MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frpoins3g Structured version   Visualization version   GIF version

Theorem frpoins3g 6341
Description: Well-Founded Induction schema, using implicit substitution. (Contributed by Scott Fenton, 19-Aug-2024.)
Hypotheses
Ref Expression
frpoins3g.1 (𝑥𝐴 → (∀𝑦 ∈ Pred (𝑅, 𝐴, 𝑥)𝜓𝜑))
frpoins3g.2 (𝑥 = 𝑦 → (𝜑𝜓))
frpoins3g.3 (𝑥 = 𝐵 → (𝜑𝜒))
Assertion
Ref Expression
frpoins3g (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝐵𝐴) → 𝜒)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵   𝜒,𝑥   𝜑,𝑦   𝜓,𝑥   𝑥,𝑅,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝐵(𝑦)

Proof of Theorem frpoins3g
StepHypRef Expression
1 frpoins3g.1 . . 3 (𝑥𝐴 → (∀𝑦 ∈ Pred (𝑅, 𝐴, 𝑥)𝜓𝜑))
2 frpoins3g.2 . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
31, 2frpoins2g 6340 . 2 ((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) → ∀𝑥𝐴 𝜑)
4 frpoins3g.3 . . 3 (𝑥 = 𝐵 → (𝜑𝜒))
54rspccva 3605 . 2 ((∀𝑥𝐴 𝜑𝐵𝐴) → 𝜒)
63, 5sylan 579 1 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝐵𝐴) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1084   = wceq 1533  wcel 2098  wral 3055   Po wpo 5579   Fr wfr 5621   Se wse 5622  Predcpred 6293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-sbc 3773  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-br 5142  df-opab 5204  df-po 5581  df-fr 5624  df-se 5625  df-xp 5675  df-cnv 5677  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294
This theorem is referenced by:  noinds  27817
  Copyright terms: Public domain W3C validator