MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f0bi Structured version   Visualization version   GIF version

Theorem f0bi 6804
Description: A function with empty domain is empty. (Contributed by Alexander van der Vekens, 30-Jun-2018.)
Assertion
Ref Expression
f0bi (𝐹:∅⟶𝑋𝐹 = ∅)

Proof of Theorem f0bi
StepHypRef Expression
1 ffn 6747 . . 3 (𝐹:∅⟶𝑋𝐹 Fn ∅)
2 fn0 6711 . . 3 (𝐹 Fn ∅ ↔ 𝐹 = ∅)
31, 2sylib 218 . 2 (𝐹:∅⟶𝑋𝐹 = ∅)
4 f0 6802 . . 3 ∅:∅⟶𝑋
5 feq1 6728 . . 3 (𝐹 = ∅ → (𝐹:∅⟶𝑋 ↔ ∅:∅⟶𝑋))
64, 5mpbiri 258 . 2 (𝐹 = ∅ → 𝐹:∅⟶𝑋)
73, 6impbii 209 1 (𝐹:∅⟶𝑋𝐹 = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1537  c0 4352   Fn wfn 6568  wf 6569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-fun 6575  df-fn 6576  df-f 6577
This theorem is referenced by:  f0dom0  6805  mapdm0  8900  fset0  8912  0map0sn0  8943  griedg0ssusgr  29300  rgrusgrprc  29625  sticksstones11  42113  2ffzoeq  47242  f102g  48565
  Copyright terms: Public domain W3C validator