MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noinds Structured version   Visualization version   GIF version

Theorem noinds 27978
Description: Induction principle for a single surreal. If a property passes from a surreal's left and right sets to the surreal itself, then it holds for all surreals. (Contributed by Scott Fenton, 19-Aug-2024.)
Hypotheses
Ref Expression
noinds.1 (𝑥 = 𝑦 → (𝜑𝜓))
noinds.2 (𝑥 = 𝐴 → (𝜑𝜒))
noinds.3 (𝑥 No → (∀𝑦 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))𝜓𝜑))
Assertion
Ref Expression
noinds (𝐴 No 𝜒)
Distinct variable groups:   𝑥,𝑦   𝑥,𝐴   𝜒,𝑥   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝐴(𝑦)

Proof of Theorem noinds
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . . . 4 {⟨𝑎, 𝑏⟩ ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} = {⟨𝑎, 𝑏⟩ ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))}
21lrrecfr 27976 . . 3 {⟨𝑎, 𝑏⟩ ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} Fr No
31lrrecpo 27974 . . 3 {⟨𝑎, 𝑏⟩ ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} Po No
41lrrecse 27975 . . 3 {⟨𝑎, 𝑏⟩ ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} Se No
52, 3, 43pm3.2i 1340 . 2 ({⟨𝑎, 𝑏⟩ ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} Fr No ∧ {⟨𝑎, 𝑏⟩ ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} Po No ∧ {⟨𝑎, 𝑏⟩ ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} Se No )
61lrrecpred 27977 . . . . 5 (𝑥 No → Pred({⟨𝑎, 𝑏⟩ ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))}, No , 𝑥) = (( L ‘𝑥) ∪ ( R ‘𝑥)))
76raleqdv 3326 . . . 4 (𝑥 No → (∀𝑦 ∈ Pred ({⟨𝑎, 𝑏⟩ ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))}, No , 𝑥)𝜓 ↔ ∀𝑦 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))𝜓))
8 noinds.3 . . . 4 (𝑥 No → (∀𝑦 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))𝜓𝜑))
97, 8sylbid 240 . . 3 (𝑥 No → (∀𝑦 ∈ Pred ({⟨𝑎, 𝑏⟩ ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))}, No , 𝑥)𝜓𝜑))
10 noinds.1 . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
11 noinds.2 . . 3 (𝑥 = 𝐴 → (𝜑𝜒))
129, 10, 11frpoins3g 6367 . 2 ((({⟨𝑎, 𝑏⟩ ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} Fr No ∧ {⟨𝑎, 𝑏⟩ ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} Po No ∧ {⟨𝑎, 𝑏⟩ ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} Se No ) ∧ 𝐴 No ) → 𝜒)
135, 12mpan 690 1 (𝐴 No 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1087   = wceq 1540  wcel 2108  wral 3061  cun 3949  {copab 5205   Po wpo 5590   Fr wfr 5634   Se wse 5635  Predcpred 6320  cfv 6561   No csur 27684   L cleft 27884   R cright 27885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-1o 8506  df-2o 8507  df-no 27687  df-slt 27688  df-bday 27689  df-sslt 27826  df-scut 27828  df-made 27886  df-old 27887  df-left 27889  df-right 27890
This theorem is referenced by:  addsrid  27997  negsid  28073  negsbdaylem  28088  mulsrid  28139  precsex  28242
  Copyright terms: Public domain W3C validator