MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f0bi Structured version   Visualization version   GIF version

Theorem f0bi 6713
Description: A function with empty domain is empty. (Contributed by Alexander van der Vekens, 30-Jun-2018.)
Assertion
Ref Expression
f0bi (𝐹:∅⟶𝑋𝐹 = ∅)

Proof of Theorem f0bi
StepHypRef Expression
1 ffn 6658 . . 3 (𝐹:∅⟶𝑋𝐹 Fn ∅)
2 fn0 6619 . . 3 (𝐹 Fn ∅ ↔ 𝐹 = ∅)
31, 2sylib 218 . 2 (𝐹:∅⟶𝑋𝐹 = ∅)
4 f0 6711 . . 3 ∅:∅⟶𝑋
5 feq1 6636 . . 3 (𝐹 = ∅ → (𝐹:∅⟶𝑋 ↔ ∅:∅⟶𝑋))
64, 5mpbiri 258 . 2 (𝐹 = ∅ → 𝐹:∅⟶𝑋)
73, 6impbii 209 1 (𝐹:∅⟶𝑋𝐹 = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1541  c0 4282   Fn wfn 6483  wf 6484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-mo 2537  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5096  df-opab 5158  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-fun 6490  df-fn 6491  df-f 6492
This theorem is referenced by:  f0dom0  6714  mapdm0  8774  fset0  8786  0map0sn0  8817  griedg0ssusgr  29247  rgrusgrprc  29572  sticksstones11  42272  2ffzoeq  47454  f102g  48979  homf0  49137  0funcg2  49212  0funcALT  49216
  Copyright terms: Public domain W3C validator