![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f0bi | Structured version Visualization version GIF version |
Description: A function with empty domain is empty. (Contributed by Alexander van der Vekens, 30-Jun-2018.) |
Ref | Expression |
---|---|
f0bi | ⊢ (𝐹:∅⟶𝑋 ↔ 𝐹 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 6728 | . . 3 ⊢ (𝐹:∅⟶𝑋 → 𝐹 Fn ∅) | |
2 | fn0 6692 | . . 3 ⊢ (𝐹 Fn ∅ ↔ 𝐹 = ∅) | |
3 | 1, 2 | sylib 217 | . 2 ⊢ (𝐹:∅⟶𝑋 → 𝐹 = ∅) |
4 | f0 6783 | . . 3 ⊢ ∅:∅⟶𝑋 | |
5 | feq1 6709 | . . 3 ⊢ (𝐹 = ∅ → (𝐹:∅⟶𝑋 ↔ ∅:∅⟶𝑋)) | |
6 | 4, 5 | mpbiri 257 | . 2 ⊢ (𝐹 = ∅ → 𝐹:∅⟶𝑋) |
7 | 3, 6 | impbii 208 | 1 ⊢ (𝐹:∅⟶𝑋 ↔ 𝐹 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1534 ∅c0 4325 Fn wfn 6549 ⟶wf 6550 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-clab 2704 df-cleq 2718 df-clel 2803 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-dif 3950 df-un 3952 df-ss 3964 df-nul 4326 df-if 4534 df-sn 4634 df-pr 4636 df-op 4640 df-br 5154 df-opab 5216 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-fun 6556 df-fn 6557 df-f 6558 |
This theorem is referenced by: f0dom0 6786 mapdm0 8871 fset0 8883 0map0sn0 8914 griedg0ssusgr 29201 rgrusgrprc 29526 sticksstones11 41854 2ffzoeq 46940 f102g 48219 |
Copyright terms: Public domain | W3C validator |