| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > noinds | Structured version Visualization version GIF version | ||
| Description: Induction principle for a single surreal. If a property passes from a surreal's left and right sets to the surreal itself, then it holds for all surreals. (Contributed by Scott Fenton, 19-Aug-2024.) |
| Ref | Expression |
|---|---|
| noinds.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| noinds.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
| noinds.3 | ⊢ (𝑥 ∈ No → (∀𝑦 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))𝜓 → 𝜑)) |
| Ref | Expression |
|---|---|
| noinds | ⊢ (𝐴 ∈ No → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . . 4 ⊢ {〈𝑎, 𝑏〉 ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} = {〈𝑎, 𝑏〉 ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} | |
| 2 | 1 | lrrecfr 27857 | . . 3 ⊢ {〈𝑎, 𝑏〉 ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} Fr No |
| 3 | 1 | lrrecpo 27855 | . . 3 ⊢ {〈𝑎, 𝑏〉 ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} Po No |
| 4 | 1 | lrrecse 27856 | . . 3 ⊢ {〈𝑎, 𝑏〉 ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} Se No |
| 5 | 2, 3, 4 | 3pm3.2i 1340 | . 2 ⊢ ({〈𝑎, 𝑏〉 ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} Fr No ∧ {〈𝑎, 𝑏〉 ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} Po No ∧ {〈𝑎, 𝑏〉 ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} Se No ) |
| 6 | 1 | lrrecpred 27858 | . . . . 5 ⊢ (𝑥 ∈ No → Pred({〈𝑎, 𝑏〉 ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))}, No , 𝑥) = (( L ‘𝑥) ∪ ( R ‘𝑥))) |
| 7 | 6 | raleqdv 3301 | . . . 4 ⊢ (𝑥 ∈ No → (∀𝑦 ∈ Pred ({〈𝑎, 𝑏〉 ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))}, No , 𝑥)𝜓 ↔ ∀𝑦 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))𝜓)) |
| 8 | noinds.3 | . . . 4 ⊢ (𝑥 ∈ No → (∀𝑦 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))𝜓 → 𝜑)) | |
| 9 | 7, 8 | sylbid 240 | . . 3 ⊢ (𝑥 ∈ No → (∀𝑦 ∈ Pred ({〈𝑎, 𝑏〉 ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))}, No , 𝑥)𝜓 → 𝜑)) |
| 10 | noinds.1 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 11 | noinds.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
| 12 | 9, 10, 11 | frpoins3g 6322 | . 2 ⊢ ((({〈𝑎, 𝑏〉 ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} Fr No ∧ {〈𝑎, 𝑏〉 ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} Po No ∧ {〈𝑎, 𝑏〉 ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} Se No ) ∧ 𝐴 ∈ No ) → 𝜒) |
| 13 | 5, 12 | mpan 690 | 1 ⊢ (𝐴 ∈ No → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ∪ cun 3915 {copab 5172 Po wpo 5547 Fr wfr 5591 Se wse 5592 Predcpred 6276 ‘cfv 6514 No csur 27558 L cleft 27760 R cright 27761 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-1o 8437 df-2o 8438 df-no 27561 df-slt 27562 df-bday 27563 df-sslt 27700 df-scut 27702 df-made 27762 df-old 27763 df-left 27765 df-right 27766 |
| This theorem is referenced by: addsrid 27878 negsid 27954 negsbdaylem 27969 mulsrid 28023 precsex 28127 |
| Copyright terms: Public domain | W3C validator |