MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frpoins3g Structured version   Visualization version   GIF version

Theorem frpoins3g 6359
Description: Well-Founded Induction schema, using implicit substitution. (Contributed by Scott Fenton, 19-Aug-2024.)
Hypotheses
Ref Expression
frpoins3g.1 (𝑥𝐴 → (∀𝑦 ∈ Pred (𝑅, 𝐴, 𝑥)𝜓𝜑))
frpoins3g.2 (𝑥 = 𝑦 → (𝜑𝜓))
frpoins3g.3 (𝑥 = 𝐵 → (𝜑𝜒))
Assertion
Ref Expression
frpoins3g (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝐵𝐴) → 𝜒)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵   𝜒,𝑥   𝜑,𝑦   𝜓,𝑥   𝑥,𝑅,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝐵(𝑦)

Proof of Theorem frpoins3g
StepHypRef Expression
1 frpoins3g.1 . . 3 (𝑥𝐴 → (∀𝑦 ∈ Pred (𝑅, 𝐴, 𝑥)𝜓𝜑))
2 frpoins3g.2 . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
31, 2frpoins2g 6358 . 2 ((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) → ∀𝑥𝐴 𝜑)
4 frpoins3g.3 . . 3 (𝑥 = 𝐵 → (𝜑𝜒))
54rspccva 3607 . 2 ((∀𝑥𝐴 𝜑𝐵𝐴) → 𝜒)
63, 5sylan 578 1 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝐵𝐴) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1534  wcel 2099  wral 3051   Po wpo 5592   Fr wfr 5634   Se wse 5635  Predcpred 6311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-br 5154  df-opab 5216  df-po 5594  df-fr 5637  df-se 5638  df-xp 5688  df-cnv 5690  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312
This theorem is referenced by:  noinds  27959
  Copyright terms: Public domain W3C validator