![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f0bi | Structured version Visualization version GIF version |
Description: A function with empty domain is empty. (Contributed by Alexander van der Vekens, 30-Jun-2018.) |
Ref | Expression |
---|---|
f0bi | ⊢ (𝐹:∅⟶𝑋 ↔ 𝐹 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 6747 | . . 3 ⊢ (𝐹:∅⟶𝑋 → 𝐹 Fn ∅) | |
2 | fn0 6711 | . . 3 ⊢ (𝐹 Fn ∅ ↔ 𝐹 = ∅) | |
3 | 1, 2 | sylib 218 | . 2 ⊢ (𝐹:∅⟶𝑋 → 𝐹 = ∅) |
4 | f0 6802 | . . 3 ⊢ ∅:∅⟶𝑋 | |
5 | feq1 6728 | . . 3 ⊢ (𝐹 = ∅ → (𝐹:∅⟶𝑋 ↔ ∅:∅⟶𝑋)) | |
6 | 4, 5 | mpbiri 258 | . 2 ⊢ (𝐹 = ∅ → 𝐹:∅⟶𝑋) |
7 | 3, 6 | impbii 209 | 1 ⊢ (𝐹:∅⟶𝑋 ↔ 𝐹 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∅c0 4352 Fn wfn 6568 ⟶wf 6569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-fun 6575 df-fn 6576 df-f 6577 |
This theorem is referenced by: f0dom0 6805 mapdm0 8900 fset0 8912 0map0sn0 8943 griedg0ssusgr 29300 rgrusgrprc 29625 sticksstones11 42113 2ffzoeq 47242 f102g 48565 |
Copyright terms: Public domain | W3C validator |