MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprlem2 Structured version   Visualization version   GIF version

Theorem fprlem2 8117
Description: Lemma for well-founded recursion with a partial order. Establish a subset relationship. (Contributed by Scott Fenton, 11-Sep-2023.)
Assertion
Ref Expression
fprlem2 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) → ∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)Pred(𝑅, 𝐴, 𝑤) ⊆ Pred(𝑅, 𝐴, 𝑧))
Distinct variable groups:   𝑤,𝑅,𝑧   𝑤,𝐴,𝑧

Proof of Theorem fprlem2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 3436 . . . . 5 𝑤 ∈ V
21elpred 6219 . . . 4 (𝑧 ∈ V → (𝑤 ∈ Pred(𝑅, 𝐴, 𝑧) ↔ (𝑤𝐴𝑤𝑅𝑧)))
32elv 3438 . . 3 (𝑤 ∈ Pred(𝑅, 𝐴, 𝑧) ↔ (𝑤𝐴𝑤𝑅𝑧))
4 simprl 768 . . . . . . 7 (((((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) ∧ (𝑤𝐴𝑤𝑅𝑧)) ∧ (𝑥𝐴𝑥𝑅𝑤)) → 𝑥𝐴)
5 simpll2 1212 . . . . . . . . . 10 ((((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) ∧ (𝑤𝐴𝑤𝑅𝑧)) → 𝑅 Po 𝐴)
65adantr 481 . . . . . . . . 9 (((((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) ∧ (𝑤𝐴𝑤𝑅𝑧)) ∧ (𝑥𝐴𝑥𝑅𝑤)) → 𝑅 Po 𝐴)
7 simprl 768 . . . . . . . . . . 11 ((((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) ∧ (𝑤𝐴𝑤𝑅𝑧)) → 𝑤𝐴)
87adantr 481 . . . . . . . . . 10 (((((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) ∧ (𝑤𝐴𝑤𝑅𝑧)) ∧ (𝑥𝐴𝑥𝑅𝑤)) → 𝑤𝐴)
9 simpllr 773 . . . . . . . . . 10 (((((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) ∧ (𝑤𝐴𝑤𝑅𝑧)) ∧ (𝑥𝐴𝑥𝑅𝑤)) → 𝑧𝐴)
104, 8, 93jca 1127 . . . . . . . . 9 (((((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) ∧ (𝑤𝐴𝑤𝑅𝑧)) ∧ (𝑥𝐴𝑥𝑅𝑤)) → (𝑥𝐴𝑤𝐴𝑧𝐴))
116, 10jca 512 . . . . . . . 8 (((((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) ∧ (𝑤𝐴𝑤𝑅𝑧)) ∧ (𝑥𝐴𝑥𝑅𝑤)) → (𝑅 Po 𝐴 ∧ (𝑥𝐴𝑤𝐴𝑧𝐴)))
12 simprr 770 . . . . . . . . 9 (((((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) ∧ (𝑤𝐴𝑤𝑅𝑧)) ∧ (𝑥𝐴𝑥𝑅𝑤)) → 𝑥𝑅𝑤)
13 simplrr 775 . . . . . . . . 9 (((((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) ∧ (𝑤𝐴𝑤𝑅𝑧)) ∧ (𝑥𝐴𝑥𝑅𝑤)) → 𝑤𝑅𝑧)
1412, 13jca 512 . . . . . . . 8 (((((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) ∧ (𝑤𝐴𝑤𝑅𝑧)) ∧ (𝑥𝐴𝑥𝑅𝑤)) → (𝑥𝑅𝑤𝑤𝑅𝑧))
15 potr 5516 . . . . . . . 8 ((𝑅 Po 𝐴 ∧ (𝑥𝐴𝑤𝐴𝑧𝐴)) → ((𝑥𝑅𝑤𝑤𝑅𝑧) → 𝑥𝑅𝑧))
1611, 14, 15sylc 65 . . . . . . 7 (((((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) ∧ (𝑤𝐴𝑤𝑅𝑧)) ∧ (𝑥𝐴𝑥𝑅𝑤)) → 𝑥𝑅𝑧)
174, 16jca 512 . . . . . 6 (((((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) ∧ (𝑤𝐴𝑤𝑅𝑧)) ∧ (𝑥𝐴𝑥𝑅𝑤)) → (𝑥𝐴𝑥𝑅𝑧))
1817ex 413 . . . . 5 ((((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) ∧ (𝑤𝐴𝑤𝑅𝑧)) → ((𝑥𝐴𝑥𝑅𝑤) → (𝑥𝐴𝑥𝑅𝑧)))
19 vex 3436 . . . . . . 7 𝑥 ∈ V
2019elpred 6219 . . . . . 6 (𝑤 ∈ V → (𝑥 ∈ Pred(𝑅, 𝐴, 𝑤) ↔ (𝑥𝐴𝑥𝑅𝑤)))
2120elv 3438 . . . . 5 (𝑥 ∈ Pred(𝑅, 𝐴, 𝑤) ↔ (𝑥𝐴𝑥𝑅𝑤))
2219elpred 6219 . . . . . 6 (𝑧 ∈ V → (𝑥 ∈ Pred(𝑅, 𝐴, 𝑧) ↔ (𝑥𝐴𝑥𝑅𝑧)))
2322elv 3438 . . . . 5 (𝑥 ∈ Pred(𝑅, 𝐴, 𝑧) ↔ (𝑥𝐴𝑥𝑅𝑧))
2418, 21, 233imtr4g 296 . . . 4 ((((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) ∧ (𝑤𝐴𝑤𝑅𝑧)) → (𝑥 ∈ Pred(𝑅, 𝐴, 𝑤) → 𝑥 ∈ Pred(𝑅, 𝐴, 𝑧)))
2524ssrdv 3927 . . 3 ((((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) ∧ (𝑤𝐴𝑤𝑅𝑧)) → Pred(𝑅, 𝐴, 𝑤) ⊆ Pred(𝑅, 𝐴, 𝑧))
263, 25sylan2b 594 . 2 ((((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) ∧ 𝑤 ∈ Pred(𝑅, 𝐴, 𝑧)) → Pred(𝑅, 𝐴, 𝑤) ⊆ Pred(𝑅, 𝐴, 𝑧))
2726ralrimiva 3103 1 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) → ∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)Pred(𝑅, 𝐴, 𝑤) ⊆ Pred(𝑅, 𝐴, 𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086  wcel 2106  wral 3064  Vcvv 3432  wss 3887   class class class wbr 5074   Po wpo 5501   Fr wfr 5541   Se wse 5542  Predcpred 6201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-po 5503  df-xp 5595  df-cnv 5597  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202
This theorem is referenced by:  fpr1  8119
  Copyright terms: Public domain W3C validator