MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resgrpplusfrn Structured version   Visualization version   GIF version

Theorem resgrpplusfrn 18829
Description: The underlying set of a group operation which is a restriction of a structure. (Contributed by Paul Chapman, 25-Mar-2008.) (Revised by AV, 30-Aug-2021.)
Hypotheses
Ref Expression
resgrpplusfrn.b 𝐵 = (Base‘𝐺)
resgrpplusfrn.h 𝐻 = (𝐺s 𝑆)
resgrpplusfrn.o 𝐹 = (+𝑓𝐻)
Assertion
Ref Expression
resgrpplusfrn ((𝐻 ∈ Grp ∧ 𝑆𝐵) → 𝑆 = ran 𝐹)

Proof of Theorem resgrpplusfrn
StepHypRef Expression
1 eqid 2729 . . . . 5 (Base‘𝐻) = (Base‘𝐻)
2 resgrpplusfrn.o . . . . 5 𝐹 = (+𝑓𝐻)
31, 2grpplusfo 18828 . . . 4 (𝐻 ∈ Grp → 𝐹:((Base‘𝐻) × (Base‘𝐻))–onto→(Base‘𝐻))
43adantr 480 . . 3 ((𝐻 ∈ Grp ∧ 𝑆𝐵) → 𝐹:((Base‘𝐻) × (Base‘𝐻))–onto→(Base‘𝐻))
5 eqidd 2730 . . . 4 ((𝐻 ∈ Grp ∧ 𝑆𝐵) → 𝐹 = 𝐹)
6 resgrpplusfrn.h . . . . . . 7 𝐻 = (𝐺s 𝑆)
7 resgrpplusfrn.b . . . . . . 7 𝐵 = (Base‘𝐺)
86, 7ressbas2 17149 . . . . . 6 (𝑆𝐵𝑆 = (Base‘𝐻))
98adantl 481 . . . . 5 ((𝐻 ∈ Grp ∧ 𝑆𝐵) → 𝑆 = (Base‘𝐻))
109sqxpeqd 5651 . . . 4 ((𝐻 ∈ Grp ∧ 𝑆𝐵) → (𝑆 × 𝑆) = ((Base‘𝐻) × (Base‘𝐻)))
115, 10, 9foeq123d 6757 . . 3 ((𝐻 ∈ Grp ∧ 𝑆𝐵) → (𝐹:(𝑆 × 𝑆)–onto𝑆𝐹:((Base‘𝐻) × (Base‘𝐻))–onto→(Base‘𝐻)))
124, 11mpbird 257 . 2 ((𝐻 ∈ Grp ∧ 𝑆𝐵) → 𝐹:(𝑆 × 𝑆)–onto𝑆)
13 forn 6739 . . 3 (𝐹:(𝑆 × 𝑆)–onto𝑆 → ran 𝐹 = 𝑆)
1413eqcomd 2735 . 2 (𝐹:(𝑆 × 𝑆)–onto𝑆𝑆 = ran 𝐹)
1512, 14syl 17 1 ((𝐻 ∈ Grp ∧ 𝑆𝐵) → 𝑆 = ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wss 3903   × cxp 5617  ran crn 5620  ontowfo 6480  cfv 6482  (class class class)co 7349  Basecbs 17120  s cress 17141  +𝑓cplusf 18511  Grpcgrp 18812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-1cn 11067  ax-addcl 11069
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-nn 12129  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-0g 17345  df-plusf 18513  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-grp 18815
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator