MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cofull Structured version   Visualization version   GIF version

Theorem cofull 17441
Description: The composition of two full functors is full. Proposition 3.30(d) in [Adamek] p. 35. (Contributed by Mario Carneiro, 28-Jan-2017.)
Hypotheses
Ref Expression
cofull.f (𝜑𝐹 ∈ (𝐶 Full 𝐷))
cofull.g (𝜑𝐺 ∈ (𝐷 Full 𝐸))
Assertion
Ref Expression
cofull (𝜑 → (𝐺func 𝐹) ∈ (𝐶 Full 𝐸))

Proof of Theorem cofull
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relfunc 17368 . . 3 Rel (𝐶 Func 𝐸)
2 fullfunc 17413 . . . . 5 (𝐶 Full 𝐷) ⊆ (𝐶 Func 𝐷)
3 cofull.f . . . . 5 (𝜑𝐹 ∈ (𝐶 Full 𝐷))
42, 3sseldi 3899 . . . 4 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
5 fullfunc 17413 . . . . 5 (𝐷 Full 𝐸) ⊆ (𝐷 Func 𝐸)
6 cofull.g . . . . 5 (𝜑𝐺 ∈ (𝐷 Full 𝐸))
75, 6sseldi 3899 . . . 4 (𝜑𝐺 ∈ (𝐷 Func 𝐸))
84, 7cofucl 17394 . . 3 (𝜑 → (𝐺func 𝐹) ∈ (𝐶 Func 𝐸))
9 1st2nd 7810 . . 3 ((Rel (𝐶 Func 𝐸) ∧ (𝐺func 𝐹) ∈ (𝐶 Func 𝐸)) → (𝐺func 𝐹) = ⟨(1st ‘(𝐺func 𝐹)), (2nd ‘(𝐺func 𝐹))⟩)
101, 8, 9sylancr 590 . 2 (𝜑 → (𝐺func 𝐹) = ⟨(1st ‘(𝐺func 𝐹)), (2nd ‘(𝐺func 𝐹))⟩)
11 1st2ndbr 7813 . . . . 5 ((Rel (𝐶 Func 𝐸) ∧ (𝐺func 𝐹) ∈ (𝐶 Func 𝐸)) → (1st ‘(𝐺func 𝐹))(𝐶 Func 𝐸)(2nd ‘(𝐺func 𝐹)))
121, 8, 11sylancr 590 . . . 4 (𝜑 → (1st ‘(𝐺func 𝐹))(𝐶 Func 𝐸)(2nd ‘(𝐺func 𝐹)))
13 eqid 2737 . . . . . . . 8 (Base‘𝐷) = (Base‘𝐷)
14 eqid 2737 . . . . . . . 8 (Hom ‘𝐸) = (Hom ‘𝐸)
15 eqid 2737 . . . . . . . 8 (Hom ‘𝐷) = (Hom ‘𝐷)
16 relfull 17415 . . . . . . . . 9 Rel (𝐷 Full 𝐸)
176adantr 484 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐺 ∈ (𝐷 Full 𝐸))
18 1st2ndbr 7813 . . . . . . . . 9 ((Rel (𝐷 Full 𝐸) ∧ 𝐺 ∈ (𝐷 Full 𝐸)) → (1st𝐺)(𝐷 Full 𝐸)(2nd𝐺))
1916, 17, 18sylancr 590 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (1st𝐺)(𝐷 Full 𝐸)(2nd𝐺))
20 eqid 2737 . . . . . . . . . 10 (Base‘𝐶) = (Base‘𝐶)
21 relfunc 17368 . . . . . . . . . . 11 Rel (𝐶 Func 𝐷)
224adantr 484 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐹 ∈ (𝐶 Func 𝐷))
23 1st2ndbr 7813 . . . . . . . . . . 11 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
2421, 22, 23sylancr 590 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
2520, 13, 24funcf1 17372 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (1st𝐹):(Base‘𝐶)⟶(Base‘𝐷))
26 simprl 771 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶))
2725, 26ffvelrnd 6905 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st𝐹)‘𝑥) ∈ (Base‘𝐷))
28 simprr 773 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶))
2925, 28ffvelrnd 6905 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st𝐹)‘𝑦) ∈ (Base‘𝐷))
3013, 14, 15, 19, 27, 29fullfo 17419 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)):(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦))–onto→(((1st𝐺)‘((1st𝐹)‘𝑥))(Hom ‘𝐸)((1st𝐺)‘((1st𝐹)‘𝑦))))
31 eqid 2737 . . . . . . . 8 (Hom ‘𝐶) = (Hom ‘𝐶)
32 relfull 17415 . . . . . . . . 9 Rel (𝐶 Full 𝐷)
333adantr 484 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐹 ∈ (𝐶 Full 𝐷))
34 1st2ndbr 7813 . . . . . . . . 9 ((Rel (𝐶 Full 𝐷) ∧ 𝐹 ∈ (𝐶 Full 𝐷)) → (1st𝐹)(𝐶 Full 𝐷)(2nd𝐹))
3532, 33, 34sylancr 590 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (1st𝐹)(𝐶 Full 𝐷)(2nd𝐹))
3620, 15, 31, 35, 26, 28fullfo 17419 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd𝐹)𝑦):(𝑥(Hom ‘𝐶)𝑦)–onto→(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)))
37 foco 6647 . . . . . . 7 (((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)):(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦))–onto→(((1st𝐺)‘((1st𝐹)‘𝑥))(Hom ‘𝐸)((1st𝐺)‘((1st𝐹)‘𝑦))) ∧ (𝑥(2nd𝐹)𝑦):(𝑥(Hom ‘𝐶)𝑦)–onto→(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦))) → ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)):(𝑥(Hom ‘𝐶)𝑦)–onto→(((1st𝐺)‘((1st𝐹)‘𝑥))(Hom ‘𝐸)((1st𝐺)‘((1st𝐹)‘𝑦))))
3830, 36, 37syl2anc 587 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)):(𝑥(Hom ‘𝐶)𝑦)–onto→(((1st𝐺)‘((1st𝐹)‘𝑥))(Hom ‘𝐸)((1st𝐺)‘((1st𝐹)‘𝑦))))
397adantr 484 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐺 ∈ (𝐷 Func 𝐸))
4020, 22, 39, 26, 28cofu2nd 17391 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘(𝐺func 𝐹))𝑦) = ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)))
41 eqidd 2738 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(Hom ‘𝐶)𝑦) = (𝑥(Hom ‘𝐶)𝑦))
4220, 22, 39, 26cofu1 17390 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st ‘(𝐺func 𝐹))‘𝑥) = ((1st𝐺)‘((1st𝐹)‘𝑥)))
4320, 22, 39, 28cofu1 17390 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st ‘(𝐺func 𝐹))‘𝑦) = ((1st𝐺)‘((1st𝐹)‘𝑦)))
4442, 43oveq12d 7231 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (((1st ‘(𝐺func 𝐹))‘𝑥)(Hom ‘𝐸)((1st ‘(𝐺func 𝐹))‘𝑦)) = (((1st𝐺)‘((1st𝐹)‘𝑥))(Hom ‘𝐸)((1st𝐺)‘((1st𝐹)‘𝑦))))
4540, 41, 44foeq123d 6654 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((𝑥(2nd ‘(𝐺func 𝐹))𝑦):(𝑥(Hom ‘𝐶)𝑦)–onto→(((1st ‘(𝐺func 𝐹))‘𝑥)(Hom ‘𝐸)((1st ‘(𝐺func 𝐹))‘𝑦)) ↔ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)):(𝑥(Hom ‘𝐶)𝑦)–onto→(((1st𝐺)‘((1st𝐹)‘𝑥))(Hom ‘𝐸)((1st𝐺)‘((1st𝐹)‘𝑦)))))
4638, 45mpbird 260 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘(𝐺func 𝐹))𝑦):(𝑥(Hom ‘𝐶)𝑦)–onto→(((1st ‘(𝐺func 𝐹))‘𝑥)(Hom ‘𝐸)((1st ‘(𝐺func 𝐹))‘𝑦)))
4746ralrimivva 3112 . . . 4 (𝜑 → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥(2nd ‘(𝐺func 𝐹))𝑦):(𝑥(Hom ‘𝐶)𝑦)–onto→(((1st ‘(𝐺func 𝐹))‘𝑥)(Hom ‘𝐸)((1st ‘(𝐺func 𝐹))‘𝑦)))
4820, 14, 31isfull2 17418 . . . 4 ((1st ‘(𝐺func 𝐹))(𝐶 Full 𝐸)(2nd ‘(𝐺func 𝐹)) ↔ ((1st ‘(𝐺func 𝐹))(𝐶 Func 𝐸)(2nd ‘(𝐺func 𝐹)) ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥(2nd ‘(𝐺func 𝐹))𝑦):(𝑥(Hom ‘𝐶)𝑦)–onto→(((1st ‘(𝐺func 𝐹))‘𝑥)(Hom ‘𝐸)((1st ‘(𝐺func 𝐹))‘𝑦))))
4912, 47, 48sylanbrc 586 . . 3 (𝜑 → (1st ‘(𝐺func 𝐹))(𝐶 Full 𝐸)(2nd ‘(𝐺func 𝐹)))
50 df-br 5054 . . 3 ((1st ‘(𝐺func 𝐹))(𝐶 Full 𝐸)(2nd ‘(𝐺func 𝐹)) ↔ ⟨(1st ‘(𝐺func 𝐹)), (2nd ‘(𝐺func 𝐹))⟩ ∈ (𝐶 Full 𝐸))
5149, 50sylib 221 . 2 (𝜑 → ⟨(1st ‘(𝐺func 𝐹)), (2nd ‘(𝐺func 𝐹))⟩ ∈ (𝐶 Full 𝐸))
5210, 51eqeltrd 2838 1 (𝜑 → (𝐺func 𝐹) ∈ (𝐶 Full 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  wral 3061  cop 4547   class class class wbr 5053  ccom 5555  Rel wrel 5556  ontowfo 6378  cfv 6380  (class class class)co 7213  1st c1st 7759  2nd c2nd 7760  Basecbs 16760  Hom chom 16813   Func cfunc 17360  func ccofu 17362   Full cful 17409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-1st 7761  df-2nd 7762  df-map 8510  df-ixp 8579  df-cat 17171  df-cid 17172  df-func 17364  df-cofu 17366  df-full 17411
This theorem is referenced by:  coffth  17443
  Copyright terms: Public domain W3C validator