9 (𝜑𝑋 ⊆ ℂ)
5049sselda 3949 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝑥 ∈ ℂ)
5146, 50mulcld 11201 . . . . . . 7 ((𝜑𝑥𝑋) → (𝐴 · 𝑥) ∈ ℂ)
5245, 51ffvelcdmd 7060 . . . . . 6 ((𝜑𝑥𝑋) → (exp‘(𝐴 · 𝑥)) ∈ ℂ)
5352ralrimiva 3126 . . . . 5 (𝜑 → ∀𝑥𝑋 (exp‘(𝐴 · 𝑥)) ∈ ℂ)
5417rnmptss 7098 . . . . 5 (∀𝑥𝑋 (exp‘(𝐴 · 𝑥)) ∈ ℂ → ran 𝐹 ⊆ ℂ)
5530, 47mgpbas 20061 . . . . . 6 ℂ = (Base‘(mulGrp‘ℂfld))
5629, 55ressbas2 17215 . . . . 5 (ran 𝐹 ⊆ ℂ → ran 𝐹 = (Base‘𝐺))
5753, 54, 563syl 18 . . . 4 (𝜑 → ran 𝐹 = (Base‘𝐺))
5843, 10, 57foeq123d 6796 . . 3 (𝜑 → (𝐹:𝑋onto→ran 𝐹𝐹:(Base‘(ℂflds 𝑋))–onto→(Base‘𝐺)))
5942, 58mpbii 233 . 2 (𝜑𝐹:(Base‘(ℂflds 𝑋))–onto→(Base‘𝐺))
60 cnring 21309 . . . 4 fld ∈ Ring
61 ringabl 20197 . . . 4 (ℂfld ∈ Ring → ℂfld ∈ Abel)
6260, 61ax-mp 5 . . 3 fld ∈ Abel
638subgabl 19773 . . 3 ((ℂfld ∈ Abel ∧ 𝑋 ∈ (SubGrp‘ℂfld)) → (ℂflds 𝑋) ∈ Abel)
6462, 7, 63sylancr 587 . 2 (𝜑 → (ℂflds 𝑋) ∈ Abel)
651, 2, 3, 4, 38, 59, 64ghmabl 19769 1 (𝜑𝐺 ∈ Abel)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  Vcvv 3450  wss 3917  cmpt 5191  ran crn 5642   Fn wfn 6509  wf 6510  ontowfo 6512  cfv 6514  (class class class)co 7390  cc 11073   + caddc 11078   · cmul 11080  expce 16034  Basecbs 17186  s cress 17207  +gcplusg 17227  SubGrpcsubg 19059  Abelcabl 19718  mulGrpcmgp 20056  Ringcrg 20149  fldccnfld 21271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154  ax-mulf 11155
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-rp 12959  df-ico 13319  df-fz 13476  df-fzo 13623  df-fl 13761  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-ef 16040  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876  df-subg 19062  df-cmn 19719  df-abl 19720  df-mgp 20057  df-ur 20098  df-ring 20151  df-cring 20152  df-cnfld 21272
This theorem is referenced by:  efsubm  26467  circgrp  26468
  Copyright terms: Public domain W3C validator