MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frpoins2g Structured version   Visualization version   GIF version

Theorem frpoins2g 6293
Description: Well-Founded Induction schema, using implicit substitution. (Contributed by Scott Fenton, 24-Aug-2022.)
Hypotheses
Ref Expression
frpoins2g.1 (𝑦𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓𝜑))
frpoins2g.3 (𝑦 = 𝑧 → (𝜑𝜓))
Assertion
Ref Expression
frpoins2g ((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) → ∀𝑦𝐴 𝜑)
Distinct variable groups:   𝑦,𝐴,𝑧   𝜑,𝑧   𝑦,𝑅,𝑧   𝜓,𝑦
Allowed substitution hints:   𝜑(𝑦)   𝜓(𝑧)

Proof of Theorem frpoins2g
StepHypRef Expression
1 frpoins2g.1 . 2 (𝑦𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓𝜑))
2 nfv 1914 . 2 𝑦𝜓
3 frpoins2g.3 . 2 (𝑦 = 𝑧 → (𝜑𝜓))
41, 2, 3frpoins2fg 6292 1 ((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) → ∀𝑦𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086  wcel 2109  wral 3044   Po wpo 5525   Fr wfr 5569   Se wse 5570  Predcpred 6248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-br 5093  df-opab 5155  df-po 5527  df-fr 5572  df-se 5573  df-xp 5625  df-cnv 5627  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249
This theorem is referenced by:  frpoins3g  6294  frpoins3xpg  8073  frpoins3xp3g  8074  fpr3g  8218
  Copyright terms: Public domain W3C validator