MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprlem2 Structured version   Visualization version   GIF version

Theorem fprlem2 8326
Description: Lemma for well-founded recursion with a partial order. Establish a subset relation. (Contributed by Scott Fenton, 11-Sep-2023.)
Assertion
Ref Expression
fprlem2 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) → ∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)Pred(𝑅, 𝐴, 𝑤) ⊆ Pred(𝑅, 𝐴, 𝑧))
Distinct variable groups:   𝑤,𝑅,𝑧   𝑤,𝐴,𝑧

Proof of Theorem fprlem2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 3484 . . . . 5 𝑤 ∈ V
21elpred 6338 . . . 4 (𝑧 ∈ V → (𝑤 ∈ Pred(𝑅, 𝐴, 𝑧) ↔ (𝑤𝐴𝑤𝑅𝑧)))
32elv 3485 . . 3 (𝑤 ∈ Pred(𝑅, 𝐴, 𝑧) ↔ (𝑤𝐴𝑤𝑅𝑧))
4 simprl 771 . . . . . . 7 (((((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) ∧ (𝑤𝐴𝑤𝑅𝑧)) ∧ (𝑥𝐴𝑥𝑅𝑤)) → 𝑥𝐴)
5 simpll2 1214 . . . . . . . . . 10 ((((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) ∧ (𝑤𝐴𝑤𝑅𝑧)) → 𝑅 Po 𝐴)
65adantr 480 . . . . . . . . 9 (((((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) ∧ (𝑤𝐴𝑤𝑅𝑧)) ∧ (𝑥𝐴𝑥𝑅𝑤)) → 𝑅 Po 𝐴)
7 simprl 771 . . . . . . . . . . 11 ((((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) ∧ (𝑤𝐴𝑤𝑅𝑧)) → 𝑤𝐴)
87adantr 480 . . . . . . . . . 10 (((((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) ∧ (𝑤𝐴𝑤𝑅𝑧)) ∧ (𝑥𝐴𝑥𝑅𝑤)) → 𝑤𝐴)
9 simpllr 776 . . . . . . . . . 10 (((((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) ∧ (𝑤𝐴𝑤𝑅𝑧)) ∧ (𝑥𝐴𝑥𝑅𝑤)) → 𝑧𝐴)
104, 8, 93jca 1129 . . . . . . . . 9 (((((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) ∧ (𝑤𝐴𝑤𝑅𝑧)) ∧ (𝑥𝐴𝑥𝑅𝑤)) → (𝑥𝐴𝑤𝐴𝑧𝐴))
116, 10jca 511 . . . . . . . 8 (((((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) ∧ (𝑤𝐴𝑤𝑅𝑧)) ∧ (𝑥𝐴𝑥𝑅𝑤)) → (𝑅 Po 𝐴 ∧ (𝑥𝐴𝑤𝐴𝑧𝐴)))
12 simprr 773 . . . . . . . . 9 (((((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) ∧ (𝑤𝐴𝑤𝑅𝑧)) ∧ (𝑥𝐴𝑥𝑅𝑤)) → 𝑥𝑅𝑤)
13 simplrr 778 . . . . . . . . 9 (((((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) ∧ (𝑤𝐴𝑤𝑅𝑧)) ∧ (𝑥𝐴𝑥𝑅𝑤)) → 𝑤𝑅𝑧)
1412, 13jca 511 . . . . . . . 8 (((((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) ∧ (𝑤𝐴𝑤𝑅𝑧)) ∧ (𝑥𝐴𝑥𝑅𝑤)) → (𝑥𝑅𝑤𝑤𝑅𝑧))
15 potr 5605 . . . . . . . 8 ((𝑅 Po 𝐴 ∧ (𝑥𝐴𝑤𝐴𝑧𝐴)) → ((𝑥𝑅𝑤𝑤𝑅𝑧) → 𝑥𝑅𝑧))
1611, 14, 15sylc 65 . . . . . . 7 (((((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) ∧ (𝑤𝐴𝑤𝑅𝑧)) ∧ (𝑥𝐴𝑥𝑅𝑤)) → 𝑥𝑅𝑧)
174, 16jca 511 . . . . . 6 (((((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) ∧ (𝑤𝐴𝑤𝑅𝑧)) ∧ (𝑥𝐴𝑥𝑅𝑤)) → (𝑥𝐴𝑥𝑅𝑧))
1817ex 412 . . . . 5 ((((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) ∧ (𝑤𝐴𝑤𝑅𝑧)) → ((𝑥𝐴𝑥𝑅𝑤) → (𝑥𝐴𝑥𝑅𝑧)))
19 vex 3484 . . . . . . 7 𝑥 ∈ V
2019elpred 6338 . . . . . 6 (𝑤 ∈ V → (𝑥 ∈ Pred(𝑅, 𝐴, 𝑤) ↔ (𝑥𝐴𝑥𝑅𝑤)))
2120elv 3485 . . . . 5 (𝑥 ∈ Pred(𝑅, 𝐴, 𝑤) ↔ (𝑥𝐴𝑥𝑅𝑤))
2219elpred 6338 . . . . . 6 (𝑧 ∈ V → (𝑥 ∈ Pred(𝑅, 𝐴, 𝑧) ↔ (𝑥𝐴𝑥𝑅𝑧)))
2322elv 3485 . . . . 5 (𝑥 ∈ Pred(𝑅, 𝐴, 𝑧) ↔ (𝑥𝐴𝑥𝑅𝑧))
2418, 21, 233imtr4g 296 . . . 4 ((((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) ∧ (𝑤𝐴𝑤𝑅𝑧)) → (𝑥 ∈ Pred(𝑅, 𝐴, 𝑤) → 𝑥 ∈ Pred(𝑅, 𝐴, 𝑧)))
2524ssrdv 3989 . . 3 ((((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) ∧ (𝑤𝐴𝑤𝑅𝑧)) → Pred(𝑅, 𝐴, 𝑤) ⊆ Pred(𝑅, 𝐴, 𝑧))
263, 25sylan2b 594 . 2 ((((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) ∧ 𝑤 ∈ Pred(𝑅, 𝐴, 𝑧)) → Pred(𝑅, 𝐴, 𝑤) ⊆ Pred(𝑅, 𝐴, 𝑧))
2726ralrimiva 3146 1 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) → ∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)Pred(𝑅, 𝐴, 𝑤) ⊆ Pred(𝑅, 𝐴, 𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087  wcel 2108  wral 3061  Vcvv 3480  wss 3951   class class class wbr 5143   Po wpo 5590   Fr wfr 5634   Se wse 5635  Predcpred 6320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-br 5144  df-opab 5206  df-po 5592  df-xp 5691  df-cnv 5693  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321
This theorem is referenced by:  fpr1  8328
  Copyright terms: Public domain W3C validator