MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noinds Structured version   Visualization version   GIF version

Theorem noinds 27904
Description: Induction principle for a single surreal. If a property passes from a surreal's left and right sets to the surreal itself, then it holds for all surreals. (Contributed by Scott Fenton, 19-Aug-2024.)
Hypotheses
Ref Expression
noinds.1 (𝑥 = 𝑦 → (𝜑𝜓))
noinds.2 (𝑥 = 𝐴 → (𝜑𝜒))
noinds.3 (𝑥 No → (∀𝑦 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))𝜓𝜑))
Assertion
Ref Expression
noinds (𝐴 No 𝜒)
Distinct variable groups:   𝑥,𝑦   𝑥,𝐴   𝜒,𝑥   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝐴(𝑦)

Proof of Theorem noinds
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . . . 4 {⟨𝑎, 𝑏⟩ ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} = {⟨𝑎, 𝑏⟩ ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))}
21lrrecfr 27902 . . 3 {⟨𝑎, 𝑏⟩ ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} Fr No
31lrrecpo 27900 . . 3 {⟨𝑎, 𝑏⟩ ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} Po No
41lrrecse 27901 . . 3 {⟨𝑎, 𝑏⟩ ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} Se No
52, 3, 43pm3.2i 1340 . 2 ({⟨𝑎, 𝑏⟩ ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} Fr No ∧ {⟨𝑎, 𝑏⟩ ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} Po No ∧ {⟨𝑎, 𝑏⟩ ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} Se No )
61lrrecpred 27903 . . . . 5 (𝑥 No → Pred({⟨𝑎, 𝑏⟩ ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))}, No , 𝑥) = (( L ‘𝑥) ∪ ( R ‘𝑥)))
76raleqdv 3305 . . . 4 (𝑥 No → (∀𝑦 ∈ Pred ({⟨𝑎, 𝑏⟩ ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))}, No , 𝑥)𝜓 ↔ ∀𝑦 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))𝜓))
8 noinds.3 . . . 4 (𝑥 No → (∀𝑦 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))𝜓𝜑))
97, 8sylbid 240 . . 3 (𝑥 No → (∀𝑦 ∈ Pred ({⟨𝑎, 𝑏⟩ ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))}, No , 𝑥)𝜓𝜑))
10 noinds.1 . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
11 noinds.2 . . 3 (𝑥 = 𝐴 → (𝜑𝜒))
129, 10, 11frpoins3g 6335 . 2 ((({⟨𝑎, 𝑏⟩ ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} Fr No ∧ {⟨𝑎, 𝑏⟩ ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} Po No ∧ {⟨𝑎, 𝑏⟩ ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} Se No ) ∧ 𝐴 No ) → 𝜒)
135, 12mpan 690 1 (𝐴 No 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2108  wral 3051  cun 3924  {copab 5181   Po wpo 5559   Fr wfr 5603   Se wse 5604  Predcpred 6289  cfv 6531   No csur 27603   L cleft 27805   R cright 27806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-1o 8480  df-2o 8481  df-no 27606  df-slt 27607  df-bday 27608  df-sslt 27745  df-scut 27747  df-made 27807  df-old 27808  df-left 27810  df-right 27811
This theorem is referenced by:  addsrid  27923  negsid  27999  negsbdaylem  28014  mulsrid  28068  precsex  28172
  Copyright terms: Public domain W3C validator