| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resgrpplusfrn | Structured version Visualization version GIF version | ||
| Description: The underlying set of a group operation which is a restriction of a structure. (Contributed by Paul Chapman, 25-Mar-2008.) (Revised by AV, 30-Aug-2021.) |
| Ref | Expression |
|---|---|
| resgrpplusfrn.b | ⊢ 𝐵 = (Base‘𝐺) |
| resgrpplusfrn.h | ⊢ 𝐻 = (𝐺 ↾s 𝑆) |
| resgrpplusfrn.o | ⊢ 𝐹 = (+𝑓‘𝐻) |
| Ref | Expression |
|---|---|
| resgrpplusfrn | ⊢ ((𝐻 ∈ Grp ∧ 𝑆 ⊆ 𝐵) → 𝑆 = ran 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . . 5 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
| 2 | resgrpplusfrn.o | . . . . 5 ⊢ 𝐹 = (+𝑓‘𝐻) | |
| 3 | 1, 2 | grpplusfo 18881 | . . . 4 ⊢ (𝐻 ∈ Grp → 𝐹:((Base‘𝐻) × (Base‘𝐻))–onto→(Base‘𝐻)) |
| 4 | 3 | adantr 480 | . . 3 ⊢ ((𝐻 ∈ Grp ∧ 𝑆 ⊆ 𝐵) → 𝐹:((Base‘𝐻) × (Base‘𝐻))–onto→(Base‘𝐻)) |
| 5 | eqidd 2730 | . . . 4 ⊢ ((𝐻 ∈ Grp ∧ 𝑆 ⊆ 𝐵) → 𝐹 = 𝐹) | |
| 6 | resgrpplusfrn.h | . . . . . . 7 ⊢ 𝐻 = (𝐺 ↾s 𝑆) | |
| 7 | resgrpplusfrn.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐺) | |
| 8 | 6, 7 | ressbas2 17208 | . . . . . 6 ⊢ (𝑆 ⊆ 𝐵 → 𝑆 = (Base‘𝐻)) |
| 9 | 8 | adantl 481 | . . . . 5 ⊢ ((𝐻 ∈ Grp ∧ 𝑆 ⊆ 𝐵) → 𝑆 = (Base‘𝐻)) |
| 10 | 9 | sqxpeqd 5670 | . . . 4 ⊢ ((𝐻 ∈ Grp ∧ 𝑆 ⊆ 𝐵) → (𝑆 × 𝑆) = ((Base‘𝐻) × (Base‘𝐻))) |
| 11 | 5, 10, 9 | foeq123d 6793 | . . 3 ⊢ ((𝐻 ∈ Grp ∧ 𝑆 ⊆ 𝐵) → (𝐹:(𝑆 × 𝑆)–onto→𝑆 ↔ 𝐹:((Base‘𝐻) × (Base‘𝐻))–onto→(Base‘𝐻))) |
| 12 | 4, 11 | mpbird 257 | . 2 ⊢ ((𝐻 ∈ Grp ∧ 𝑆 ⊆ 𝐵) → 𝐹:(𝑆 × 𝑆)–onto→𝑆) |
| 13 | forn 6775 | . . 3 ⊢ (𝐹:(𝑆 × 𝑆)–onto→𝑆 → ran 𝐹 = 𝑆) | |
| 14 | 13 | eqcomd 2735 | . 2 ⊢ (𝐹:(𝑆 × 𝑆)–onto→𝑆 → 𝑆 = ran 𝐹) |
| 15 | 12, 14 | syl 17 | 1 ⊢ ((𝐻 ∈ Grp ∧ 𝑆 ⊆ 𝐵) → 𝑆 = ran 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3914 × cxp 5636 ran crn 5639 –onto→wfo 6509 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 ↾s cress 17200 +𝑓cplusf 18564 Grpcgrp 18865 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-1cn 11126 ax-addcl 11128 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-nn 12187 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-0g 17404 df-plusf 18566 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |