MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f0bi Structured version   Visualization version   GIF version

Theorem f0bi 6746
Description: A function with empty domain is empty. (Contributed by Alexander van der Vekens, 30-Jun-2018.)
Assertion
Ref Expression
f0bi (𝐹:∅⟶𝑋𝐹 = ∅)

Proof of Theorem f0bi
StepHypRef Expression
1 ffn 6691 . . 3 (𝐹:∅⟶𝑋𝐹 Fn ∅)
2 fn0 6652 . . 3 (𝐹 Fn ∅ ↔ 𝐹 = ∅)
31, 2sylib 218 . 2 (𝐹:∅⟶𝑋𝐹 = ∅)
4 f0 6744 . . 3 ∅:∅⟶𝑋
5 feq1 6669 . . 3 (𝐹 = ∅ → (𝐹:∅⟶𝑋 ↔ ∅:∅⟶𝑋))
64, 5mpbiri 258 . 2 (𝐹 = ∅ → 𝐹:∅⟶𝑋)
73, 6impbii 209 1 (𝐹:∅⟶𝑋𝐹 = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  c0 4299   Fn wfn 6509  wf 6510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-fun 6516  df-fn 6517  df-f 6518
This theorem is referenced by:  f0dom0  6747  mapdm0  8818  fset0  8830  0map0sn0  8861  griedg0ssusgr  29199  rgrusgrprc  29524  sticksstones11  42151  2ffzoeq  47332  f102g  48844  homf0  49002  0funcg2  49077  0funcALT  49081
  Copyright terms: Public domain W3C validator