MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1oeq123d Structured version   Visualization version   GIF version

Theorem f1oeq123d 6275
Description: Equality deduction for one-to-one onto functions. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypotheses
Ref Expression
f1eq123d.1 (𝜑𝐹 = 𝐺)
f1eq123d.2 (𝜑𝐴 = 𝐵)
f1eq123d.3 (𝜑𝐶 = 𝐷)
Assertion
Ref Expression
f1oeq123d (𝜑 → (𝐹:𝐴1-1-onto𝐶𝐺:𝐵1-1-onto𝐷))

Proof of Theorem f1oeq123d
StepHypRef Expression
1 f1eq123d.1 . . 3 (𝜑𝐹 = 𝐺)
2 f1oeq1 6269 . . 3 (𝐹 = 𝐺 → (𝐹:𝐴1-1-onto𝐶𝐺:𝐴1-1-onto𝐶))
31, 2syl 17 . 2 (𝜑 → (𝐹:𝐴1-1-onto𝐶𝐺:𝐴1-1-onto𝐶))
4 f1eq123d.2 . . 3 (𝜑𝐴 = 𝐵)
5 f1oeq2 6270 . . 3 (𝐴 = 𝐵 → (𝐺:𝐴1-1-onto𝐶𝐺:𝐵1-1-onto𝐶))
64, 5syl 17 . 2 (𝜑 → (𝐺:𝐴1-1-onto𝐶𝐺:𝐵1-1-onto𝐶))
7 f1eq123d.3 . . 3 (𝜑𝐶 = 𝐷)
8 f1oeq3 6271 . . 3 (𝐶 = 𝐷 → (𝐺:𝐵1-1-onto𝐶𝐺:𝐵1-1-onto𝐷))
97, 8syl 17 . 2 (𝜑 → (𝐺:𝐵1-1-onto𝐶𝐺:𝐵1-1-onto𝐷))
103, 6, 93bitrd 294 1 (𝜑 → (𝐹:𝐴1-1-onto𝐶𝐺:𝐵1-1-onto𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1631  1-1-ontowf1o 6031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 829  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-rab 3070  df-v 3353  df-dif 3727  df-un 3729  df-in 3731  df-ss 3738  df-nul 4065  df-if 4227  df-sn 4318  df-pr 4320  df-op 4324  df-br 4788  df-opab 4848  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-fun 6034  df-fn 6035  df-f 6036  df-f1 6037  df-fo 6038  df-f1o 6039
This theorem is referenced by:  f1oprswap  6322  f1oprg  6323  f1ossf1o  6539  cnfcom  8762  ackbij2lem2  9265  s2f1o  13871  s4f1o  13873  idffth  16801  ressffth  16806  symg1bas  18024  symg2bas  18026  symgfixels  18062  symgfixelsi  18063  rhmf1o  18943  mat1f1o  20503  isismt  25651  ushgredgedg  26344  ushgredgedgloop  26346  ushgredgedgloopOLD  26347  trlreslem  26832  wlknwwlksnbij  27027  wwlksnextbij  27047  clwlknf1oclwwlkn  27256  eupth0  27395  eupthp1  27397  clwwlknonclwlknonf1oOLD  27552  dlwwlknondlwlknonf1oOLD  27557  foresf1o  29682  f1ocnt  29900  indf1ofs  30429  eulerpartgbij  30775  eulerpartlemn  30784  reprpmtf1o  31045  poimirlem16  33759  poimirlem17  33760  poimirlem19  33762  poimirlem20  33763  poimirlem28  33771  wessf1ornlem  39892  disjf1o  39899  ssnnf1octb  39903  sge0fodjrnlem  41151  f1oresf1orab  41832  rnghmf1o  42432
  Copyright terms: Public domain W3C validator