MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fpr2a Structured version   Visualization version   GIF version

Theorem fpr2a 8307
Description: Weak version of fpr2 8309 which is useful for proofs that avoid the axiom of replacement. (Contributed by Scott Fenton, 18-Nov-2024.)
Hypothesis
Ref Expression
fpr2a.1 𝐹 = frecs(𝑅, 𝐴, 𝐺)
Assertion
Ref Expression
fpr2a (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑋 ∈ dom 𝐹) → (𝐹𝑋) = (𝑋𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋))))

Proof of Theorem fpr2a
Dummy variables 𝑓 𝑔 𝑢 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6897 . . . . 5 (𝑦 = 𝑋 → (𝐹𝑦) = (𝐹𝑋))
2 id 22 . . . . . 6 (𝑦 = 𝑋𝑦 = 𝑋)
3 predeq3 6309 . . . . . . 7 (𝑦 = 𝑋 → Pred(𝑅, 𝐴, 𝑦) = Pred(𝑅, 𝐴, 𝑋))
43reseq2d 5985 . . . . . 6 (𝑦 = 𝑋 → (𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)) = (𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)))
52, 4oveq12d 7438 . . . . 5 (𝑦 = 𝑋 → (𝑦𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) = (𝑋𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋))))
61, 5eqeq12d 2744 . . . 4 (𝑦 = 𝑋 → ((𝐹𝑦) = (𝑦𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ (𝐹𝑋) = (𝑋𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)))))
76imbi2d 340 . . 3 (𝑦 = 𝑋 → (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) → (𝐹𝑦) = (𝑦𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ↔ ((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) → (𝐹𝑋) = (𝑋𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋))))))
8 eqid 2728 . . . . 5 {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
9 fpr2a.1 . . . . 5 𝐹 = frecs(𝑅, 𝐴, 𝐺)
108, 9fprlem1 8305 . . . . 5 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} ∧ ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))})) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣))
118, 9, 10frrlem10 8300 . . . 4 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑦 ∈ dom 𝐹) → (𝐹𝑦) = (𝑦𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))
1211expcom 413 . . 3 (𝑦 ∈ dom 𝐹 → ((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) → (𝐹𝑦) = (𝑦𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))))
137, 12vtoclga 3563 . 2 (𝑋 ∈ dom 𝐹 → ((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) → (𝐹𝑋) = (𝑋𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)))))
1413impcom 407 1 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑋 ∈ dom 𝐹) → (𝐹𝑋) = (𝑋𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1534  wex 1774  wcel 2099  {cab 2705  wral 3058  wss 3947   Po wpo 5588   Fr wfr 5630   Se wse 5631  dom cdm 5678  cres 5680  Predcpred 6304   Fn wfn 6543  cfv 6548  (class class class)co 7420  frecscfrecs 8285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-po 5590  df-fr 5633  df-se 5634  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-iota 6500  df-fun 6550  df-fn 6551  df-fv 6556  df-ov 7423  df-frecs 8286
This theorem is referenced by:  fpr2  8309  wfr2a  8354
  Copyright terms: Public domain W3C validator