| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1oeq123d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for one-to-one onto functions. (Contributed by Mario Carneiro, 27-Jan-2017.) |
| Ref | Expression |
|---|---|
| f1eq123d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
| f1eq123d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| f1eq123d.3 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| f1oeq123d | ⊢ (𝜑 → (𝐹:𝐴–1-1-onto→𝐶 ↔ 𝐺:𝐵–1-1-onto→𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1eq123d.1 | . . 3 ⊢ (𝜑 → 𝐹 = 𝐺) | |
| 2 | f1oeq1 6815 | . . 3 ⊢ (𝐹 = 𝐺 → (𝐹:𝐴–1-1-onto→𝐶 ↔ 𝐺:𝐴–1-1-onto→𝐶)) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → (𝐹:𝐴–1-1-onto→𝐶 ↔ 𝐺:𝐴–1-1-onto→𝐶)) |
| 4 | f1eq123d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 5 | f1oeq2 6816 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐺:𝐴–1-1-onto→𝐶 ↔ 𝐺:𝐵–1-1-onto→𝐶)) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → (𝐺:𝐴–1-1-onto→𝐶 ↔ 𝐺:𝐵–1-1-onto→𝐶)) |
| 7 | f1eq123d.3 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 8 | f1oeq3 6817 | . . 3 ⊢ (𝐶 = 𝐷 → (𝐺:𝐵–1-1-onto→𝐶 ↔ 𝐺:𝐵–1-1-onto→𝐷)) | |
| 9 | 7, 8 | syl 17 | . 2 ⊢ (𝜑 → (𝐺:𝐵–1-1-onto→𝐶 ↔ 𝐺:𝐵–1-1-onto→𝐷)) |
| 10 | 3, 6, 9 | 3bitrd 305 | 1 ⊢ (𝜑 → (𝐹:𝐴–1-1-onto→𝐶 ↔ 𝐺:𝐵–1-1-onto→𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 –1-1-onto→wf1o 6539 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5124 df-opab 5186 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 |
| This theorem is referenced by: f1oprswap 6871 f1oprg 6872 f1ossf1o 7127 cnfcom 9721 ackbij2lem2 10260 idffth 17950 ressffth 17955 symgval 19355 symg1bas 19375 symg2bas 19377 symgfixels 19419 symgfixelsi 19420 rnghmf1o 20419 rhmf1o 20458 mat1f1o 22431 ushgredgedg 29173 ushgredgedgloop 29175 trlreslem 29644 wlknwwlksnbij 29835 wwlksnextbij 29849 clwlknf1oclwwlkn 30030 eupth0 30160 eupthp1 30162 foresf1o 32450 f1ocnt 32734 indf1ofs 32782 gsumwrd2dccat 33000 symgcom 33033 cycpmcl 33066 cycpmconjslem2 33105 nsgqusf1o 33370 1arithidomlem2 33490 1arithidom 33491 dimkerim 33604 eulerpartgbij 34308 eulerpartlemn 34317 reprpmtf1o 34575 poimirlem16 37577 poimirlem17 37578 poimirlem19 37580 poimirlem20 37581 poimirlem28 37589 metakunt17 42156 wessf1ornlem 45123 disjf1o 45129 ssnnf1octb 45132 sge0fodjrnlem 46364 f1oresf1orab 47235 isgrim 47802 isubgrgrim 47831 isgrlim 47883 uspgrlim 47893 grlimgrtri 47897 grilcbri2 47905 swapf1f1o 48928 swapf2f1o 48929 swapf2f1oa 48930 swapf2f1oaALT 48931 |
| Copyright terms: Public domain | W3C validator |