| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resgrpplusfrn | Structured version Visualization version GIF version | ||
| Description: The underlying set of a group operation which is a restriction of a structure. (Contributed by Paul Chapman, 25-Mar-2008.) (Revised by AV, 30-Aug-2021.) |
| Ref | Expression |
|---|---|
| resgrpplusfrn.b | ⊢ 𝐵 = (Base‘𝐺) |
| resgrpplusfrn.h | ⊢ 𝐻 = (𝐺 ↾s 𝑆) |
| resgrpplusfrn.o | ⊢ 𝐹 = (+𝑓‘𝐻) |
| Ref | Expression |
|---|---|
| resgrpplusfrn | ⊢ ((𝐻 ∈ Grp ∧ 𝑆 ⊆ 𝐵) → 𝑆 = ran 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2736 | . . . . 5 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
| 2 | resgrpplusfrn.o | . . . . 5 ⊢ 𝐹 = (+𝑓‘𝐻) | |
| 3 | 1, 2 | grpplusfo 18937 | . . . 4 ⊢ (𝐻 ∈ Grp → 𝐹:((Base‘𝐻) × (Base‘𝐻))–onto→(Base‘𝐻)) |
| 4 | 3 | adantr 480 | . . 3 ⊢ ((𝐻 ∈ Grp ∧ 𝑆 ⊆ 𝐵) → 𝐹:((Base‘𝐻) × (Base‘𝐻))–onto→(Base‘𝐻)) |
| 5 | eqidd 2737 | . . . 4 ⊢ ((𝐻 ∈ Grp ∧ 𝑆 ⊆ 𝐵) → 𝐹 = 𝐹) | |
| 6 | resgrpplusfrn.h | . . . . . . 7 ⊢ 𝐻 = (𝐺 ↾s 𝑆) | |
| 7 | resgrpplusfrn.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐺) | |
| 8 | 6, 7 | ressbas2 17264 | . . . . . 6 ⊢ (𝑆 ⊆ 𝐵 → 𝑆 = (Base‘𝐻)) |
| 9 | 8 | adantl 481 | . . . . 5 ⊢ ((𝐻 ∈ Grp ∧ 𝑆 ⊆ 𝐵) → 𝑆 = (Base‘𝐻)) |
| 10 | 9 | sqxpeqd 5691 | . . . 4 ⊢ ((𝐻 ∈ Grp ∧ 𝑆 ⊆ 𝐵) → (𝑆 × 𝑆) = ((Base‘𝐻) × (Base‘𝐻))) |
| 11 | 5, 10, 9 | foeq123d 6816 | . . 3 ⊢ ((𝐻 ∈ Grp ∧ 𝑆 ⊆ 𝐵) → (𝐹:(𝑆 × 𝑆)–onto→𝑆 ↔ 𝐹:((Base‘𝐻) × (Base‘𝐻))–onto→(Base‘𝐻))) |
| 12 | 4, 11 | mpbird 257 | . 2 ⊢ ((𝐻 ∈ Grp ∧ 𝑆 ⊆ 𝐵) → 𝐹:(𝑆 × 𝑆)–onto→𝑆) |
| 13 | forn 6798 | . . 3 ⊢ (𝐹:(𝑆 × 𝑆)–onto→𝑆 → ran 𝐹 = 𝑆) | |
| 14 | 13 | eqcomd 2742 | . 2 ⊢ (𝐹:(𝑆 × 𝑆)–onto→𝑆 → 𝑆 = ran 𝐹) |
| 15 | 12, 14 | syl 17 | 1 ⊢ ((𝐻 ∈ Grp ∧ 𝑆 ⊆ 𝐵) → 𝑆 = ran 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3931 × cxp 5657 ran crn 5660 –onto→wfo 6534 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 ↾s cress 17256 +𝑓cplusf 18620 Grpcgrp 18921 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-1cn 11192 ax-addcl 11194 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-nn 12246 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-0g 17460 df-plusf 18622 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-grp 18924 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |