MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resgrpplusfrn Structured version   Visualization version   GIF version

Theorem resgrpplusfrn 18864
Description: The underlying set of a group operation which is a restriction of a structure. (Contributed by Paul Chapman, 25-Mar-2008.) (Revised by AV, 30-Aug-2021.)
Hypotheses
Ref Expression
resgrpplusfrn.b 𝐵 = (Base‘𝐺)
resgrpplusfrn.h 𝐻 = (𝐺s 𝑆)
resgrpplusfrn.o 𝐹 = (+𝑓𝐻)
Assertion
Ref Expression
resgrpplusfrn ((𝐻 ∈ Grp ∧ 𝑆𝐵) → 𝑆 = ran 𝐹)

Proof of Theorem resgrpplusfrn
StepHypRef Expression
1 eqid 2729 . . . . 5 (Base‘𝐻) = (Base‘𝐻)
2 resgrpplusfrn.o . . . . 5 𝐹 = (+𝑓𝐻)
31, 2grpplusfo 18863 . . . 4 (𝐻 ∈ Grp → 𝐹:((Base‘𝐻) × (Base‘𝐻))–onto→(Base‘𝐻))
43adantr 480 . . 3 ((𝐻 ∈ Grp ∧ 𝑆𝐵) → 𝐹:((Base‘𝐻) × (Base‘𝐻))–onto→(Base‘𝐻))
5 eqidd 2730 . . . 4 ((𝐻 ∈ Grp ∧ 𝑆𝐵) → 𝐹 = 𝐹)
6 resgrpplusfrn.h . . . . . . 7 𝐻 = (𝐺s 𝑆)
7 resgrpplusfrn.b . . . . . . 7 𝐵 = (Base‘𝐺)
86, 7ressbas2 17184 . . . . . 6 (𝑆𝐵𝑆 = (Base‘𝐻))
98adantl 481 . . . . 5 ((𝐻 ∈ Grp ∧ 𝑆𝐵) → 𝑆 = (Base‘𝐻))
109sqxpeqd 5663 . . . 4 ((𝐻 ∈ Grp ∧ 𝑆𝐵) → (𝑆 × 𝑆) = ((Base‘𝐻) × (Base‘𝐻)))
115, 10, 9foeq123d 6775 . . 3 ((𝐻 ∈ Grp ∧ 𝑆𝐵) → (𝐹:(𝑆 × 𝑆)–onto𝑆𝐹:((Base‘𝐻) × (Base‘𝐻))–onto→(Base‘𝐻)))
124, 11mpbird 257 . 2 ((𝐻 ∈ Grp ∧ 𝑆𝐵) → 𝐹:(𝑆 × 𝑆)–onto𝑆)
13 forn 6757 . . 3 (𝐹:(𝑆 × 𝑆)–onto𝑆 → ran 𝐹 = 𝑆)
1413eqcomd 2735 . 2 (𝐹:(𝑆 × 𝑆)–onto𝑆𝑆 = ran 𝐹)
1512, 14syl 17 1 ((𝐻 ∈ Grp ∧ 𝑆𝐵) → 𝑆 = ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wss 3911   × cxp 5629  ran crn 5632  ontowfo 6497  cfv 6499  (class class class)co 7369  Basecbs 17155  s cress 17176  +𝑓cplusf 18546  Grpcgrp 18847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-1cn 11102  ax-addcl 11104
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-nn 12163  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-0g 17380  df-plusf 18548  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-grp 18850
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator