MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frpoins3g Structured version   Visualization version   GIF version

Theorem frpoins3g 6367
Description: Well-Founded Induction schema, using implicit substitution. (Contributed by Scott Fenton, 19-Aug-2024.)
Hypotheses
Ref Expression
frpoins3g.1 (𝑥𝐴 → (∀𝑦 ∈ Pred (𝑅, 𝐴, 𝑥)𝜓𝜑))
frpoins3g.2 (𝑥 = 𝑦 → (𝜑𝜓))
frpoins3g.3 (𝑥 = 𝐵 → (𝜑𝜒))
Assertion
Ref Expression
frpoins3g (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝐵𝐴) → 𝜒)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵   𝜒,𝑥   𝜑,𝑦   𝜓,𝑥   𝑥,𝑅,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝐵(𝑦)

Proof of Theorem frpoins3g
StepHypRef Expression
1 frpoins3g.1 . . 3 (𝑥𝐴 → (∀𝑦 ∈ Pred (𝑅, 𝐴, 𝑥)𝜓𝜑))
2 frpoins3g.2 . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
31, 2frpoins2g 6366 . 2 ((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) → ∀𝑥𝐴 𝜑)
4 frpoins3g.3 . . 3 (𝑥 = 𝐵 → (𝜑𝜒))
54rspccva 3621 . 2 ((∀𝑥𝐴 𝜑𝐵𝐴) → 𝜒)
63, 5sylan 580 1 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝐵𝐴) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061   Po wpo 5590   Fr wfr 5634   Se wse 5635  Predcpred 6320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-br 5144  df-opab 5206  df-po 5592  df-fr 5637  df-se 5638  df-xp 5691  df-cnv 5693  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321
This theorem is referenced by:  noinds  27978
  Copyright terms: Public domain W3C validator