MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cofull Structured version   Visualization version   GIF version

Theorem cofull 17905
Description: The composition of two full functors is full. Proposition 3.30(d) in [Adamek] p. 35. (Contributed by Mario Carneiro, 28-Jan-2017.)
Hypotheses
Ref Expression
cofull.f (𝜑𝐹 ∈ (𝐶 Full 𝐷))
cofull.g (𝜑𝐺 ∈ (𝐷 Full 𝐸))
Assertion
Ref Expression
cofull (𝜑 → (𝐺func 𝐹) ∈ (𝐶 Full 𝐸))

Proof of Theorem cofull
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relfunc 17831 . . 3 Rel (𝐶 Func 𝐸)
2 fullfunc 17877 . . . . 5 (𝐶 Full 𝐷) ⊆ (𝐶 Func 𝐷)
3 cofull.f . . . . 5 (𝜑𝐹 ∈ (𝐶 Full 𝐷))
42, 3sselid 3947 . . . 4 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
5 fullfunc 17877 . . . . 5 (𝐷 Full 𝐸) ⊆ (𝐷 Func 𝐸)
6 cofull.g . . . . 5 (𝜑𝐺 ∈ (𝐷 Full 𝐸))
75, 6sselid 3947 . . . 4 (𝜑𝐺 ∈ (𝐷 Func 𝐸))
84, 7cofucl 17857 . . 3 (𝜑 → (𝐺func 𝐹) ∈ (𝐶 Func 𝐸))
9 1st2nd 8021 . . 3 ((Rel (𝐶 Func 𝐸) ∧ (𝐺func 𝐹) ∈ (𝐶 Func 𝐸)) → (𝐺func 𝐹) = ⟨(1st ‘(𝐺func 𝐹)), (2nd ‘(𝐺func 𝐹))⟩)
101, 8, 9sylancr 587 . 2 (𝜑 → (𝐺func 𝐹) = ⟨(1st ‘(𝐺func 𝐹)), (2nd ‘(𝐺func 𝐹))⟩)
11 1st2ndbr 8024 . . . . 5 ((Rel (𝐶 Func 𝐸) ∧ (𝐺func 𝐹) ∈ (𝐶 Func 𝐸)) → (1st ‘(𝐺func 𝐹))(𝐶 Func 𝐸)(2nd ‘(𝐺func 𝐹)))
121, 8, 11sylancr 587 . . . 4 (𝜑 → (1st ‘(𝐺func 𝐹))(𝐶 Func 𝐸)(2nd ‘(𝐺func 𝐹)))
13 eqid 2730 . . . . . . . 8 (Base‘𝐷) = (Base‘𝐷)
14 eqid 2730 . . . . . . . 8 (Hom ‘𝐸) = (Hom ‘𝐸)
15 eqid 2730 . . . . . . . 8 (Hom ‘𝐷) = (Hom ‘𝐷)
16 relfull 17879 . . . . . . . . 9 Rel (𝐷 Full 𝐸)
176adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐺 ∈ (𝐷 Full 𝐸))
18 1st2ndbr 8024 . . . . . . . . 9 ((Rel (𝐷 Full 𝐸) ∧ 𝐺 ∈ (𝐷 Full 𝐸)) → (1st𝐺)(𝐷 Full 𝐸)(2nd𝐺))
1916, 17, 18sylancr 587 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (1st𝐺)(𝐷 Full 𝐸)(2nd𝐺))
20 eqid 2730 . . . . . . . . . 10 (Base‘𝐶) = (Base‘𝐶)
21 relfunc 17831 . . . . . . . . . . 11 Rel (𝐶 Func 𝐷)
224adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐹 ∈ (𝐶 Func 𝐷))
23 1st2ndbr 8024 . . . . . . . . . . 11 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
2421, 22, 23sylancr 587 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
2520, 13, 24funcf1 17835 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (1st𝐹):(Base‘𝐶)⟶(Base‘𝐷))
26 simprl 770 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶))
2725, 26ffvelcdmd 7060 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st𝐹)‘𝑥) ∈ (Base‘𝐷))
28 simprr 772 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶))
2925, 28ffvelcdmd 7060 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st𝐹)‘𝑦) ∈ (Base‘𝐷))
3013, 14, 15, 19, 27, 29fullfo 17883 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)):(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦))–onto→(((1st𝐺)‘((1st𝐹)‘𝑥))(Hom ‘𝐸)((1st𝐺)‘((1st𝐹)‘𝑦))))
31 eqid 2730 . . . . . . . 8 (Hom ‘𝐶) = (Hom ‘𝐶)
32 relfull 17879 . . . . . . . . 9 Rel (𝐶 Full 𝐷)
333adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐹 ∈ (𝐶 Full 𝐷))
34 1st2ndbr 8024 . . . . . . . . 9 ((Rel (𝐶 Full 𝐷) ∧ 𝐹 ∈ (𝐶 Full 𝐷)) → (1st𝐹)(𝐶 Full 𝐷)(2nd𝐹))
3532, 33, 34sylancr 587 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (1st𝐹)(𝐶 Full 𝐷)(2nd𝐹))
3620, 15, 31, 35, 26, 28fullfo 17883 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd𝐹)𝑦):(𝑥(Hom ‘𝐶)𝑦)–onto→(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)))
37 foco 6789 . . . . . . 7 (((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)):(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦))–onto→(((1st𝐺)‘((1st𝐹)‘𝑥))(Hom ‘𝐸)((1st𝐺)‘((1st𝐹)‘𝑦))) ∧ (𝑥(2nd𝐹)𝑦):(𝑥(Hom ‘𝐶)𝑦)–onto→(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦))) → ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)):(𝑥(Hom ‘𝐶)𝑦)–onto→(((1st𝐺)‘((1st𝐹)‘𝑥))(Hom ‘𝐸)((1st𝐺)‘((1st𝐹)‘𝑦))))
3830, 36, 37syl2anc 584 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)):(𝑥(Hom ‘𝐶)𝑦)–onto→(((1st𝐺)‘((1st𝐹)‘𝑥))(Hom ‘𝐸)((1st𝐺)‘((1st𝐹)‘𝑦))))
397adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐺 ∈ (𝐷 Func 𝐸))
4020, 22, 39, 26, 28cofu2nd 17854 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘(𝐺func 𝐹))𝑦) = ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)))
41 eqidd 2731 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(Hom ‘𝐶)𝑦) = (𝑥(Hom ‘𝐶)𝑦))
4220, 22, 39, 26cofu1 17853 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st ‘(𝐺func 𝐹))‘𝑥) = ((1st𝐺)‘((1st𝐹)‘𝑥)))
4320, 22, 39, 28cofu1 17853 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st ‘(𝐺func 𝐹))‘𝑦) = ((1st𝐺)‘((1st𝐹)‘𝑦)))
4442, 43oveq12d 7408 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (((1st ‘(𝐺func 𝐹))‘𝑥)(Hom ‘𝐸)((1st ‘(𝐺func 𝐹))‘𝑦)) = (((1st𝐺)‘((1st𝐹)‘𝑥))(Hom ‘𝐸)((1st𝐺)‘((1st𝐹)‘𝑦))))
4540, 41, 44foeq123d 6796 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((𝑥(2nd ‘(𝐺func 𝐹))𝑦):(𝑥(Hom ‘𝐶)𝑦)–onto→(((1st ‘(𝐺func 𝐹))‘𝑥)(Hom ‘𝐸)((1st ‘(𝐺func 𝐹))‘𝑦)) ↔ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)):(𝑥(Hom ‘𝐶)𝑦)–onto→(((1st𝐺)‘((1st𝐹)‘𝑥))(Hom ‘𝐸)((1st𝐺)‘((1st𝐹)‘𝑦)))))
4638, 45mpbird 257 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘(𝐺func 𝐹))𝑦):(𝑥(Hom ‘𝐶)𝑦)–onto→(((1st ‘(𝐺func 𝐹))‘𝑥)(Hom ‘𝐸)((1st ‘(𝐺func 𝐹))‘𝑦)))
4746ralrimivva 3181 . . . 4 (𝜑 → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥(2nd ‘(𝐺func 𝐹))𝑦):(𝑥(Hom ‘𝐶)𝑦)–onto→(((1st ‘(𝐺func 𝐹))‘𝑥)(Hom ‘𝐸)((1st ‘(𝐺func 𝐹))‘𝑦)))
4820, 14, 31isfull2 17882 . . . 4 ((1st ‘(𝐺func 𝐹))(𝐶 Full 𝐸)(2nd ‘(𝐺func 𝐹)) ↔ ((1st ‘(𝐺func 𝐹))(𝐶 Func 𝐸)(2nd ‘(𝐺func 𝐹)) ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥(2nd ‘(𝐺func 𝐹))𝑦):(𝑥(Hom ‘𝐶)𝑦)–onto→(((1st ‘(𝐺func 𝐹))‘𝑥)(Hom ‘𝐸)((1st ‘(𝐺func 𝐹))‘𝑦))))
4912, 47, 48sylanbrc 583 . . 3 (𝜑 → (1st ‘(𝐺func 𝐹))(𝐶 Full 𝐸)(2nd ‘(𝐺func 𝐹)))
50 df-br 5111 . . 3 ((1st ‘(𝐺func 𝐹))(𝐶 Full 𝐸)(2nd ‘(𝐺func 𝐹)) ↔ ⟨(1st ‘(𝐺func 𝐹)), (2nd ‘(𝐺func 𝐹))⟩ ∈ (𝐶 Full 𝐸))
5149, 50sylib 218 . 2 (𝜑 → ⟨(1st ‘(𝐺func 𝐹)), (2nd ‘(𝐺func 𝐹))⟩ ∈ (𝐶 Full 𝐸))
5210, 51eqeltrd 2829 1 (𝜑 → (𝐺func 𝐹) ∈ (𝐶 Full 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045  cop 4598   class class class wbr 5110  ccom 5645  Rel wrel 5646  ontowfo 6512  cfv 6514  (class class class)co 7390  1st c1st 7969  2nd c2nd 7970  Basecbs 17186  Hom chom 17238   Func cfunc 17823  func ccofu 17825   Full cful 17873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-map 8804  df-ixp 8874  df-cat 17636  df-cid 17637  df-func 17827  df-cofu 17829  df-full 17875
This theorem is referenced by:  coffth  17907
  Copyright terms: Public domain W3C validator