| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1oeq123d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for one-to-one onto functions. (Contributed by Mario Carneiro, 27-Jan-2017.) |
| Ref | Expression |
|---|---|
| f1eq123d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
| f1eq123d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| f1eq123d.3 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| f1oeq123d | ⊢ (𝜑 → (𝐹:𝐴–1-1-onto→𝐶 ↔ 𝐺:𝐵–1-1-onto→𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1eq123d.1 | . . 3 ⊢ (𝜑 → 𝐹 = 𝐺) | |
| 2 | f1oeq1 6746 | . . 3 ⊢ (𝐹 = 𝐺 → (𝐹:𝐴–1-1-onto→𝐶 ↔ 𝐺:𝐴–1-1-onto→𝐶)) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → (𝐹:𝐴–1-1-onto→𝐶 ↔ 𝐺:𝐴–1-1-onto→𝐶)) |
| 4 | f1eq123d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 5 | f1oeq2 6747 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐺:𝐴–1-1-onto→𝐶 ↔ 𝐺:𝐵–1-1-onto→𝐶)) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → (𝐺:𝐴–1-1-onto→𝐶 ↔ 𝐺:𝐵–1-1-onto→𝐶)) |
| 7 | f1eq123d.3 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 8 | f1oeq3 6748 | . . 3 ⊢ (𝐶 = 𝐷 → (𝐺:𝐵–1-1-onto→𝐶 ↔ 𝐺:𝐵–1-1-onto→𝐷)) | |
| 9 | 7, 8 | syl 17 | . 2 ⊢ (𝜑 → (𝐺:𝐵–1-1-onto→𝐶 ↔ 𝐺:𝐵–1-1-onto→𝐷)) |
| 10 | 3, 6, 9 | 3bitrd 305 | 1 ⊢ (𝜑 → (𝐹:𝐴–1-1-onto→𝐶 ↔ 𝐺:𝐵–1-1-onto→𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 –1-1-onto→wf1o 6475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-br 5087 df-opab 5149 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 |
| This theorem is referenced by: f1oprswap 6802 f1oprg 6803 f1ossf1o 7056 cnfcom 9585 ackbij2lem2 10125 idffth 17837 ressffth 17842 symgval 19278 symg1bas 19298 symg2bas 19300 symgfixels 19341 symgfixelsi 19342 rnghmf1o 20365 rhmf1o 20403 mat1f1o 22388 ushgredgedg 29202 ushgredgedgloop 29204 trlreslem 29671 wlknwwlksnbij 29861 wwlksnextbij 29875 clwlknf1oclwwlkn 30056 eupth0 30186 eupthp1 30188 foresf1o 32476 f1ocnt 32774 indf1ofs 32839 gsumwrd2dccat 33039 symgcom 33044 cycpmcl 33077 cycpmconjslem2 33116 nsgqusf1o 33373 1arithidomlem2 33493 1arithidom 33494 dimkerim 33632 eulerpartgbij 34377 eulerpartlemn 34386 reprpmtf1o 34631 poimirlem16 37676 poimirlem17 37677 poimirlem19 37679 poimirlem20 37680 poimirlem28 37688 wessf1ornlem 45222 disjf1o 45228 ssnnf1octb 45231 sge0fodjrnlem 46454 f1oresf1orab 47320 isgrim 47913 isubgrgrim 47960 isgrlim 48013 uspgrlim 48023 grlimedgclnbgr 48026 grlimgrtri 48034 grilcbri2 48042 gpg5grlim 48124 swapf1f1o 49307 swapf2f1o 49308 swapf2f1oa 49309 swapf2f1oaALT 49310 fucoppc 49442 |
| Copyright terms: Public domain | W3C validator |