Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fundcmpsurinjimaid Structured version   Visualization version   GIF version

Theorem fundcmpsurinjimaid 47399
Description: Every function 𝐹:𝐴𝐵 can be decomposed into a surjective function onto the image (𝐹𝐴) of the domain of 𝐹 and an injective function from the image (𝐹𝐴). (Contributed by AV, 17-Mar-2024.)
Hypotheses
Ref Expression
fundcmpsurinjimaid.i 𝐼 = (𝐹𝐴)
fundcmpsurinjimaid.g 𝐺 = (𝑥𝐴 ↦ (𝐹𝑥))
fundcmpsurinjimaid.h 𝐻 = ( I ↾ 𝐼)
Assertion
Ref Expression
fundcmpsurinjimaid (𝐹:𝐴𝐵 → (𝐺:𝐴onto𝐼𝐻:𝐼1-1𝐵𝐹 = (𝐻𝐺)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝐻   𝑥,𝐼
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem fundcmpsurinjimaid
StepHypRef Expression
1 fimadmfo 6749 . . 3 (𝐹:𝐴𝐵𝐹:𝐴onto→(𝐹𝐴))
2 fundcmpsurinjimaid.g . . . . 5 𝐺 = (𝑥𝐴 ↦ (𝐹𝑥))
3 ffn 6656 . . . . . . 7 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
4 dffn5 6885 . . . . . . 7 (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
53, 4sylib 218 . . . . . 6 (𝐹:𝐴𝐵𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
65eqcomd 2735 . . . . 5 (𝐹:𝐴𝐵 → (𝑥𝐴 ↦ (𝐹𝑥)) = 𝐹)
72, 6eqtrid 2776 . . . 4 (𝐹:𝐴𝐵𝐺 = 𝐹)
8 eqidd 2730 . . . 4 (𝐹:𝐴𝐵𝐴 = 𝐴)
9 fundcmpsurinjimaid.i . . . . 5 𝐼 = (𝐹𝐴)
109a1i 11 . . . 4 (𝐹:𝐴𝐵𝐼 = (𝐹𝐴))
117, 8, 10foeq123d 6761 . . 3 (𝐹:𝐴𝐵 → (𝐺:𝐴onto𝐼𝐹:𝐴onto→(𝐹𝐴)))
121, 11mpbird 257 . 2 (𝐹:𝐴𝐵𝐺:𝐴onto𝐼)
13 f1oi 6806 . . 3 ( I ↾ 𝐼):𝐼1-1-onto𝐼
14 f1of1 6767 . . 3 (( I ↾ 𝐼):𝐼1-1-onto𝐼 → ( I ↾ 𝐼):𝐼1-1𝐼)
15 fundcmpsurinjimaid.h . . . . . . 7 𝐻 = ( I ↾ 𝐼)
16 f1eq1 6719 . . . . . . 7 (𝐻 = ( I ↾ 𝐼) → (𝐻:𝐼1-1𝐼 ↔ ( I ↾ 𝐼):𝐼1-1𝐼))
1715, 16ax-mp 5 . . . . . 6 (𝐻:𝐼1-1𝐼 ↔ ( I ↾ 𝐼):𝐼1-1𝐼)
1817biimpri 228 . . . . 5 (( I ↾ 𝐼):𝐼1-1𝐼𝐻:𝐼1-1𝐼)
19 fimass 6676 . . . . . 6 (𝐹:𝐴𝐵 → (𝐹𝐴) ⊆ 𝐵)
209, 19eqsstrid 3976 . . . . 5 (𝐹:𝐴𝐵𝐼𝐵)
21 f1ss 6729 . . . . 5 ((𝐻:𝐼1-1𝐼𝐼𝐵) → 𝐻:𝐼1-1𝐵)
2218, 20, 21syl2an 596 . . . 4 ((( I ↾ 𝐼):𝐼1-1𝐼𝐹:𝐴𝐵) → 𝐻:𝐼1-1𝐵)
2322ex 412 . . 3 (( I ↾ 𝐼):𝐼1-1𝐼 → (𝐹:𝐴𝐵𝐻:𝐼1-1𝐵))
2413, 14, 23mp2b 10 . 2 (𝐹:𝐴𝐵𝐻:𝐼1-1𝐵)
2515fveq1i 6827 . . . . 5 (𝐻‘(𝐹𝑥)) = (( I ↾ 𝐼)‘(𝐹𝑥))
263adantr 480 . . . . . . . 8 ((𝐹:𝐴𝐵𝑥𝐴) → 𝐹 Fn 𝐴)
27 simpr 484 . . . . . . . 8 ((𝐹:𝐴𝐵𝑥𝐴) → 𝑥𝐴)
2826, 27, 27fnfvimad 7174 . . . . . . 7 ((𝐹:𝐴𝐵𝑥𝐴) → (𝐹𝑥) ∈ (𝐹𝐴))
2928, 9eleqtrrdi 2839 . . . . . 6 ((𝐹:𝐴𝐵𝑥𝐴) → (𝐹𝑥) ∈ 𝐼)
30 fvresi 7113 . . . . . 6 ((𝐹𝑥) ∈ 𝐼 → (( I ↾ 𝐼)‘(𝐹𝑥)) = (𝐹𝑥))
3129, 30syl 17 . . . . 5 ((𝐹:𝐴𝐵𝑥𝐴) → (( I ↾ 𝐼)‘(𝐹𝑥)) = (𝐹𝑥))
3225, 31eqtrid 2776 . . . 4 ((𝐹:𝐴𝐵𝑥𝐴) → (𝐻‘(𝐹𝑥)) = (𝐹𝑥))
3332mpteq2dva 5188 . . 3 (𝐹:𝐴𝐵 → (𝑥𝐴 ↦ (𝐻‘(𝐹𝑥))) = (𝑥𝐴 ↦ (𝐹𝑥)))
342coeq2i 5807 . . . 4 (𝐻𝐺) = (𝐻 ∘ (𝑥𝐴 ↦ (𝐹𝑥)))
35 f1of 6768 . . . . . . . 8 (( I ↾ 𝐼):𝐼1-1-onto𝐼 → ( I ↾ 𝐼):𝐼𝐼)
3613, 35ax-mp 5 . . . . . . 7 ( I ↾ 𝐼):𝐼𝐼
3715feq1i 6647 . . . . . . 7 (𝐻:𝐼𝐼 ↔ ( I ↾ 𝐼):𝐼𝐼)
3836, 37mpbir 231 . . . . . 6 𝐻:𝐼𝐼
3938a1i 11 . . . . 5 (𝐹:𝐴𝐵𝐻:𝐼𝐼)
4039, 29cofmpt 7070 . . . 4 (𝐹:𝐴𝐵 → (𝐻 ∘ (𝑥𝐴 ↦ (𝐹𝑥))) = (𝑥𝐴 ↦ (𝐻‘(𝐹𝑥))))
4134, 40eqtrid 2776 . . 3 (𝐹:𝐴𝐵 → (𝐻𝐺) = (𝑥𝐴 ↦ (𝐻‘(𝐹𝑥))))
4233, 41, 53eqtr4rd 2775 . 2 (𝐹:𝐴𝐵𝐹 = (𝐻𝐺))
4312, 24, 423jca 1128 1 (𝐹:𝐴𝐵 → (𝐺:𝐴onto𝐼𝐻:𝐼1-1𝐵𝐹 = (𝐻𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3905  cmpt 5176   I cid 5517  cres 5625  cima 5626  ccom 5627   Fn wfn 6481  wf 6482  1-1wf1 6483  ontowfo 6484  1-1-ontowf1o 6485  cfv 6486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494
This theorem is referenced by:  fundcmpsurinjALT  47400
  Copyright terms: Public domain W3C validator