MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f0bi Structured version   Visualization version   GIF version

Theorem f0bi 6657
Description: A function with empty domain is empty. (Contributed by Alexander van der Vekens, 30-Jun-2018.)
Assertion
Ref Expression
f0bi (𝐹:∅⟶𝑋𝐹 = ∅)

Proof of Theorem f0bi
StepHypRef Expression
1 ffn 6600 . . 3 (𝐹:∅⟶𝑋𝐹 Fn ∅)
2 fn0 6564 . . 3 (𝐹 Fn ∅ ↔ 𝐹 = ∅)
31, 2sylib 217 . 2 (𝐹:∅⟶𝑋𝐹 = ∅)
4 f0 6655 . . 3 ∅:∅⟶𝑋
5 feq1 6581 . . 3 (𝐹 = ∅ → (𝐹:∅⟶𝑋 ↔ ∅:∅⟶𝑋))
64, 5mpbiri 257 . 2 (𝐹 = ∅ → 𝐹:∅⟶𝑋)
73, 6impbii 208 1 (𝐹:∅⟶𝑋𝐹 = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  c0 4256   Fn wfn 6428  wf 6429
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-fun 6435  df-fn 6436  df-f 6437
This theorem is referenced by:  f0dom0  6658  mapdm0  8630  fset0  8642  0map0sn0  8673  griedg0ssusgr  27632  rgrusgrprc  27956  sticksstones11  40112  2ffzoeq  44820  f102g  46179
  Copyright terms: Public domain W3C validator