MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1oeq123d Structured version   Visualization version   GIF version

Theorem f1oeq123d 6794
Description: Equality deduction for one-to-one onto functions. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypotheses
Ref Expression
f1eq123d.1 (𝜑𝐹 = 𝐺)
f1eq123d.2 (𝜑𝐴 = 𝐵)
f1eq123d.3 (𝜑𝐶 = 𝐷)
Assertion
Ref Expression
f1oeq123d (𝜑 → (𝐹:𝐴1-1-onto𝐶𝐺:𝐵1-1-onto𝐷))

Proof of Theorem f1oeq123d
StepHypRef Expression
1 f1eq123d.1 . . 3 (𝜑𝐹 = 𝐺)
2 f1oeq1 6788 . . 3 (𝐹 = 𝐺 → (𝐹:𝐴1-1-onto𝐶𝐺:𝐴1-1-onto𝐶))
31, 2syl 17 . 2 (𝜑 → (𝐹:𝐴1-1-onto𝐶𝐺:𝐴1-1-onto𝐶))
4 f1eq123d.2 . . 3 (𝜑𝐴 = 𝐵)
5 f1oeq2 6789 . . 3 (𝐴 = 𝐵 → (𝐺:𝐴1-1-onto𝐶𝐺:𝐵1-1-onto𝐶))
64, 5syl 17 . 2 (𝜑 → (𝐺:𝐴1-1-onto𝐶𝐺:𝐵1-1-onto𝐶))
7 f1eq123d.3 . . 3 (𝜑𝐶 = 𝐷)
8 f1oeq3 6790 . . 3 (𝐶 = 𝐷 → (𝐺:𝐵1-1-onto𝐶𝐺:𝐵1-1-onto𝐷))
97, 8syl 17 . 2 (𝜑 → (𝐺:𝐵1-1-onto𝐶𝐺:𝐵1-1-onto𝐷))
103, 6, 93bitrd 305 1 (𝜑 → (𝐹:𝐴1-1-onto𝐶𝐺:𝐵1-1-onto𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  1-1-ontowf1o 6510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518
This theorem is referenced by:  f1oprswap  6844  f1oprg  6845  f1ossf1o  7100  cnfcom  9653  ackbij2lem2  10192  idffth  17897  ressffth  17902  symgval  19301  symg1bas  19321  symg2bas  19323  symgfixels  19364  symgfixelsi  19365  rnghmf1o  20361  rhmf1o  20400  mat1f1o  22365  ushgredgedg  29156  ushgredgedgloop  29158  trlreslem  29627  wlknwwlksnbij  29818  wwlksnextbij  29832  clwlknf1oclwwlkn  30013  eupth0  30143  eupthp1  30145  foresf1o  32433  f1ocnt  32725  indf1ofs  32789  gsumwrd2dccat  33007  symgcom  33040  cycpmcl  33073  cycpmconjslem2  33112  nsgqusf1o  33387  1arithidomlem2  33507  1arithidom  33508  dimkerim  33623  eulerpartgbij  34363  eulerpartlemn  34372  reprpmtf1o  34617  poimirlem16  37630  poimirlem17  37631  poimirlem19  37633  poimirlem20  37634  poimirlem28  37642  wessf1ornlem  45179  disjf1o  45185  ssnnf1octb  45188  sge0fodjrnlem  46414  f1oresf1orab  47290  isgrim  47882  isubgrgrim  47929  isgrlim  47981  uspgrlim  47991  grlimgrtri  47995  grilcbri2  48003  swapf1f1o  49264  swapf2f1o  49265  swapf2f1oa  49266  swapf2f1oaALT  49267  fucoppc  49399
  Copyright terms: Public domain W3C validator