| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1oeq123d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for one-to-one onto functions. (Contributed by Mario Carneiro, 27-Jan-2017.) |
| Ref | Expression |
|---|---|
| f1eq123d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
| f1eq123d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| f1eq123d.3 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| f1oeq123d | ⊢ (𝜑 → (𝐹:𝐴–1-1-onto→𝐶 ↔ 𝐺:𝐵–1-1-onto→𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1eq123d.1 | . . 3 ⊢ (𝜑 → 𝐹 = 𝐺) | |
| 2 | f1oeq1 6759 | . . 3 ⊢ (𝐹 = 𝐺 → (𝐹:𝐴–1-1-onto→𝐶 ↔ 𝐺:𝐴–1-1-onto→𝐶)) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → (𝐹:𝐴–1-1-onto→𝐶 ↔ 𝐺:𝐴–1-1-onto→𝐶)) |
| 4 | f1eq123d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 5 | f1oeq2 6760 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐺:𝐴–1-1-onto→𝐶 ↔ 𝐺:𝐵–1-1-onto→𝐶)) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → (𝐺:𝐴–1-1-onto→𝐶 ↔ 𝐺:𝐵–1-1-onto→𝐶)) |
| 7 | f1eq123d.3 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 8 | f1oeq3 6761 | . . 3 ⊢ (𝐶 = 𝐷 → (𝐺:𝐵–1-1-onto→𝐶 ↔ 𝐺:𝐵–1-1-onto→𝐷)) | |
| 9 | 7, 8 | syl 17 | . 2 ⊢ (𝜑 → (𝐺:𝐵–1-1-onto→𝐶 ↔ 𝐺:𝐵–1-1-onto→𝐷)) |
| 10 | 3, 6, 9 | 3bitrd 305 | 1 ⊢ (𝜑 → (𝐹:𝐴–1-1-onto→𝐶 ↔ 𝐺:𝐵–1-1-onto→𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 –1-1-onto→wf1o 6488 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 |
| This theorem is referenced by: f1oprswap 6816 f1oprg 6817 f1ossf1o 7070 cnfcom 9601 ackbij2lem2 10141 idffth 17850 ressffth 17855 symgval 19291 symg1bas 19311 symg2bas 19313 symgfixels 19354 symgfixelsi 19355 rnghmf1o 20379 rhmf1o 20417 mat1f1o 22413 ushgredgedg 29228 ushgredgedgloop 29230 trlreslem 29697 wlknwwlksnbij 29887 wwlksnextbij 29901 clwlknf1oclwwlkn 30085 eupth0 30215 eupthp1 30217 foresf1o 32505 f1ocnt 32808 indf1ofs 32876 gsumwrd2dccat 33088 symgcom 33093 cycpmcl 33126 cycpmconjslem2 33165 nsgqusf1o 33425 1arithidomlem2 33545 1arithidom 33546 dimkerim 33712 eulerpartgbij 34457 eulerpartlemn 34466 reprpmtf1o 34711 poimirlem16 37749 poimirlem17 37750 poimirlem19 37752 poimirlem20 37753 poimirlem28 37761 wessf1ornlem 45345 disjf1o 45351 ssnnf1octb 45354 sge0fodjrnlem 46576 f1oresf1orab 47451 isgrim 48044 isubgrgrim 48091 isgrlim 48144 uspgrlim 48154 grlimedgclnbgr 48157 grlimgrtri 48165 grilcbri2 48173 gpg5grlim 48255 swapf1f1o 49436 swapf2f1o 49437 swapf2f1oa 49438 swapf2f1oaALT 49439 fucoppc 49571 |
| Copyright terms: Public domain | W3C validator |