| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f0bi | Structured version Visualization version GIF version | ||
| Description: A function with empty domain is empty. (Contributed by Alexander van der Vekens, 30-Jun-2018.) |
| Ref | Expression |
|---|---|
| f0bi | ⊢ (𝐹:∅⟶𝑋 ↔ 𝐹 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 6688 | . . 3 ⊢ (𝐹:∅⟶𝑋 → 𝐹 Fn ∅) | |
| 2 | fn0 6649 | . . 3 ⊢ (𝐹 Fn ∅ ↔ 𝐹 = ∅) | |
| 3 | 1, 2 | sylib 218 | . 2 ⊢ (𝐹:∅⟶𝑋 → 𝐹 = ∅) |
| 4 | f0 6741 | . . 3 ⊢ ∅:∅⟶𝑋 | |
| 5 | feq1 6666 | . . 3 ⊢ (𝐹 = ∅ → (𝐹:∅⟶𝑋 ↔ ∅:∅⟶𝑋)) | |
| 6 | 4, 5 | mpbiri 258 | . 2 ⊢ (𝐹 = ∅ → 𝐹:∅⟶𝑋) |
| 7 | 3, 6 | impbii 209 | 1 ⊢ (𝐹:∅⟶𝑋 ↔ 𝐹 = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∅c0 4296 Fn wfn 6506 ⟶wf 6507 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-fun 6513 df-fn 6514 df-f 6515 |
| This theorem is referenced by: f0dom0 6744 mapdm0 8815 fset0 8827 0map0sn0 8858 griedg0ssusgr 29192 rgrusgrprc 29517 sticksstones11 42144 2ffzoeq 47328 f102g 48840 homf0 48998 0funcg2 49073 0funcALT 49077 |
| Copyright terms: Public domain | W3C validator |