![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f0bi | Structured version Visualization version GIF version |
Description: A function with empty domain is empty. (Contributed by Alexander van der Vekens, 30-Jun-2018.) |
Ref | Expression |
---|---|
f0bi | ⊢ (𝐹:∅⟶𝑋 ↔ 𝐹 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 6341 | . . 3 ⊢ (𝐹:∅⟶𝑋 → 𝐹 Fn ∅) | |
2 | fn0 6306 | . . 3 ⊢ (𝐹 Fn ∅ ↔ 𝐹 = ∅) | |
3 | 1, 2 | sylib 210 | . 2 ⊢ (𝐹:∅⟶𝑋 → 𝐹 = ∅) |
4 | f0 6386 | . . 3 ⊢ ∅:∅⟶𝑋 | |
5 | feq1 6322 | . . 3 ⊢ (𝐹 = ∅ → (𝐹:∅⟶𝑋 ↔ ∅:∅⟶𝑋)) | |
6 | 4, 5 | mpbiri 250 | . 2 ⊢ (𝐹 = ∅ → 𝐹:∅⟶𝑋) |
7 | 3, 6 | impbii 201 | 1 ⊢ (𝐹:∅⟶𝑋 ↔ 𝐹 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 = wceq 1508 ∅c0 4172 Fn wfn 6180 ⟶wf 6181 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2743 ax-sep 5056 ax-nul 5063 ax-pr 5182 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-ral 3086 df-rex 3087 df-rab 3090 df-v 3410 df-dif 3825 df-un 3827 df-in 3829 df-ss 3836 df-nul 4173 df-if 4345 df-sn 4436 df-pr 4438 df-op 4442 df-br 4926 df-opab 4988 df-id 5308 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-rn 5414 df-fun 6187 df-fn 6188 df-f 6189 |
This theorem is referenced by: f0dom0 6389 mapdm0 8219 griedg0ssusgr 26765 rgrusgrprc 27089 mapdm0OLD 40916 2ffzoeq 42968 |
Copyright terms: Public domain | W3C validator |