MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frpoins2g Structured version   Visualization version   GIF version

Theorem frpoins2g 6217
Description: Well-Founded Induction schema, using implicit substitution. (Contributed by Scott Fenton, 24-Aug-2022.)
Hypotheses
Ref Expression
frpoins2g.1 (𝑦𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓𝜑))
frpoins2g.3 (𝑦 = 𝑧 → (𝜑𝜓))
Assertion
Ref Expression
frpoins2g ((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) → ∀𝑦𝐴 𝜑)
Distinct variable groups:   𝑦,𝐴,𝑧   𝜑,𝑧   𝑦,𝑅,𝑧   𝜓,𝑦
Allowed substitution hints:   𝜑(𝑦)   𝜓(𝑧)

Proof of Theorem frpoins2g
StepHypRef Expression
1 frpoins2g.1 . 2 (𝑦𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓𝜑))
2 nfv 1922 . 2 𝑦𝜓
3 frpoins2g.3 . 2 (𝑦 = 𝑧 → (𝜑𝜓))
41, 2, 3frpoins2fg 6216 1 ((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) → ∀𝑦𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  w3a 1089  wcel 2111  wral 3062   Po wpo 5481   Fr wfr 5521   Se wse 5522  Predcpred 6175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-sep 5207  ax-nul 5214  ax-pr 5337
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2887  df-ne 2942  df-ral 3067  df-rex 3068  df-rab 3071  df-v 3423  df-sbc 3710  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4253  df-if 4455  df-sn 4557  df-pr 4559  df-op 4563  df-br 5069  df-opab 5131  df-po 5483  df-fr 5524  df-se 5525  df-xp 5572  df-cnv 5574  df-dm 5576  df-rn 5577  df-res 5578  df-ima 5579  df-pred 6176
This theorem is referenced by:  frpoins3g  6218  fpr3g  8047  frpoins3xpg  33550  frpoins3xp3g  33551
  Copyright terms: Public domain W3C validator