![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > noinds | Structured version Visualization version GIF version |
Description: Induction principle for a single surreal. If a property passes from a surreal's left and right sets to the surreal itself, then it holds for all surreals. (Contributed by Scott Fenton, 19-Aug-2024.) |
Ref | Expression |
---|---|
noinds.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
noinds.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
noinds.3 | ⊢ (𝑥 ∈ No → (∀𝑦 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))𝜓 → 𝜑)) |
Ref | Expression |
---|---|
noinds | ⊢ (𝐴 ∈ No → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . . 4 ⊢ {〈𝑎, 𝑏〉 ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} = {〈𝑎, 𝑏〉 ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} | |
2 | 1 | lrrecfr 27994 | . . 3 ⊢ {〈𝑎, 𝑏〉 ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} Fr No |
3 | 1 | lrrecpo 27992 | . . 3 ⊢ {〈𝑎, 𝑏〉 ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} Po No |
4 | 1 | lrrecse 27993 | . . 3 ⊢ {〈𝑎, 𝑏〉 ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} Se No |
5 | 2, 3, 4 | 3pm3.2i 1339 | . 2 ⊢ ({〈𝑎, 𝑏〉 ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} Fr No ∧ {〈𝑎, 𝑏〉 ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} Po No ∧ {〈𝑎, 𝑏〉 ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} Se No ) |
6 | 1 | lrrecpred 27995 | . . . . 5 ⊢ (𝑥 ∈ No → Pred({〈𝑎, 𝑏〉 ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))}, No , 𝑥) = (( L ‘𝑥) ∪ ( R ‘𝑥))) |
7 | 6 | raleqdv 3334 | . . . 4 ⊢ (𝑥 ∈ No → (∀𝑦 ∈ Pred ({〈𝑎, 𝑏〉 ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))}, No , 𝑥)𝜓 ↔ ∀𝑦 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))𝜓)) |
8 | noinds.3 | . . . 4 ⊢ (𝑥 ∈ No → (∀𝑦 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))𝜓 → 𝜑)) | |
9 | 7, 8 | sylbid 240 | . . 3 ⊢ (𝑥 ∈ No → (∀𝑦 ∈ Pred ({〈𝑎, 𝑏〉 ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))}, No , 𝑥)𝜓 → 𝜑)) |
10 | noinds.1 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
11 | noinds.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
12 | 9, 10, 11 | frpoins3g 6378 | . 2 ⊢ ((({〈𝑎, 𝑏〉 ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} Fr No ∧ {〈𝑎, 𝑏〉 ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} Po No ∧ {〈𝑎, 𝑏〉 ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} Se No ) ∧ 𝐴 ∈ No ) → 𝜒) |
13 | 5, 12 | mpan 689 | 1 ⊢ (𝐴 ∈ No → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∪ cun 3974 {copab 5228 Po wpo 5605 Fr wfr 5649 Se wse 5650 Predcpred 6331 ‘cfv 6573 No csur 27702 L cleft 27902 R cright 27903 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-1o 8522 df-2o 8523 df-no 27705 df-slt 27706 df-bday 27707 df-sslt 27844 df-scut 27846 df-made 27904 df-old 27905 df-left 27907 df-right 27908 |
This theorem is referenced by: addsrid 28015 negsid 28091 negsbdaylem 28106 mulsrid 28157 precsex 28260 |
Copyright terms: Public domain | W3C validator |