| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1oeq123d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for one-to-one onto functions. (Contributed by Mario Carneiro, 27-Jan-2017.) |
| Ref | Expression |
|---|---|
| f1eq123d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
| f1eq123d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| f1eq123d.3 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| f1oeq123d | ⊢ (𝜑 → (𝐹:𝐴–1-1-onto→𝐶 ↔ 𝐺:𝐵–1-1-onto→𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1eq123d.1 | . . 3 ⊢ (𝜑 → 𝐹 = 𝐺) | |
| 2 | f1oeq1 6795 | . . 3 ⊢ (𝐹 = 𝐺 → (𝐹:𝐴–1-1-onto→𝐶 ↔ 𝐺:𝐴–1-1-onto→𝐶)) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → (𝐹:𝐴–1-1-onto→𝐶 ↔ 𝐺:𝐴–1-1-onto→𝐶)) |
| 4 | f1eq123d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 5 | f1oeq2 6796 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐺:𝐴–1-1-onto→𝐶 ↔ 𝐺:𝐵–1-1-onto→𝐶)) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → (𝐺:𝐴–1-1-onto→𝐶 ↔ 𝐺:𝐵–1-1-onto→𝐶)) |
| 7 | f1eq123d.3 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 8 | f1oeq3 6797 | . . 3 ⊢ (𝐶 = 𝐷 → (𝐺:𝐵–1-1-onto→𝐶 ↔ 𝐺:𝐵–1-1-onto→𝐷)) | |
| 9 | 7, 8 | syl 17 | . 2 ⊢ (𝜑 → (𝐺:𝐵–1-1-onto→𝐶 ↔ 𝐺:𝐵–1-1-onto→𝐷)) |
| 10 | 3, 6, 9 | 3bitrd 305 | 1 ⊢ (𝜑 → (𝐹:𝐴–1-1-onto→𝐶 ↔ 𝐺:𝐵–1-1-onto→𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 –1-1-onto→wf1o 6518 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-ss 3939 df-nul 4305 df-if 4497 df-sn 4598 df-pr 4600 df-op 4604 df-br 5116 df-opab 5178 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 |
| This theorem is referenced by: f1oprswap 6851 f1oprg 6852 f1ossf1o 7107 cnfcom 9671 ackbij2lem2 10210 idffth 17903 ressffth 17908 symgval 19307 symg1bas 19327 symg2bas 19329 symgfixels 19370 symgfixelsi 19371 rnghmf1o 20367 rhmf1o 20406 mat1f1o 22371 ushgredgedg 29163 ushgredgedgloop 29165 trlreslem 29634 wlknwwlksnbij 29825 wwlksnextbij 29839 clwlknf1oclwwlkn 30020 eupth0 30150 eupthp1 30152 foresf1o 32440 f1ocnt 32733 indf1ofs 32797 gsumwrd2dccat 33015 symgcom 33048 cycpmcl 33081 cycpmconjslem2 33120 nsgqusf1o 33395 1arithidomlem2 33515 1arithidom 33516 dimkerim 33631 eulerpartgbij 34371 eulerpartlemn 34380 reprpmtf1o 34625 poimirlem16 37627 poimirlem17 37628 poimirlem19 37630 poimirlem20 37631 poimirlem28 37639 wessf1ornlem 45151 disjf1o 45157 ssnnf1octb 45160 sge0fodjrnlem 46387 f1oresf1orab 47260 isgrim 47837 isubgrgrim 47884 isgrlim 47936 uspgrlim 47946 grlimgrtri 47950 grilcbri2 47958 swapf1f1o 49176 swapf2f1o 49177 swapf2f1oa 49178 swapf2f1oaALT 49179 |
| Copyright terms: Public domain | W3C validator |