MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprlem2 Structured version   Visualization version   GIF version

Theorem fprlem2 8285
Description: Lemma for well-founded recursion with a partial order. Establish a subset relation. (Contributed by Scott Fenton, 11-Sep-2023.)
Assertion
Ref Expression
fprlem2 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) → ∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)Pred(𝑅, 𝐴, 𝑤) ⊆ Pred(𝑅, 𝐴, 𝑧))
Distinct variable groups:   𝑤,𝑅,𝑧   𝑤,𝐴,𝑧

Proof of Theorem fprlem2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 3478 . . . . 5 𝑤 ∈ V
21elpred 6317 . . . 4 (𝑧 ∈ V → (𝑤 ∈ Pred(𝑅, 𝐴, 𝑧) ↔ (𝑤𝐴𝑤𝑅𝑧)))
32elv 3480 . . 3 (𝑤 ∈ Pred(𝑅, 𝐴, 𝑧) ↔ (𝑤𝐴𝑤𝑅𝑧))
4 simprl 769 . . . . . . 7 (((((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) ∧ (𝑤𝐴𝑤𝑅𝑧)) ∧ (𝑥𝐴𝑥𝑅𝑤)) → 𝑥𝐴)
5 simpll2 1213 . . . . . . . . . 10 ((((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) ∧ (𝑤𝐴𝑤𝑅𝑧)) → 𝑅 Po 𝐴)
65adantr 481 . . . . . . . . 9 (((((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) ∧ (𝑤𝐴𝑤𝑅𝑧)) ∧ (𝑥𝐴𝑥𝑅𝑤)) → 𝑅 Po 𝐴)
7 simprl 769 . . . . . . . . . . 11 ((((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) ∧ (𝑤𝐴𝑤𝑅𝑧)) → 𝑤𝐴)
87adantr 481 . . . . . . . . . 10 (((((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) ∧ (𝑤𝐴𝑤𝑅𝑧)) ∧ (𝑥𝐴𝑥𝑅𝑤)) → 𝑤𝐴)
9 simpllr 774 . . . . . . . . . 10 (((((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) ∧ (𝑤𝐴𝑤𝑅𝑧)) ∧ (𝑥𝐴𝑥𝑅𝑤)) → 𝑧𝐴)
104, 8, 93jca 1128 . . . . . . . . 9 (((((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) ∧ (𝑤𝐴𝑤𝑅𝑧)) ∧ (𝑥𝐴𝑥𝑅𝑤)) → (𝑥𝐴𝑤𝐴𝑧𝐴))
116, 10jca 512 . . . . . . . 8 (((((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) ∧ (𝑤𝐴𝑤𝑅𝑧)) ∧ (𝑥𝐴𝑥𝑅𝑤)) → (𝑅 Po 𝐴 ∧ (𝑥𝐴𝑤𝐴𝑧𝐴)))
12 simprr 771 . . . . . . . . 9 (((((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) ∧ (𝑤𝐴𝑤𝑅𝑧)) ∧ (𝑥𝐴𝑥𝑅𝑤)) → 𝑥𝑅𝑤)
13 simplrr 776 . . . . . . . . 9 (((((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) ∧ (𝑤𝐴𝑤𝑅𝑧)) ∧ (𝑥𝐴𝑥𝑅𝑤)) → 𝑤𝑅𝑧)
1412, 13jca 512 . . . . . . . 8 (((((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) ∧ (𝑤𝐴𝑤𝑅𝑧)) ∧ (𝑥𝐴𝑥𝑅𝑤)) → (𝑥𝑅𝑤𝑤𝑅𝑧))
15 potr 5601 . . . . . . . 8 ((𝑅 Po 𝐴 ∧ (𝑥𝐴𝑤𝐴𝑧𝐴)) → ((𝑥𝑅𝑤𝑤𝑅𝑧) → 𝑥𝑅𝑧))
1611, 14, 15sylc 65 . . . . . . 7 (((((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) ∧ (𝑤𝐴𝑤𝑅𝑧)) ∧ (𝑥𝐴𝑥𝑅𝑤)) → 𝑥𝑅𝑧)
174, 16jca 512 . . . . . 6 (((((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) ∧ (𝑤𝐴𝑤𝑅𝑧)) ∧ (𝑥𝐴𝑥𝑅𝑤)) → (𝑥𝐴𝑥𝑅𝑧))
1817ex 413 . . . . 5 ((((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) ∧ (𝑤𝐴𝑤𝑅𝑧)) → ((𝑥𝐴𝑥𝑅𝑤) → (𝑥𝐴𝑥𝑅𝑧)))
19 vex 3478 . . . . . . 7 𝑥 ∈ V
2019elpred 6317 . . . . . 6 (𝑤 ∈ V → (𝑥 ∈ Pred(𝑅, 𝐴, 𝑤) ↔ (𝑥𝐴𝑥𝑅𝑤)))
2120elv 3480 . . . . 5 (𝑥 ∈ Pred(𝑅, 𝐴, 𝑤) ↔ (𝑥𝐴𝑥𝑅𝑤))
2219elpred 6317 . . . . . 6 (𝑧 ∈ V → (𝑥 ∈ Pred(𝑅, 𝐴, 𝑧) ↔ (𝑥𝐴𝑥𝑅𝑧)))
2322elv 3480 . . . . 5 (𝑥 ∈ Pred(𝑅, 𝐴, 𝑧) ↔ (𝑥𝐴𝑥𝑅𝑧))
2418, 21, 233imtr4g 295 . . . 4 ((((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) ∧ (𝑤𝐴𝑤𝑅𝑧)) → (𝑥 ∈ Pred(𝑅, 𝐴, 𝑤) → 𝑥 ∈ Pred(𝑅, 𝐴, 𝑧)))
2524ssrdv 3988 . . 3 ((((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) ∧ (𝑤𝐴𝑤𝑅𝑧)) → Pred(𝑅, 𝐴, 𝑤) ⊆ Pred(𝑅, 𝐴, 𝑧))
263, 25sylan2b 594 . 2 ((((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) ∧ 𝑤 ∈ Pred(𝑅, 𝐴, 𝑧)) → Pred(𝑅, 𝐴, 𝑤) ⊆ Pred(𝑅, 𝐴, 𝑧))
2726ralrimiva 3146 1 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) → ∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)Pred(𝑅, 𝐴, 𝑤) ⊆ Pred(𝑅, 𝐴, 𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087  wcel 2106  wral 3061  Vcvv 3474  wss 3948   class class class wbr 5148   Po wpo 5586   Fr wfr 5628   Se wse 5629  Predcpred 6299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-po 5588  df-xp 5682  df-cnv 5684  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300
This theorem is referenced by:  fpr1  8287
  Copyright terms: Public domain W3C validator