![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frpoins3g | Structured version Visualization version GIF version |
Description: Well-Founded Induction schema, using implicit substitution. (Contributed by Scott Fenton, 19-Aug-2024.) |
Ref | Expression |
---|---|
frpoins3g.1 | ⊢ (𝑥 ∈ 𝐴 → (∀𝑦 ∈ Pred (𝑅, 𝐴, 𝑥)𝜓 → 𝜑)) |
frpoins3g.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
frpoins3g.3 | ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) |
Ref | Expression |
---|---|
frpoins3g | ⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝐵 ∈ 𝐴) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frpoins3g.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (∀𝑦 ∈ Pred (𝑅, 𝐴, 𝑥)𝜓 → 𝜑)) | |
2 | frpoins3g.2 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
3 | 1, 2 | frpoins2g 6346 | . 2 ⊢ ((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) → ∀𝑥 ∈ 𝐴 𝜑) |
4 | frpoins3g.3 | . . 3 ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) | |
5 | 4 | rspccva 3611 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ 𝐵 ∈ 𝐴) → 𝜒) |
6 | 3, 5 | sylan 580 | 1 ⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝐵 ∈ 𝐴) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ∀wral 3061 Po wpo 5586 Fr wfr 5628 Se wse 5629 Predcpred 6299 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-po 5588 df-fr 5631 df-se 5632 df-xp 5682 df-cnv 5684 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 |
This theorem is referenced by: noinds 27426 |
Copyright terms: Public domain | W3C validator |