Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > frpoins2g | Structured version Visualization version GIF version |
Description: Well-Founded Induction schema, using implicit substitution. (Contributed by Scott Fenton, 24-Aug-2022.) |
Ref | Expression |
---|---|
frpoins2g.1 | ⊢ (𝑦 ∈ 𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓 → 𝜑)) |
frpoins2g.3 | ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
frpoins2g | ⊢ ((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) → ∀𝑦 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frpoins2g.1 | . 2 ⊢ (𝑦 ∈ 𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓 → 𝜑)) | |
2 | nfv 1922 | . 2 ⊢ Ⅎ𝑦𝜓 | |
3 | frpoins2g.3 | . 2 ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) | |
4 | 1, 2, 3 | frpoins2fg 6216 | 1 ⊢ ((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) → ∀𝑦 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ w3a 1089 ∈ wcel 2111 ∀wral 3062 Po wpo 5481 Fr wfr 5521 Se wse 5522 Predcpred 6175 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-sep 5207 ax-nul 5214 ax-pr 5337 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-ral 3067 df-rex 3068 df-rab 3071 df-v 3423 df-sbc 3710 df-dif 3884 df-un 3886 df-in 3888 df-ss 3898 df-nul 4253 df-if 4455 df-sn 4557 df-pr 4559 df-op 4563 df-br 5069 df-opab 5131 df-po 5483 df-fr 5524 df-se 5525 df-xp 5572 df-cnv 5574 df-dm 5576 df-rn 5577 df-res 5578 df-ima 5579 df-pred 6176 |
This theorem is referenced by: frpoins3g 6218 fpr3g 8047 frpoins3xpg 33550 frpoins3xp3g 33551 |
Copyright terms: Public domain | W3C validator |