| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f0bi | Structured version Visualization version GIF version | ||
| Description: A function with empty domain is empty. (Contributed by Alexander van der Vekens, 30-Jun-2018.) |
| Ref | Expression |
|---|---|
| f0bi | ⊢ (𝐹:∅⟶𝑋 ↔ 𝐹 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 6706 | . . 3 ⊢ (𝐹:∅⟶𝑋 → 𝐹 Fn ∅) | |
| 2 | fn0 6669 | . . 3 ⊢ (𝐹 Fn ∅ ↔ 𝐹 = ∅) | |
| 3 | 1, 2 | sylib 218 | . 2 ⊢ (𝐹:∅⟶𝑋 → 𝐹 = ∅) |
| 4 | f0 6759 | . . 3 ⊢ ∅:∅⟶𝑋 | |
| 5 | feq1 6686 | . . 3 ⊢ (𝐹 = ∅ → (𝐹:∅⟶𝑋 ↔ ∅:∅⟶𝑋)) | |
| 6 | 4, 5 | mpbiri 258 | . 2 ⊢ (𝐹 = ∅ → 𝐹:∅⟶𝑋) |
| 7 | 3, 6 | impbii 209 | 1 ⊢ (𝐹:∅⟶𝑋 ↔ 𝐹 = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∅c0 4308 Fn wfn 6526 ⟶wf 6527 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-fun 6533 df-fn 6534 df-f 6535 |
| This theorem is referenced by: f0dom0 6762 mapdm0 8856 fset0 8868 0map0sn0 8899 griedg0ssusgr 29244 rgrusgrprc 29569 sticksstones11 42169 2ffzoeq 47356 f102g 48830 homf0 48984 0funcg2 49049 0funcALT 49053 |
| Copyright terms: Public domain | W3C validator |