MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frpoins3g Structured version   Visualization version   GIF version

Theorem frpoins3g 6234
Description: Well-Founded Induction schema, using implicit substitution. (Contributed by Scott Fenton, 19-Aug-2024.)
Hypotheses
Ref Expression
frpoins3g.1 (𝑥𝐴 → (∀𝑦 ∈ Pred (𝑅, 𝐴, 𝑥)𝜓𝜑))
frpoins3g.2 (𝑥 = 𝑦 → (𝜑𝜓))
frpoins3g.3 (𝑥 = 𝐵 → (𝜑𝜒))
Assertion
Ref Expression
frpoins3g (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝐵𝐴) → 𝜒)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵   𝜒,𝑥   𝜑,𝑦   𝜓,𝑥   𝑥,𝑅,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝐵(𝑦)

Proof of Theorem frpoins3g
StepHypRef Expression
1 frpoins3g.1 . . 3 (𝑥𝐴 → (∀𝑦 ∈ Pred (𝑅, 𝐴, 𝑥)𝜓𝜑))
2 frpoins3g.2 . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
31, 2frpoins2g 6233 . 2 ((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) → ∀𝑥𝐴 𝜑)
4 frpoins3g.3 . . 3 (𝑥 = 𝐵 → (𝜑𝜒))
54rspccva 3551 . 2 ((∀𝑥𝐴 𝜑𝐵𝐴) → 𝜒)
63, 5sylan 579 1 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝐵𝐴) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063   Po wpo 5492   Fr wfr 5532   Se wse 5533  Predcpred 6190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-po 5494  df-fr 5535  df-se 5536  df-xp 5586  df-cnv 5588  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191
This theorem is referenced by:  noinds  34029
  Copyright terms: Public domain W3C validator