MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1oeq123d Structured version   Visualization version   GIF version

Theorem f1oeq123d 6776
Description: Equality deduction for one-to-one onto functions. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypotheses
Ref Expression
f1eq123d.1 (𝜑𝐹 = 𝐺)
f1eq123d.2 (𝜑𝐴 = 𝐵)
f1eq123d.3 (𝜑𝐶 = 𝐷)
Assertion
Ref Expression
f1oeq123d (𝜑 → (𝐹:𝐴1-1-onto𝐶𝐺:𝐵1-1-onto𝐷))

Proof of Theorem f1oeq123d
StepHypRef Expression
1 f1eq123d.1 . . 3 (𝜑𝐹 = 𝐺)
2 f1oeq1 6770 . . 3 (𝐹 = 𝐺 → (𝐹:𝐴1-1-onto𝐶𝐺:𝐴1-1-onto𝐶))
31, 2syl 17 . 2 (𝜑 → (𝐹:𝐴1-1-onto𝐶𝐺:𝐴1-1-onto𝐶))
4 f1eq123d.2 . . 3 (𝜑𝐴 = 𝐵)
5 f1oeq2 6771 . . 3 (𝐴 = 𝐵 → (𝐺:𝐴1-1-onto𝐶𝐺:𝐵1-1-onto𝐶))
64, 5syl 17 . 2 (𝜑 → (𝐺:𝐴1-1-onto𝐶𝐺:𝐵1-1-onto𝐶))
7 f1eq123d.3 . . 3 (𝜑𝐶 = 𝐷)
8 f1oeq3 6772 . . 3 (𝐶 = 𝐷 → (𝐺:𝐵1-1-onto𝐶𝐺:𝐵1-1-onto𝐷))
97, 8syl 17 . 2 (𝜑 → (𝐺:𝐵1-1-onto𝐶𝐺:𝐵1-1-onto𝐷))
103, 6, 93bitrd 305 1 (𝜑 → (𝐹:𝐴1-1-onto𝐶𝐺:𝐵1-1-onto𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  1-1-ontowf1o 6498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506
This theorem is referenced by:  f1oprswap  6826  f1oprg  6827  f1ossf1o  7082  cnfcom  9629  ackbij2lem2  10168  idffth  17873  ressffth  17878  symgval  19277  symg1bas  19297  symg2bas  19299  symgfixels  19340  symgfixelsi  19341  rnghmf1o  20337  rhmf1o  20376  mat1f1o  22341  ushgredgedg  29132  ushgredgedgloop  29134  trlreslem  29601  wlknwwlksnbij  29791  wwlksnextbij  29805  clwlknf1oclwwlkn  29986  eupth0  30116  eupthp1  30118  foresf1o  32406  f1ocnt  32698  indf1ofs  32762  gsumwrd2dccat  32980  symgcom  33013  cycpmcl  33046  cycpmconjslem2  33085  nsgqusf1o  33360  1arithidomlem2  33480  1arithidom  33481  dimkerim  33596  eulerpartgbij  34336  eulerpartlemn  34345  reprpmtf1o  34590  poimirlem16  37603  poimirlem17  37604  poimirlem19  37606  poimirlem20  37607  poimirlem28  37615  wessf1ornlem  45152  disjf1o  45158  ssnnf1octb  45161  sge0fodjrnlem  46387  f1oresf1orab  47263  isgrim  47855  isubgrgrim  47902  isgrlim  47954  uspgrlim  47964  grlimgrtri  47968  grilcbri2  47976  swapf1f1o  49237  swapf2f1o  49238  swapf2f1oa  49239  swapf2f1oaALT  49240  fucoppc  49372
  Copyright terms: Public domain W3C validator