|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > frpoins3g | Structured version Visualization version GIF version | ||
| Description: Well-Founded Induction schema, using implicit substitution. (Contributed by Scott Fenton, 19-Aug-2024.) | 
| Ref | Expression | 
|---|---|
| frpoins3g.1 | ⊢ (𝑥 ∈ 𝐴 → (∀𝑦 ∈ Pred (𝑅, 𝐴, 𝑥)𝜓 → 𝜑)) | 
| frpoins3g.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | 
| frpoins3g.3 | ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) | 
| Ref | Expression | 
|---|---|
| frpoins3g | ⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝐵 ∈ 𝐴) → 𝜒) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | frpoins3g.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (∀𝑦 ∈ Pred (𝑅, 𝐴, 𝑥)𝜓 → 𝜑)) | |
| 2 | frpoins3g.2 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 3 | 1, 2 | frpoins2g 6366 | . 2 ⊢ ((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) → ∀𝑥 ∈ 𝐴 𝜑) | 
| 4 | frpoins3g.3 | . . 3 ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) | |
| 5 | 4 | rspccva 3621 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ 𝐵 ∈ 𝐴) → 𝜒) | 
| 6 | 3, 5 | sylan 580 | 1 ⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝐵 ∈ 𝐴) → 𝜒) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ∀wral 3061 Po wpo 5590 Fr wfr 5634 Se wse 5635 Predcpred 6320 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-br 5144 df-opab 5206 df-po 5592 df-fr 5637 df-se 5638 df-xp 5691 df-cnv 5693 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 | 
| This theorem is referenced by: noinds 27978 | 
| Copyright terms: Public domain | W3C validator |