![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1oeq123d | Structured version Visualization version GIF version |
Description: Equality deduction for one-to-one onto functions. (Contributed by Mario Carneiro, 27-Jan-2017.) |
Ref | Expression |
---|---|
f1eq123d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
f1eq123d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
f1eq123d.3 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
f1oeq123d | ⊢ (𝜑 → (𝐹:𝐴–1-1-onto→𝐶 ↔ 𝐺:𝐵–1-1-onto→𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1eq123d.1 | . . 3 ⊢ (𝜑 → 𝐹 = 𝐺) | |
2 | f1oeq1 6850 | . . 3 ⊢ (𝐹 = 𝐺 → (𝐹:𝐴–1-1-onto→𝐶 ↔ 𝐺:𝐴–1-1-onto→𝐶)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → (𝐹:𝐴–1-1-onto→𝐶 ↔ 𝐺:𝐴–1-1-onto→𝐶)) |
4 | f1eq123d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
5 | f1oeq2 6851 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐺:𝐴–1-1-onto→𝐶 ↔ 𝐺:𝐵–1-1-onto→𝐶)) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → (𝐺:𝐴–1-1-onto→𝐶 ↔ 𝐺:𝐵–1-1-onto→𝐶)) |
7 | f1eq123d.3 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
8 | f1oeq3 6852 | . . 3 ⊢ (𝐶 = 𝐷 → (𝐺:𝐵–1-1-onto→𝐶 ↔ 𝐺:𝐵–1-1-onto→𝐷)) | |
9 | 7, 8 | syl 17 | . 2 ⊢ (𝜑 → (𝐺:𝐵–1-1-onto→𝐶 ↔ 𝐺:𝐵–1-1-onto→𝐷)) |
10 | 3, 6, 9 | 3bitrd 305 | 1 ⊢ (𝜑 → (𝐹:𝐴–1-1-onto→𝐶 ↔ 𝐺:𝐵–1-1-onto→𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 –1-1-onto→wf1o 6572 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 |
This theorem is referenced by: f1oprswap 6906 f1oprg 6907 f1ossf1o 7162 cnfcom 9769 ackbij2lem2 10308 idffth 18000 ressffth 18005 symgval 19412 symg1bas 19432 symg2bas 19434 symgfixels 19476 symgfixelsi 19477 rnghmf1o 20478 rhmf1o 20517 mat1f1o 22505 ushgredgedg 29264 ushgredgedgloop 29266 trlreslem 29735 wlknwwlksnbij 29921 wwlksnextbij 29935 clwlknf1oclwwlkn 30116 eupth0 30246 eupthp1 30248 foresf1o 32532 f1ocnt 32807 symgcom 33076 cycpmcl 33109 cycpmconjslem2 33148 nsgqusf1o 33409 1arithidomlem2 33529 1arithidom 33530 dimkerim 33640 indf1ofs 33990 eulerpartgbij 34337 eulerpartlemn 34346 reprpmtf1o 34603 poimirlem16 37596 poimirlem17 37597 poimirlem19 37599 poimirlem20 37600 poimirlem28 37608 metakunt17 42178 wessf1ornlem 45092 disjf1o 45098 ssnnf1octb 45101 sge0fodjrnlem 46337 f1oresf1orab 47204 isgrim 47752 isubgrgrim 47781 isgrlim 47806 uspgrlim 47816 grlimgrtri 47820 grilcbri2 47828 |
Copyright terms: Public domain | W3C validator |