![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resgrpplusfrn | Structured version Visualization version GIF version |
Description: The underlying set of a group operation which is a restriction of a structure. (Contributed by Paul Chapman, 25-Mar-2008.) (Revised by AV, 30-Aug-2021.) |
Ref | Expression |
---|---|
resgrpplusfrn.b | ⊢ 𝐵 = (Base‘𝐺) |
resgrpplusfrn.h | ⊢ 𝐻 = (𝐺 ↾s 𝑆) |
resgrpplusfrn.o | ⊢ 𝐹 = (+𝑓‘𝐻) |
Ref | Expression |
---|---|
resgrpplusfrn | ⊢ ((𝐻 ∈ Grp ∧ 𝑆 ⊆ 𝐵) → 𝑆 = ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2725 | . . . . 5 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
2 | resgrpplusfrn.o | . . . . 5 ⊢ 𝐹 = (+𝑓‘𝐻) | |
3 | 1, 2 | grpplusfo 18905 | . . . 4 ⊢ (𝐻 ∈ Grp → 𝐹:((Base‘𝐻) × (Base‘𝐻))–onto→(Base‘𝐻)) |
4 | 3 | adantr 479 | . . 3 ⊢ ((𝐻 ∈ Grp ∧ 𝑆 ⊆ 𝐵) → 𝐹:((Base‘𝐻) × (Base‘𝐻))–onto→(Base‘𝐻)) |
5 | eqidd 2726 | . . . 4 ⊢ ((𝐻 ∈ Grp ∧ 𝑆 ⊆ 𝐵) → 𝐹 = 𝐹) | |
6 | resgrpplusfrn.h | . . . . . . 7 ⊢ 𝐻 = (𝐺 ↾s 𝑆) | |
7 | resgrpplusfrn.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐺) | |
8 | 6, 7 | ressbas2 17212 | . . . . . 6 ⊢ (𝑆 ⊆ 𝐵 → 𝑆 = (Base‘𝐻)) |
9 | 8 | adantl 480 | . . . . 5 ⊢ ((𝐻 ∈ Grp ∧ 𝑆 ⊆ 𝐵) → 𝑆 = (Base‘𝐻)) |
10 | 9 | sqxpeqd 5705 | . . . 4 ⊢ ((𝐻 ∈ Grp ∧ 𝑆 ⊆ 𝐵) → (𝑆 × 𝑆) = ((Base‘𝐻) × (Base‘𝐻))) |
11 | 5, 10, 9 | foeq123d 6825 | . . 3 ⊢ ((𝐻 ∈ Grp ∧ 𝑆 ⊆ 𝐵) → (𝐹:(𝑆 × 𝑆)–onto→𝑆 ↔ 𝐹:((Base‘𝐻) × (Base‘𝐻))–onto→(Base‘𝐻))) |
12 | 4, 11 | mpbird 256 | . 2 ⊢ ((𝐻 ∈ Grp ∧ 𝑆 ⊆ 𝐵) → 𝐹:(𝑆 × 𝑆)–onto→𝑆) |
13 | forn 6807 | . . 3 ⊢ (𝐹:(𝑆 × 𝑆)–onto→𝑆 → ran 𝐹 = 𝑆) | |
14 | 13 | eqcomd 2731 | . 2 ⊢ (𝐹:(𝑆 × 𝑆)–onto→𝑆 → 𝑆 = ran 𝐹) |
15 | 12, 14 | syl 17 | 1 ⊢ ((𝐻 ∈ Grp ∧ 𝑆 ⊆ 𝐵) → 𝑆 = ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ⊆ wss 3941 × cxp 5671 ran crn 5674 –onto→wfo 6541 ‘cfv 6543 (class class class)co 7413 Basecbs 17174 ↾s cress 17203 +𝑓cplusf 18591 Grpcgrp 18889 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-1cn 11191 ax-addcl 11193 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3961 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-iun 4994 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7866 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-nn 12238 df-sets 17127 df-slot 17145 df-ndx 17157 df-base 17175 df-ress 17204 df-0g 17417 df-plusf 18593 df-mgm 18594 df-sgrp 18673 df-mnd 18689 df-grp 18892 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |