Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > frpoins3g | Structured version Visualization version GIF version |
Description: Well-Founded Induction schema, using implicit substitution. (Contributed by Scott Fenton, 19-Aug-2024.) |
Ref | Expression |
---|---|
frpoins3g.1 | ⊢ (𝑥 ∈ 𝐴 → (∀𝑦 ∈ Pred (𝑅, 𝐴, 𝑥)𝜓 → 𝜑)) |
frpoins3g.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
frpoins3g.3 | ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) |
Ref | Expression |
---|---|
frpoins3g | ⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝐵 ∈ 𝐴) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frpoins3g.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (∀𝑦 ∈ Pred (𝑅, 𝐴, 𝑥)𝜓 → 𝜑)) | |
2 | frpoins3g.2 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
3 | 1, 2 | frpoins2g 6233 | . 2 ⊢ ((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) → ∀𝑥 ∈ 𝐴 𝜑) |
4 | frpoins3g.3 | . . 3 ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) | |
5 | 4 | rspccva 3551 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ 𝐵 ∈ 𝐴) → 𝜒) |
6 | 3, 5 | sylan 579 | 1 ⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝐵 ∈ 𝐴) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∀wral 3063 Po wpo 5492 Fr wfr 5532 Se wse 5533 Predcpred 6190 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-po 5494 df-fr 5535 df-se 5536 df-xp 5586 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 |
This theorem is referenced by: noinds 34029 |
Copyright terms: Public domain | W3C validator |